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OUTLINE

« \What is gravitational radiation?

 Indirect evidence for gravitational radiation
(the Taylor-Hulse binary neutron star)

 \What are the natural sources
e How to build a detector

e LIGO

e Future directions
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General Relativity “predicts’ the
existence of gravitational radiation

Newton’'s laws assume action at a distance,

—potential reacts instantly

—there is no wave eguation, no radiation
*General Relativity, being arelativistic
theory, assumes a characteristic time for field
response (c=speed of light), and yields a
wave eguation for this response
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Einstein’s Theory of General
Relativity (1915)

G+Lg =8p (G/cH T
G Isthe curvature tensor
T Isthe stress-energy tensor

This eguation says space-time curvature is a
result of the existence of matter and energy

and space is stiff (G, /c*=8.2" 10 * s¥/kg- m)
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Space-time iIswarped by matter
and energy
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prsitian

 Bending of starlight
— 1.75? deflection measured @RI S

 Perihelion advance of Mercury’
— 432 [ century (from GR)

o Gravitational redshift
— Pound-Rebka experiment [(keSeiE=
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Space-time Geometry

* Thelocal geometry is defined by the
curvature metric (G), afunction of the local
space-time metric (Q)

ds? = dx? + dy? + dz? - c? dt?
ds’= g, dxMdx"
Om = N + N (<< 1)
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Space-time Geometry

e Intheweak-field limit (h << 1), linearize
equation In “transverse-tracel ess gauge’ and

arrive at wave equation for h

U2 #h 167’TGNT
‘T2 T T A

e Quadrupole radiation
— monopol e radiation forbidden by E conserv.
— dipole radiation forbidden by mom. conserv.
* There aretwo polarizations
— plus (+) and cross ()
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Two polarizations

« Wave will distort aring of test masses like
tidal deformation f»i\

.

 gpecific movement of theT test masses during
one period of the wave depend on polarization
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Generation of gravitational radiation

« Quadrupole radiation, requires quadrupole
source

 accelerating mass generates wave, much as
accelerating charge generates EM radiation
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EM and Grav. radiation

Electromagnetic Gravitational
«Source e accelerating charge e accelerating mass
eNature « oscillating field » oscillating space-time

propagates thru space
*Interactions |°* absorbed, scattered by | « negligible interaction

matter with matter
Frequency |* f >107Hz e f <104Hz
eDetector o detectorsdirectional |« detectors omni-

directional

*Measureof |« measureintensity e measure amplitude
strength
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Experimental evidence for GrRad
Taylor-Hulse Binary (PSR 1913+16)

Pulsar 2

Binary pulsar

Accumulated orbital phase shift (s)
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Future of the Taylor-Hulse

Radiating grav. energy

dbs 32G T4 w°
dt 5ed

Not much today

In 300,000,000 yrs
coalesce with a burst
of gravitational radiation
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Generation of gravitational
radiation (in the |ab)

 Consider atime varying quadrupole field

generated by a massive rotating dumbbell
2G -

hf"' N il ff'“' C Forb :

M = 1000 kg (1 tonne) 2R
R=1m ‘T‘
f =1000 Hz

r = 1000 km (far field)
h» 3~ 103 - far too small a perturbation to detect!

We need larger masses - astrophysical sour ces.
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Astrophysical Sources

Binary compact star systems
— composed of neutron stars and/or black holes

Non-axisymmetric supernova collapse
Non-axisymmetric pulsar (periodic)
Early universe

— stochastic background radiation

P most sources are not seen as EM emitters
P good chance for surprises (unexpected sources)
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Nearby stellar mass distribution

e These events arerare, so we need areach to
large distances to have a chance (r » 65 Mly)

Hearby mass distribution in the Universe
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Back to the binary star system

* A benchmark system for grav. Radiation is
a binary neutron star (compact)

e consider the strength

20 -
h, = i J’;“_

4
A

M=3" 10 kg
R=20km

f =400 Hz

r =102 m (10 Mly)

h» 6 1021 (10 Mly /)
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Energy flux of radiation from
binary star system

e Our example binary system with f = 400 Hz
radiates at a frequency of 800 Hz

dE _ 32GI"w°
dt  5cb

dE/dt » 4~ 10%% W
Mc2» 3~ 1047 J
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Chirp from compact binary

green 10" g/em’
yellow

red l
purple

blue 10" g/em!

T isec)
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Detection at the two sites
provides directional information
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Non-axisymmetric SN collapse
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Non-axisymmetric SN collapse

Non axisymmetric collapse burst signal
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Non-axisymmetric pulsar (periodic)

e Spinning neutron stars with asymmetric
features will radiate gravity waves

* By locking on known pulsars, integrating
the Iinterferometer response over months,

great sensitivity to small asymmetries are
possible
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Early universe
(stochastic background radiation)
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Detectors
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e Laser Interferometers
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Laser Interferometer

\ / * Requirements for

TN} oot sensitivity (h= DL/L)
o 4 j The relative phase change of light

Laser [~ Photodetector

N emerging from the two cavitiesis

Power recycled Michelson Df =BDL/I =BhL/]

So we need to maximize B and L,

DL =L, - L,= cavity length diff. and minimize |
B = number of times light bounces

(effective arm length BL) eg. B =200, L =4 km,| =1.06 mm
| =laser wavelength Df = 76 ° 101 h
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L aser |nterferometer

(antenna pattern)
+ | _'__ unpolarized

\

e R i 8
TR _I:...-'E'..."'_l'....

(arms of interferometer are aligned along the horizontal axes)
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Laser Interferometer (Noise)
« Ultimately, the detection of radiation Is
limited by noise In the receiver (interferometer)

* Maor sources of noise
— salsmic (limitslow freq)
— shot (limits high freq)
— thermal (limits intermediate freg, difficult)

Note - other sources of noise are smaller but may
limit advanced detectors
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Laser Interferometer
(SelsmicNoise)
e Selsmic noise In interferometer Is suppressed
by suspending test masses from pendulum

ast) L ——
s Xl x
; _FFJ/J L'\l.""-._l
i B
o e
Flw) ‘ X(m) E T
(isolated fromf > 100 Hz) .- ; : g

FeTH:)
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L aser Interferometer (Shot Noise)

 Interesting signasareh ~ 10 -4
e Therefore, we need to measure
Df ~7.6" 10" h~7.6" 101
e The precision of this measurement is limited
by the photon shot noise:
Df ~ 1/ON , where N is the number
of photons collected in atime bucket

e Or, wewant want N > 10%°
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Laser Interferometer (ShotNoise)

e Shot noise In interferometer Is minimized by
maximizing laser power in the interferometer

— Power recycling (6 Win b~ 240 W stored)

N=P2pl /hct
=240 W 1.06 nm/ 3.1 x 102 I m (1ms)

= 0.8 x 10* per millisecond
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Laser Interferometer
(Thermal Noise)

e Thermal noise in interferometer

— thermally induced vibrations of test masses and
suspensions
— Dissipation draws this noise into the band of
sensitivity
— minimized by choice of materials
* high Q material (fused Si, sapphire)
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Laser Interferometer (Noise)

T 10

o0
Frequency (Hz)
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LIGO

km-scale Laser interferometers at two sites
Built by collaboration of Caltech and M|

Science will be done by LIGO Science

Collaboration: ACIGA, Caltech, Carleton, Cornell,
Florida, GEO, Harvard, IAP, IndialUCAA, lowa State,
JLA, LSU, La Tech, MIT, Michigan, Moscow State,
NAOJTAMA, Oregon, Penn State, Southern, Stanford,
Syracuse, Texas-Brownsville, Wisconsin-Milwaukee

(Oregon group: JB, R. Frey, M. Ito, R. Rahkola, R.
Schofield, D. Strom)
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1995
1996
1997
1998
1999
2000

2001

2002
2003+
2005

LIGO SCHEDULE

NSF funding secured ($ 360M)

Construction Underway (mostly civil)

Facility Construction (vacuum system)
Interferometer Construction (complete facilities)
Construction Complete (interferometers in vacuum)
Detector Installation (commissioning subsystems)
LHO 2km commissioning

Single arm test (summer 2000)

Power-recycled Michelson (Winter 2000)
Commission Interferometers (first coincidences)
PRM with FP arm cavities (Summer 2001)
Sensitivity studies (initiate LIGO | Science Run)
LIGO | datarun (one year integrated dataat h ~10-21)
Begin LIGO Il upgrade installation
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LI1GO Sites

A kmams b h»10% : DL» 4108 m
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Hanford, WA

Livingston, LA
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Laser Interferometer (Beam Tube)
 Light path in vacuum (10°° torr initial)

e Beam tube with 1.22 meter diameter

« 10,000,000 liter vacuum systems

- ‘.l-'-‘.

H il . \ \ - gl
. i, -
.il o : :
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LI1GO Vacuum Chambers

« All optical components are mounted in high
vacuum chambers
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LI1GQO Vibration Isolation

 All optical components are mounted on
spring stack in high vacuum
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Sensing and Control System

e 4|ength and 12 alignment degrees of
freedom must be controlled to maintain stran

sensitivity

e Must hold lengthsto 10-1*m o
in presence of 10° m o
seismic noise N g

e Test masses controlled by =" i
electromagnets driven by =%

Safely Slop

feedback

Eigenfreq. of suspension
0.5-0.7Hz
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Physics Environment Monitoring

e Salsmometers
e Accelerometers

* Magnetometers e shakers

e Tiltmeters oLQudSpeakerS
* Microphones Magnetic field generators

e RFI monitors
e Cosmic Rays
 Thunderstrom service
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PEM (example)

Pressure Transient
Aug 2, 1999; starting about 6:30 am
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Cosmic Ray Monitor

L ook for coinicidences to
prevent false discovery
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Data Acquisition

Gravity wave channel isdigitized at 16 kHz,
but many other channels (about 2000 chan.)

P very large datarate
— monitor and control
— PEM channels

14 Mbyte/ sec
store full data stream on disk for ~1 day

reduce datato mini-data sets for analysis
— archive rest
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LIGO SenS|t|V|ty to Binaries
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LIGO Sensmwty to Bursts
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LIGO Sengitivity to Pulsars

Sensitivity of LIGO to continuous wave sources
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Detection Strategy: Coincidences
and Monitoring

*Two sites - Three interferometers
«absol ute timing accuracy to 10 microsec
*Environmental Monitoring
climinate false signals from the environment
esuch as lightening strike
«Correlate with other detectors
eeg. optical, gray, X-ray, neutrino
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L1GO and the World-wide Network
of Laser Interferometer Detectors




L aser Interferometer
Space Antenna (LISA)

(the next generation) =

Spacecraft #2
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Gravity waves open a new window

radio wia

Infrared

Gravibyawares
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|nvitation to Visit Hanford Site

* Fred Raab, Hanford
Observatory Head,
sends his personal
Invitation to visit

e everyoneiswelcome

raab f@ligo.caltech.edu
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CONCLUSIONS

e Gravitationa radiation should be discovered
1IN this decade

e With it should come advancesin
understanding General Relativity

 and, perhaps, discoveries of new
phenomenain the universe

WATCH FOR SURPRISES
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