THE HIGGS BOSON

WINDOW ON THE BIG BANG

Wally Pacholka / AstroPics.com

http://www.AstroPics.com

Jim Brau

U. Oregon, Eugene

University of Oregon experimental high energy physics

Liza Brost, Ray Frey, Craig Gallagher, Emelie Harstad, Stephanie Majewski, Chris Potter, Elizabeth Ptacek, Ryan Quitzow-James, Peter Radloff, Andreas Reinsch, Robert Schofield, Jake Searcy, Mansoora Shamim, Nick Sinev, David Strom, Dipongkar Talukder, Eric Torrence

LSC

(HO

Wally Pacholka / AstroPics.com

http://www.AstroPics.com

Jim Brau

U. Oregon, Eugene

Large Hadron Collider (LHC) Geneva, Switzerland

Large Hadron Collider

17 mile circumference main ring 300 feet underground Proton beams of particles circulate in both directions 1600 SuperC magnets @ 8.3 Tesla Temp= 2 K 10,000 MegaJoules stored energy 600,000,000 collisions per second at 14,000,000,000,000 eVolts

Run so far at 7 and 8,000,000,000,000 eV (7,8 TeV)

Large Hadron Collider

Proton beam stores 700 MegaJoules equiv. to 747 energy on take-off enough to melt 1/2 ton copper

Search for the Higgs Boson at the LHC

Higgs Boson is VERY HEAVY Candidate equivalent to 133 Hydrogen atoms or one Cesium atom 126,000,000,000 eV = 126 GeV

Search for the Higgs Boson at the LHC

slow motion

Search for the Higgs Boson at the LHC

slow motion

E=mc² or Energy equals Mass

Jim Brau

U. Oregon, Eugene

University of Oregon experimental high energy physics

 Liza Brost, Ray Fréy, Craig Gallagher, Emelie Harstad, Stephanie Majewski, Chris Potter, Elizabeth Ptacek, Ryan Quitzow-James, Peter Radloff, Andreas Reinsch, Robert Schofield, Jake Searcy, Mansoora Shamim, Nick Sinev, David Strom, Dipongkar Talukder, Eric Torre

• The experiments ATLAS and CMS announced evidence for the Higgs Boson

University of Oregon experimental high energy physics

 Liza Brost, Ray Frey, Craig Gallagher, Emelie Harstad, Stephanie Majewski, Chris Potter, Elizabeth Ptacek, Ryan Quitzow-James, Peter Radloff, Andreas Reinsch, Robert Schofield, Jake Searcy, Mansoora Shamim, Nick Sinev, David Strom, Dipongkar Talukder, Eric Torrer

University of Oregon experimental high energy physics

 Liza Brost, Ray Frey, Craig Gallagher, Emelie Harstad, Stephanie Majewski, Chris Potter, Elizabeth Ptacek, Ryan Quitzow-James, Peter Radloff, Andreas Reinsch, Robert Schofield, Jake Searcy, Mansoora Shamim, Nick Sinev, David Strom, Dipongkar Talukder, Eric Torrer

Jim Brau

U. Oregon, Eugene

University of Oregon experimental high energy physics

 Liza Brost, Ray Frey, Craig Gallagher, Emelie Harstad, Stephanie Majewski, Chris Potter, Elizabeth Ptacek, Ryan Quitzow-James, Peter Radloff, Andreas Reinsch, Robert Schofield, Jake Searcy, Mansoora Shamim, Nick Sinev, David Strom, Dipongkar Talukder, Eric Torrer

University of Oregon experimental high energy physics

 Liza Brost, Ray Frey, Craig Gallagher, Emelie Harstad, Stephanie Majewski, Chris Potter, Elizabeth Ptacek, Ryan Quitzow-James, Peter Radloff, Andreas Reinsch, Robert Schofield, Jake Searcy, Mansoora Shamim, Nick Sinev, David Strom, Dipongkar Talukder, Eric Torrei

University of Oregon experimental high energy physics

 Liza Brost, Ray Frey, Craig Gallagher, Emelie Harstad, Stephanie Majewski, Chris Potter, Elizabeth Ptacek, Ryan Quitzow-James, Peter Radloff, Andreas Reinsch, Robert Schofield, Jake Searcy, Mansoora Shamim, Nick Sinev, David Strom, Dipongkar Talukder, Eric Torre

Combined results: consistency of the data with the background-only expectation and significance of the excess

Global significance: 4.1-4.3 σ (for LEE over 110-600 or 110-150 GeV)

- Five sigma is the threshold particle physics requires for DISCOVERY (very high standard)
- THEN, randomness could produce the same result ONLY once in 3.5 million times
- Example flip a coin 22 times and get heads EVERY time - not likely - but possible

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

arXiv:1207.7214v2 [hep-ex] 31 Aug 2013

CERN-PH-EP-2012-218 Accepted by: Physics Letters B

Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC

The ATLAS Collaboration

This paper is dedicated to the memory of our ATLAS colleagues who did not live to see the full impact and significance of their contributions to the experiment.

Abstract

A search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb⁻¹ collected at $\sqrt{s} = 7$ TeV in 2011 and 5.8 fb⁻¹ at $\sqrt{s} = 8$ TeV in 2012. Individual searches in the channels $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$, $H \rightarrow \gamma\gamma$ and $H \rightarrow WW^{(*)} \rightarrow ev\mu\nu$ in the 8 TeV data are combined with previously published results of searches for $H \rightarrow ZZ^{(*)}$, $WW^{(*)}$, $b\bar{b}$ and $\tau^+\tau^-$ in the 7 TeV data and results from improved analyses of the $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ channels in the 7 TeV data. Clear evidence for the production of a neutral boson with a measured mass of 126.0 \pm 0.4 (stat) \pm 0.4 (sys) GeV is presented. This observation, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10^{-9} , is compatible with the production and decay of the Standard Model Higgs boson.

Jim Brau

U. Oregon, Eugene Octo

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP-2012-218 Accepted by: Physics Letters B

Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC

The ATLAS Collaboration

This paper is dedicated to the memory of our ATLAS colleagues who did not live to see the full impact and significance of their contributions to the experiment.

Abstract

A search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb⁻¹ collected at $\sqrt{s} = 7$ TeV in 2011 and 5.8 fb⁻¹ at $\sqrt{s} = 8$ TeV in 2012. Individual searches in the channels $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$, $H \rightarrow \gamma\gamma$ and $H \rightarrow WW^{(*)} \rightarrow ev\mu\nu$ in the 8 TeV data are combined with previously published results of searches for $H \rightarrow ZZ^{(*)}$, $WW^{(*)}$, $b\bar{b}$ and $\tau^+\tau^-$ in the 7 TeV data and results from improved analyses of the $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ channels in the 7 TeV data. Clear evidence for the production of a neutral boson with a measured mass of 126.0 \pm 0.4 (stat) \pm 0.4 (sys) GeV is presented. This observation, which has a significance of 5.9 standard deviations, corresponding to a background Juctuation probability of 1.7×10^{-9} , is compatible with the production and decay of the Standard Model Higgs boson.

Jim Brau

IFOUND A NEW PARTICLE

U. Oregon, Eugene

ATLAS Detector

Jim Brau

U. Oregon, Eugene

University of Oregon experimental high energy physics

 Liza Brost, Ray Frey, Craig Gallagher, Emelie Harstad, Stephanie Majewski, Chris Potter, Elizabeth Ptacek, Ryan Quitzow-James, Peter Radloff, Andreas Reinsch, Robert Schofield, Jake Searcy, Mansoora Shamim, Nick Sinev, David Strom, Dipongkar Talukder, Eric Torrer

 <u>Evidence</u> for the Higgs Boson that ATLAS and CMS resulted from:

-1 in 1,000,000,000,000 collisions appear to produce two photons from a new particle

-data collected in 2011 and early 2012

Peter Higgs (1929-)

What is the Higgs Boson?

Theory postulated in 1964

Nath Bose (1894-1974) by P. Higgs, R. Brout , F. Englert, G. S. Guralnik, C. R. Hagen,

and T. W. B. Kibble

Peter Higgs (1929-)

What is the Higgs Boson?

Theory postulated in 1964

 historical era

Satyendra Nath Bose (1894-1974)

by P. Higgs, R. Brout , F. Englert, G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble

The Beatles arrive in USA, Kennedy Airport, Feb 1964

President Johnson signs Civil Rights Act, July, 1964

Mad Men, AMC

Jim Brau

U. Oregon, Eugene

The Higgs Field

- The Higgs is both a field and a particle
- Familiar fields

Magnetism

Jim Brau

Earth's gravity

U. Oregon, Eugene

Peter Higgs

Higgs Boson Theory

Kibble, Guralnik, Hagen, Englert, Brout

- Higgs field fills the universe
- Interacts with fundamental particles to give them mass

 Separates electromagnetism and the weak nuclear force

U. Oregon, Eugene

-photon remains massless

Jim Brau

Why is the Higgs Important?

PARTICLE PHYSICS

 It gives mass to the fundamental particles of Nature

-quarks, leptons, fundamental bosons,

 It produces differences in the fundamental forces

-electromagnetism and the weak nuclear force

Why is the Higgs Important?

COSMOLOGY

- Big Bang produced massless particles –13.7 billion years ago
- Higgs field appeared everywhere
- Universe expanded and cooled
- Fundamental particles of Nature, initially massless, acquired mass from the Higgs field
- Particles slowed, bunched up and eventually formed atoms

Higgs Boson

- Higgs bosons carry no spin unique!
- Distributed throughout space, they create a Higgs condensate - a pure vacuum with energy
- This very stable vacuum field results from the mutual interactions of Higgs bosons
- To make them visible we must create a disturbance in the uniform Higgs field

The Higgs Boson is Different

- The Higgs is <u>both</u> force and matter particle
- Particle properties unique to known fundamental particles
 - -- spinless
- Possible key to discovering unity of forces and the underpinnings of the universe
- Could be the first discovered member of a new form of matter

ELEMENTARY PARTICLES

Jim Brau

U. Oregon, Eugene

20th Century Particle Physics Laboratories

electron linear accelerator at Stanford (SLAC)

proton synchrotron at Fermilab (near Chicago)

Jim Brau

U. Oregon, Eugene

1969

1969

1969 - Quarks discovered (inside atomic nucleus) Stanford

1969 - Quarks discovered (inside atomic nucleus) Stanford

1995 - Top Quark Discovered at Fermilab

1995 - Top Quark Discovered at Fermilab

Jim Brau U. Oregon, Eugene October 29, 2012

1995 - Top Quark Discovered at Fermilab

ELEMENTARY PARTICLES

Jim Brau

U. Oregon, Eugene

"interactions"

Gravity - weakest

Jim Brau

U. Oregon, Eugene

"interactions"

- Gravity weakest
- Electromagnetism

"interactions"

"interactions"

Service - Service

Three Generations of Matter

Indirect evidence of Higgs Before the LHC

 Since the Higgs boson interacts with fundamental particles (in theory) experiments can detect indirect evidence for it and "measure" its mass

Jim Brau

U. Oregon, Eugene

Indirect evidence for Higgs Before the LHC

• Those experiments find that the mass is less than 186 GeV (95% confidence)

Jim Brau

U. Oregon, Eugene

Jim Brau

U. Oregon, Eugene

Forces "interactions"

1850

- Gravity
- Electricity
- Magnetism

Forces "interactions"

1850 • Gravity

Electricity

Magnetism

1864

Light (photons)

Electromagnetism

Unified theory

J.C. Maxwell

Forces "interactions"

Gravity

Electromagnetism

1864

Unified theory

- Electromagnetism
- Light (photons)

J.C. Maxwell

Forces

"interactions"

2000 • Gravity

- Electromagnetism
- Weak Nuclear
- Strong Nuclear

Forces "interactions"

2000GravityElectroweak

Strong Nuclear

Anticipated - discovery of the Higgs Boson at accelerators

Are Forces Related?

2000
Gravity
Electroweak

Strong Nuclear

Forces

"interactions"

P. Higgs

Are all forces related? New particles would be involved in any unification

Forces

"interactions"

2000 • Gravity

Electroweak

Strong Nuclear

1929 - Hubble Discovered Universe is Expanding

Edwin Powell Hubble (1889-1953)

Jim Brau

U. Oregon, Eugene

1929 - Hubble Discovered Universe is Expanding

First evidence that Universe began with a Big Bang

Edwin Powell Hubble (1889-1953)

Jim Brau

U. Oregon, Eugene

Universe's Glow in Microwaves *discovered in 1965*

predicted following Hubble's discovery

confirmed early universe of Big Bang

Big Bang

Particles and Forces

"interactions"

What is Matter?

Jim Brau

U. Oregon, Eugene

What is Matter?

all Atomic composed of quarks and leptons

Jim Brau

U. Oregon, Eugene

Halo of Dark Matter

Halo of Dark Matter

How we know dark halos surround galaxies?

Expectedbased on stellar mass

Jim Brau

U. Oregon, Eugene

How we know dark halos surround galaxies?

Vera Rubin **Observed-**1950s reveals invisible ("dark") mass U. Oregon, Eugene October 29, 2012

Expectedbased on stellar mass

Jim Brau

Dark Matter Dominates Atomic Matter

- Dark Mattter of the Universe out weighs Atomic Matter by about 6 to 1
- What is it?
- We have good ideas, but only direct evidence will be definitive
- Accelerator experiments may discover the Dark Matter

Jim Brau

U. Oregon, Eugene

The Matter Crisis

 not enough matter (atomic or dark matter) to "make-up" known stuff of the Universe

Acceleration Component called "Dark Energy"

- Solves "Matter" Crisis
- The dominant "stuff" of the universe is dark matter and dark energy

Jim Brau U. Oregon, Eugene

The Dark Side Controls the Universe

Dark Matter HOLDS IT TOGETHER

Dark Energy DETERMINES ITS DESTINY

Dark Matter is strange! Dark Energy stranger?

Jim Brau

U. Oregon, Eugene

Linear Collider

electron-positron collider

Linear Collider electron-positron collider

FUTURE

Offers more precise studies of Higgs and other possible new physics

World-wide collaboration (including UO team) has developed the technology

Ready to start construction

Are there any practical applications?

Credit: American Institute of Physics

Jim Brau

U. Oregon, Eugene

1897 - J.J. Thomson Electron

Credit: American Institute of Physics

Jim Brau

U. Oregon, Eugene

J.J. Thomson, On 1897 Discovery

Speaking in 1934

Could anything at first sight seem more impractical than a body which is so small that its mass is an insignificant fraction of the mass of an atom of hydrogen? -which itself is so small that a crowd of these atoms equal in number to the population of the whole world would be too small to have been detected by any means then known to science.

From the soundtrack of the film, Atomic Physics copyright © J. Arthur Rank Organization, Ltd., 1948.

Credit: American Institute of Physics

Jim Brau

U. Oregon, Eugene

Learn More about the Higgs Boson at the LHC

- Physics Department Colloquium
- Professor David Strom
 leader in UO's LHC research
 ATLAS Trigger Coordinator
 (2010-2012)
- Finding a Higgs Boson at the LHC 4 pm, November 1 100 Willamette

One thing I have learned in a long life: that all our science, measured against reality, is primitive and childlike —and yet it is the most precious thing we have.

The most beautiful experience we can have is the mysterious.

It is the fundamental emotion which stands at the cradle of true art and true science.

Jim Brau

U. Oregon, Eugene

Acknowledgements

RESEARCH SUPPORTED BY

Department of Energy OFFICE OF SCIENCE

NATIONAL SCIENCE FOUNDATION

Philip H. Knight

Acknowledgement: images from http://www.AstroPics.com