

The Cosmos

Experimental High Energy Physics at the University of Oregon

- Study of matter/anti-matter asymmetry at the Stanford Linear Accelerator Center
- Search for Gravitational Radiation at LIGO
- Search for Higgs Bosons and Supersymmetric particles at a Linear Collider

Mathematical Basis of Gravity Waves

"No doubt about it, Ellington-we've mathematically expressed the purpose of the universe. God, how I love the thrill of scientific discovery!"

LIGO

Laser Interferometry Gravity-wave Observatory

Laser Interferometer

Laser Interferometer

Space-time is warped by matter and energy

LIGO is measuring space with unprecedented precision

Letter of Introduction

 13 April 1901

Professor Wilhelm Ostwald University of Leipzig Leipzig, Germany

Esteemed Herr Professor!

Please forgive a father who is so bold as to turn to you, esteemed Herr Professor, in the interest of his son.

I shall start by telling you that my son Albert is 22 years old, that he studied at the Zurich Polytechnikum for 4 years, and that he passed his diploma examinations in mathematics and physics with flying colors last summer. Since then, he has been trying unsuccessfully to obtain a position as Assistent, which would enable him to continue his education in theoretical & experimental physics. All those in position to give a judgement in the matter, praise his talents; in any case, I can assure you that he is extraordinarily studious and diligent and clings with great love to his science.

Letter of Introduction

My son therefore feels profoundly unhappy with his present lack of position, and his idea that he has gone off the tracks with his career & is now out of touch gets more and more entrenched each day. In addition, he is oppressed by the thought that he is a burden on us, people of modest means.

Since it is you, highly honored Herr Professor, whom my son seems to admire and esteem more than any other scholar currently active in physics, it is you to whom I have taken the liberty of turning with the humble request to read his paper published in the Annalen fur Physick and to write him, if possible, a few words of encouragement, so that he might recover his joy in living and working.

If, in addition, you could secure him an Assistant'**s position for now or next autumn, my gratitude would know no bounds.**

I beg you once again to forgive me for my impudence in writing to you, and I am also taking the liberty of mentioning that my son does not know anything about my unusual step.

I remain, highly esteemed Herr Professor, your devoted

 Hermann Einstein

Albert Einstein

1879-1955

- \cdot 1901-1902
	- temporary high school teaching jobs
- 1902-
	- "technical expert third class"
	- Swiss Patent Office

As this century began, Albert Einstein was a young physicist in Europe thinking about the Universe.

I Cul upe <u>Infining</u> about the He developed two very successful theories about the nature of space and time, special relativity in 1905, and general relativity in 1915.

SPECIAL RELATIVITY

- \cdot The speed of light is constant
	- (this is true no matter what your relative motion)
- Nothing can move faster than the speed of light
- Space and time are mixed
- Time slows down when a system is in motion

The Speed of Light is Constant

Michelson and Morely attempted to measure the motion of the Earth through space, 1887

The Speed of Light is Constant

- 186,000 miles per second
	- 300,000 kilometer per second
- Whether you are sitting at rest on the Earth, or moving rapidly on a spaceship, you will always find light travels at this speed
- •And, NOTHING can travel faster than light •Universal speed limit = 186,000 miles per sec

Time Travel?

There once was a lady named Bright who traveled much faster than light. She departed one day in a relative way, and came home the previous night.

If we could travel faster than light, we would be able to travel into the past

Time Dilation

- Now imagine the clock is moving. \blacksquare
- Since the speed of light is unchanged, it takes longer, and time is slowing down

First Quiz

• Two spaceships are moving toward one another at 90% of the speed of light

- From the Martian ship, what is the apparent speed of the Earth ship?
	- •A. 180% of the speed of light
	- •B. 99% of the speed of light
	- I have no clue

SPECIAL RELATIVITY

E = mc2

- The speed of light is constant
	- (this is true no matter what your relative motion)
- Nothing can move faster than the speed of light
- Space and time are mixed
- Time slows down when a system is in motion

GENERAL RELATIVITY

• Principal of Equivalence: Consider these two systems

GENERAL RELATIVITY

• Principal of Equivalence: Einstein -> You can't tell which system you are in from inside the enclosure

The Laws of Physics are the same within each system acceleration = gravity inertial mass = gravitational mass

Predictions of Einstein's General Relativity (GR)

- Let's consider six predictions of GR
	- three are the classic tests of GR that convinced physicists of its validity
	- three are of current active scientific interest

 including the prediction of gravity waves, our focus today

Einstein's Three Tests of GR

¹ Mercury's orbital precession

- known but unexplained prior to General Relativity
- in Newton's physics the orbit would not precess

Einstein's Three Tests of GR

- ² Bending of starlight
	- the fabric of space is bent near massive objects and the bent space will turn light's trajectory
	- 1919 Eddington mounts two expeditions during Solar eclipse
		- Principe (West coast of Africa)
		- Northern Brazil
	- Einstein's prediction confirmed
	- BIG NEWS
		- (New York Times)

Einstein's Three Tests of GR

- ³ Gravitational redshift
	- Time runs slower in a gravitational field,
		- the stronger the gravity, the slower time runs
		- at the critical point, time will appear to stop
	- Harvard Tower experiment (Pound and Rebka)

Curvature of Space

• Newton viewed gravitation as action through a distance

- Einstein introduced a different idea (General Relativity)
- **Matter** "tells" **space** how to curve and **space** "tells" **matter** how to move

However, space is stiff, so it takes a lot of mass to bend space

Other Predictions of General Relativity

- ⁴ Expanding Universe
	- Einstein did not like this concept and put a *fudge* factor into his equations to keep the Universe from expanding
	- 1925 Hubble discovers the Universe is expanding
		- Big Bang

- Einstein calls his invention of this *fudge* factor his greatest blunder

Other Predictions of General Relativity

- ⁵ Gravitational Lenses (and arcs)
	- Double quasar discovered in 1979

- Recent photos from Hubble Space Telescope
	- 120 gravitational arcs

Gravitational Lens

Other Predictions of General Relativity

- ⁶ Gravity Waves
	- Ripples on the fabric of space-time
	- Travel at the speed of light
	- **The curvature of space is not static if the mass which curves it is not static**

- Distance changes 100-1000 times per second $L \rightarrow L \pm \Delta L$ strain, $h = \Delta L / L$
- But, h is only 0.000000000000000000001 = 10-21
- $\Delta L = h L = 1.5 \times 10^{-19}$ yards
- $\Delta L =$ diameter of the atom / 1,000,000,000 !!!!!

Detection of Gravity Waves

- Recall the history of the discovery of electromagnetic waves
	- 1864 Maxwell predicted existence of electromagnetic waves
	- 1879 Prussian Academy of Science offered a prize for experimental proof of Maxwell's theory
	- 1886 Hertz created primitive transmitter and receiver of electromagnetic wave and detected the
- · Can estremagnistic waves laboratory demonstration of gravity waves

Laboratory demonstration

• Gravity waves are generated by moving masses, as electromagnetic waves are generated by moving charges

Laboratory demonstration

• Now look for waves from this source

h = ΔL / L = 0.00000000000000000000000000000000000001 = 10 • This system would only create a strain (h) of 10-38-38

• No hope of detecting such a small change in length

Potential sources of Gravity Waves

- We cannot create in the laboratory a source of detectable waves
- We are therefore compelled to turn to astronomical bodies
	- much larger masses
- We need large mass accelerating rapidly
- Binary black-hole or binary neutron-star

Black Holes

- Just as Earth has an escape velocity, every massive object has an escape velocity
	- escape velocity of the Earth
		- 7 miles/second = 25,000 miles/hour

- Now, imagine you gather so much mass into such a small space that the escape velocity exceeds the speed of light. Then, nothing can escape, not even light
- Massive stars may collapse to black holes at the end of their burning phase

Neutron Stars

- At the end of life, some stars do not collapse to a black hole, but only to nuclear density
	- 1 teaspoon of this matter weighs a ton
- Such stars are seen as radio pulsars

Experimental evidence for GrRad Taylor-Hulse Binary (PSR 1913+16)

Lane Community College, J. Brau, June 11, 2002 38

Ripples in Space from the Binary Pulsar

Future of the Taylor-Hulse

Radiating grav. energy

 $\frac{dE}{dt} = \frac{32GI^2w^6}{5c^5}$

Not much today

In 300,000,000 yrs coalesce with a burst of gravitational radiation

Detectors

• Bars • Laser Interferometers

Hanford, WA

Laser Interferometer (Beam Tube)

- Light path in vacuum (10⁻⁶ torr initial)
- Beam tube with 1.22 meter diameter
- 10,000,000 liter vacuum systems

LIGO Vacuum Chambers

• All optical components are mounted in high vacuum chambers

LIGO Vibration Isolation

• All optical components are mounted on spring stack in high vacuum

LIGO SCHEDULE

- **1995** NSF funding secured (\$ 360M)
- **1996** Construction Underway (mostly civil)
- **1997** Facility Construction (vacuum system)
- **1998** Interferometer Construction (complete facilities)
- **1999** Construction Complete (interferometers in vacuum)
- **2000** Detector Installation (commissioning subsystems) LHO 2km commissioning Single arm test (summer 2000) Power-recycled Michelson (Winter 2000)
- **2001** Commission Interferometers (first coincidences) PRM with FP arm cavities (Summer 2001)
- **2002** Sensitivity studies (initiate LIGO I Science Run)
- **2003**+ LIGO I data run (one year integrated data at $h \sim 10^{-21}$)
- **2005** Begin LIGO II upgrade installation

LIGO and the World-wide Network of Laser Interferometer Detectors

Laser Interferometer Space Antenna (LISA) (the next generation)

Lane Community College, J. Brau, June 11, 2002 48

Gravity waves open a new window

High Energy Physics at UO

- The search for gravity waves is part of the experimental high energy physics program at the University of Oregon which includes
	- study of matter/anti-matter asymmetry
	- search for the Higgs boson and supersymmetric particles
	- search for gravitational radiation (gravity waves)
		- Professors Brau, Frey, Strom, Torrence

Summary

- Einstein's theory of General Relativity predicts that space itself is vibrating (gravity waves)
- The LIGO project will soon begin operation to search for these waves with unprecedented sensitivity
- There may be some BIG surprises if signals are found
	- Dark Matter
	- Extra Dimensions

That's All Folks

General Relativity "predicts" the existence of gravitational radiation

•Newton's laws assume action at a distance,

–potential reacts instantly

–there is no wave equation, no radiation

•General Relativity, being a relativistic theory, assumes a characteristic time for field response (c=speed of light), and yields a wave equation for this response

Two polarizations

- Wave will distort a ring of test masses like tidal deformation
- specific movement of the test masses during one period of the wave depend on polarization

EM and Grav. radiation

Lane Community College, J. Brau, June 11, 2002 55

 $\mathbf{e}^{\mathbf{e}}_{\mathbf{e}}$ and $\mathbf{e}^{\mathbf{e}}_{\mathbf{e}}$ and $\mathbf{e}^{\mathbf{e}}_{\mathbf{e}}$ and $\mathbf{e}^{\mathbf{e}}_{\mathbf{e}}$ and $\mathbf{e}^{\mathbf{e}}_{\mathbf{e}}$

Astrophysical Sources

- Binary compact star systems
	- composed of neutron stars and/or black holes
- Non-axisymmetric supernova collapse
- Non-axisymmetric pulsar (periodic)
- Early universe
	- stochastic background radiation
	- ⇒ most sources are not seen as EM emitters
	- ⇒ good chance for surprises (unexpected sources)

Nearby stellar mass distribution

• These events are rare, so we need a reach to large distances to have a chance ($r \approx 65$

Lane Community College, J. Brau, June 11, 2002 57

Back to the binary star system

- A benchmark system for grav. Radiation is a binary neutron star (compact)
- consider the strength

Early universe (stochastic background radiation)

Laser Interferometer

Power recycled Michelson

 $\Delta L = L_1 - L_2$ = cavity length diff. $B =$ number of times light bounces (effective arm length BL)

 λ = laser wavelength

• Requirements for sensitivity ($h = \Delta L/L$)

The relative phase change of light emerging from the two cavities is $Δφ = B ΔL / λ = B h L / λ$

So we need to maximize B and L, and minimize λ

eg. $B = 200$, $L = 4$ km, $\lambda = 1.06$ µm $Δφ = 7.6 × 10¹¹ h$

Laser Interferometer (Noise)

Lane Community College, J. Brau, June 11, 2002 61

LIGO

- km-scale Laser interferometers at two sites
- Built by collaboration of Caltech and MIT
- Science will be done by LIGO Science Collaboration: ACIGA, Caltech, Carleton, Cornell, Florida, GEO, Harvard, IAP, India IUCAA, Iowa State, JILA, LSU, La. Tech, MIT, Michigan, Moscow State, NAOJ-TAMA, Oregon, Penn State, Southern, Stanford, Syracuse, Texas-Brownsville, Wisconsin-Milwaukee
- (Oregon group: JB, R. Frey, M. Ito, R. Rahkola, R. Schofield, D. Strom)

Sensing and Control System

- 4 length and 12 alignment degrees of freedom must be controlled to maintain strain sensitivity
- Must hold lengths to 10^{-13} m in presence of 10-5 m seismic noise
- Test masses controlled by electromagnets driven by

Cosmic Ray Monitor

Look for coinicidences to prevent false discovery

Data Acquisition

• Gravity wave channel is digitized at 16 kHz, but many other channels (about 2000 chan.)

⇒ very large data rate

- monitor and control
- PEM channels
- 14 Mbyte / sec
- store full data stream on disk for ∼1 day
- reduce data to mini-data sets for analysis
	- archive rest

LIGO Sensitivity to Binaries

Lane Community College, J. Brau, June 11, 2002 66

LIGO Sensitivity to Bursts

Lane Community College, J. Brau, June 11, 2002 67

LIGO Sensitivity to Pulsars

Sensitivity of LIGO to continuous wave sources

Lane Community College, J. Brau, June 11, 2002 68

CONCLUSIONS

- Gravitational radiation should be discovered in this decade
- With it should come advances in understanding General Relativity
- and, perhaps, discoveries of new phenomena in the universe

WATCH FOR SURPRISES

Gravitational Lens

