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TWO FAMILIES OF FLAG-TRANSITIVE AFFINE PLANES

Dedicated to Otto Wagner on the occasion of his 60th birthday

ABSTRACT. Two families of flag-transitive nondesarguesian affine planes of odd order are defined,
and isomorphisms among the various planes are studied.

Thirty years ago Wagner [5] proved the important result that every finite
flag-transitive affine plane is a translation plane. However, since that time
relatively few classes of such planes have been found. The purpose of this note
is to comment on two constructions of flag-transitive affine planes due to
Suetake [4]. These constructions will be generalized slightly and will be
shown to produce fairly large numbers of pairwise nonisomorphic planes.
Most of them are new (compare [ 1], [4] and the references therein), but those
that are 2-dimensional over their kernels were known previously [1], [2].

Let F = GF(¢*"), L = GF(q") and K = GF(g), wheren > 1 and ¢ = p®is a
power of an odd prime p. Let o e Gal(L/K); we will assume (unless stated
otherwise) that ¢ # 1. Throughout this note we will identify each such
automorphism ¢ with a power of ¢ inducing it.

Assume that nis odd. Let b e F be such that b = —b (where bar denotes the
involutory automorphism of F), so that b> = —bbe L. Let s€ F* have order
(g" + 1)g — 1). Write h(x) = x + bx” for xe F, and consider the set

Fe = {SHL)|0 <i < q"

of subspaces of F, where F is always viewed as a K-space. This is very slightly
more general than Suetake’s construction (he assumes that ¢ = ¢ and
q" = 3(mod 4)).

For aeF let & denote the linear transformation z — oz from F to itself.

THEOREM 1. (i) &%, , is a spread, and defines a nondesarguesian translation
plane 11, .

(ii) 1, , admits a flag-transitive group inducing a cyclic group on the line at
infinity.

(iii) The number of pairwise nonisomorphic translation planes arising in this
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manner is at least Xn/n* — 1)(@" — 1)/2en*, where n/n* is the smallest prime
factor of n.
Proof. (i, ii) First of all,  is injective: if x + bx” = 0 with xe L then also
x + bx® = 0, so that x = 0. Thus, %, , consists of n-dimensional K-spaces.
Clearly, 5 induces a cycle transitive on % ,, so that (ii) holds if (i) is

presupposed.
Assume that h(x) = s'h(y) with x, ye L* and 0 < i < ¢". Then

(x + bx%)(x + bx%) = s'5'(y + by)y + by°),

so that x?—b¥x°)? =k[y? — b*y°)*] with k=s5eK. Then
x? — ky? = b3(x? — ky?)°. However, (x> — ky*)°~! is the square of an ele-
ment of L whereas b? is not. Consequently, x> — ky? = 0, so that x = my
where me L and m? = k. Since nis odd, sois (¢" — 1)/(g — 1), and hence me K.
Then m(y + by®) = my + b(my)° = s'(y + by°), so that m=+¢, ()% ' =1,
and hence (¢" + 1)(g — 1)|i{g — 1), whereas 0 < i < ¢". This contradiction
proves (i).

Before proving (iii) we will need an isomorphism criterion. Let
H(o) = {z > a'"%z° for zeF|aeL* ¢eAutF}, so that H(s) induces a
group of permutations of bL*={deF*|d= —d}. Note that
|H(o)| = 2en(g" — D/g" — 1,0 — 1).

LEMMA 1. ) 1, , = -5 51,

an If I, , =11, then T = ¢*'.

(ITY) 11, , is nondesarguesian.

(Iv) 11, , = 11, if and only if b and c are in the same H(o)-orbit.

Proof. The transformation z —» b~ !z sends x + bx® to x° + b={x%) ", so
(I) holds.

If b and c are in the same H(o)-orbit then ¢ = o' ~°b® for some ae L and
@cAutF. Then (3®) + c(ey®)” = oy + by°)?, so that the transformation
z — az® induces an isomorphism IT, , =~ I1_,, which proves part of (IV). We
will prove (II), (I1T) and the harder part of (IV) simultaneously.

Note that &, and I, , are also meaningful when © = 1 —in which case I1, .
is desarguesian (since then x + ¢x* = (1 + ¢)x). With this in mind, assume
that IT, , = IT ., where we temporarily allow the possibility that 7 = 1. Note
that K is contained in the kernel of both of these planes. (Recall that the
kernel of I1,, , is the field consisting of all endomorphisms of the abelian group
F that map each line through O into itself) It follows that there is a K-
semilinear transformation g: F — F sending IT, , to II, . and hence sending
Ho 10 S

Let soe<s> have prime order and generate F* (s, exists by [6]). Then a
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Sylow [so]-subgroup of T'L(F) is cyclic. Clearly, g conjugates the collineation
group of IT, , to that of II, .. By Sylow’s Theorem, we may assume that g
conjugates {§,> to itself. Then g has the form z — 0z® with aeF* and
@ e Aut F (for all ze F). Since IT,, , = I, (by the part of (IV) already verified)
and ¢ " 'g is an isomorphism from ITjs , to II, ., by replacing g by ¢~ 'g we
may assume that ¢ = 1. Similarly, by replacing g by g5 for some i we may
assume that ah(L) = h(L)? = h(L), where h'(x) = x + ¢x* for xe F.

Thus, for each x € L* there is some ye L¥* such that x + ¢x® = a(y + by”);
and x —y defines a permutation of L* Then x—ecx*=x+¢x" =
My +by)=a(y—by’). Write B=a+a& and JS=o—a Then
2x = By + éby° and 2¢xt = oy + Bby”, s0 that c{By +
8by°}* = 8y + Bby°. Note that f§, 6be L. Then

N cBy* + c(ob)'y°" = oy + pby” for all ye L.
Write y = uz here, where u, ze L. By two applications of (1),
cfu'z" + u{dz + bz’ — ¢z} = duz + Pbu’z’,
so that
(2) B’ — u™)z" = S(u — u’z + Bb(u® — u%)z° for alt u, ze L.

If T = 1 then (since ¢ # 1) (2) implies that ¢ = J. Then ¢db = b by (1), so
that ¢2f = B. Since ¢ # +1 it follows that f = 0; but then § = 0, so that
o = 0, which is not the case. This proves (III). From now on we may assume
that o, 7 # 1.

Suppose that f # 0. Choose u e L not fixed by 0. Then (2) can be rewritten
in the form zFf= Az + Bz° for all ze L , where A, BeF. In particular,
1=4+B and (Au + Bu)? = u** = Au* + Bu*°, s0 that
(A% — Au? + (B? — Bu*° + 24Buu® = 0. Then ABu — u°)*> =0, so that
A = 0or B = 0. It follows that either z* = zforall ze Lor z* = z forall ze L.
Consequently, T = o in this case.

Now suppose that § = 0. Then 6 # 0, while (2) states that d(u — u”)z = 0.
Thus, ot = 1 in this case.

This proves (II). We may now assume that 7 = ¢.

Claim: cf° — pb = 0 and 6 = 0. Namely, (2) states that

(cB® — Bb)(u® — u"?)z® = (u — u’)z for all u, ze L.

This proves the claim if 6 = 0. Since n is odd, ¢* # 1. If § # 0 then z/z° is
constant for all ze L*; and then z/z° = 1, which is not the case.
Consequently, ¢ = 1~ 7b with § = 2ae L, proving the first part of (IV).
Ol
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Proof of Theorem 1 continued. (iii) Choose o to be one of the automorph-
isms ¢/ with 1 <j < ¥(n/n* — 1). Note that no two of these automorphisms
are inverses of one another, (n/n*,j) =1, and

|H(o)| = 2en(q” — D/(g" — 1, 0 — 1) = 2en(q" — D/g" — 1).

For each of the n/n* automorphisms ¢! with 0 < i < || = n/n*, the stabilizer
H(o), of b contains z — p(1 =@~ D@10 where p@*~DIe=De], since
(6% = 1)/(c — 1) is even. Then the orbit b has length [b¥®} < |H(a)|/|s], sO
that the number of H(o)-orbits on bL* is =(q" — 1)/(|H(o)l/|o]) =
(g — 1)/2en*. By varying j we obtain at least 3(n/n* — 1)(g" — 1)/2en*
nonisomorphic planes by Lemma 1. O

REMARKS. 1. The kernel of I, , is the fixed field of 6. Namely, if K’ is the
kernel then the K-space F must also be a vector space over K'. Then K is a
subfield of K’, and s, is a K'-linear transformation. It follows that K'* lies in
the centralizer of s, in GL(F)—ie., in F*.

Now if ge K'* then g must fix the line #(L) and hence, in the proof of
Lemma 1, b = ¢ and g has the form z — az for some o € F*. That proof yields
that b = o' ~°b with a € L, so that « is in the fixed field of 6. The converse is
trivial.

2. We used n* in order to minimize the order of H(s). For example, if
o=¢’ with (j,n)=1 then K is the fixed field of o, so that
(q" — D/(|H(0)|/|a]) = (g — 1)/2e and for composite n we obtain significantly
fewer planes than in (iii).

3. It may be instructive to compare the above construction, as well as
those in [4], with one in [3]. There, spreads for flag-transitive planes consist
of the following subspaces whenever q is even, n is odd, re GF(¢%) — GF(q),
and t(x) = T(x) + rx where T:GF(q")— GF(q) is the trace map:
{s'(L)|0 < i < q"}. Moreover, r and ¥ e GF(¢*) — GF(g) determine isomor-
phic planes if and only if ¥ + 1 = a(r + 1)* with ae GF(g)*, ¢ € Aut GF(¢?).

We now turn to a second family of flag-transitive planes. Again let
F = GF(¢g*), L=GF(g") and K = GF(g), where n>1 and this time
g" = 1(mod 4). Let 6 € Gal(F/K), and let 4|, denotes its restriction to L (note
the new meaning for ¢!). Assume that o|; # 1.

Let p, e, s, b and h be as before; write t = s2. Set

o = (D)0 < i < Hq" — 1} U {fhBL)0 < i < ¥g"— 1),

This construction again is due to Suetake when o = g.

THEOREM 2. (i) &}, is a spread, defining a translation plane IT; ,.
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(i) I, , admits a flag-transitive group inducing a noncyclic group on the line
at infinity.

(iii) If the fixed field of o is properly contained in L then I, , does not admit
a cyclic group acting transitively on the line at infinity.

(iv) The number of pairwise nonisomorphic translation planes arising in (iii)
is at least

(n/n* — V(g™ — 1)/4en* if nis odd and n/n* is the smallest
prime factor of n

(g"* — 1)/en if n is even.

(V) If n and q are primes then the number in (iv) is exactly (@ — 1)/2.

Proof. (i, ii) As before, &} , consists of n-dimensional K-spaces.

Here {f) has just two orbits on &} ,. The transformation z — bz sends
t(x + bx°) to  t°([bx°] + b[bx°]") and.  f([bx] + b[bx]°) to
£°([bb°x°] + b[bb°x°]°), where bb® € L. This proves (ii) if (i) is presupposed.

As before, if h(x) = t'h(y) with x, ye L* and 0 < i < ¥g" — 1), then

(x + bx")x + bx°) = t'T(y + by Ny + by"),

so that x? — b%(x°)* = k(y* — b*(y°)?), where this time k = £'t' = (s's)% is a
square in K. As before, it follows in turn that x> = ky?; that x = my with
meK; that m = ¢’ that ()" * = 1; and finally that 4" + 1)(g — 1)|i(q — 1),
which contradicts the fact that 0 < i < 4(q" — 1).

In view of transitivity, it remains to consider the possibility that
h(x) = t'h(by) for some x, ye L* and some i. This time

x? — b2x?7 = (x + bx°)x + bx?)
= t'(by + b(by\')by + b(by)’) = —k[b*y* — b*(by)*]

where k = t't' is a square in K. Then x? + kb2y? = b*(x? + kb?y?)°, and
(x? + kb*y*)°~! is the square of an element of L but b? is not. Consequently,
x* + kb%*y? = 0, so that x = mby with m?> = —k. Note that x, ye L* but b¢ L,
so that m¢ L. On the other hand, since ¢" = 1 (mod 4) we have —1 = /2 for
some le L. Then (ml)®> = k is a square in K, whereas ml¢ K since le L and
m¢ L. This contradiction proves (ii). (N.B. This argument did not use the
hypothesis of, # 1. However, if o], = 1 then II, , is desarguesian.)

Once again we need an isomorphism criterion. Let H (o) = {z - ' ~“z? for
zeF|aeL* U bL*, ¢ e Aut F}, so that H,(¢) induces a group of permutations
of bL*. Note that |H,(o)| = 2en-2(q" — 1)/(2(¢" — 1), 0 — 1).
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LEMMA 2. () I , = ITj-1,--.

(D) If b and c are in the same H,(c)-orbit then IT} , = IT. .

() If 11, , ~ I, then t = ¢**.

(V) If I, , = 11, , then b and c are in the same H (c)-orbit.

Proof. (I) The transformation z —» b~z sends x + bx° to x + b~ }(x°)°
and bx + bb°x to b~ (bb°x%) + b~ 16" (bb°x°)" ", where bb°e L.

(I1) If ¢ = o' ~°b® with xe L*, pcAutF, then the transformation z — az?
sends x + bx° to (@x?) + c(oax?)’ and bx + bb°x° to
c[(@b®/c)x®] + cc’[(ab?/c)x?]°, where ab?/ce L.

If ¢ =o' 7b® with aebL* @ecAutF, then the transformation z — oz®
sends  x + bx”  to  c[(o/o)x?] + cc’[(2/c)x®]® and  bx + bb°x® to
[ab?x?] + c[ab®x?]°, where o/c, ab® € L.

(IILIV) As in Lemma 1, if IT; , >~ IT;, then we may assume that an
isomorphism is induced by a transformation g of the form z — «z® for some
o€ F* and some ¢ € Aut F. As before, we may also assume that ¢ = 1, and, by
using <t, also that ah(L) = W'(L) or K(cL). Let 6 denote the automorphism
z—>2z.

Case 1: W(L) = ah(L). As in the proof of Lemma 1, (1) and (2) hold and we
have 1|, = o*!|,. Moreover, by (I) we may assume that 1|, = o], (so that
T = ¢ or df). This time (2) implies that ¢f° — b =0, and either 6 =0 or
0%, = 1(where f = a + @€ L and § = « — & as before). Here f* = #, so that
cf’ = pb.

Since g normalizes ¢t it must send the {7)-orbits on & 5o to thoseon &, .
Thus, ah(bL) = t/k(cL) for some j; write w = t/. Then

1

3) w(cx + cc*x’) = alby + bb°y°)

for another permutation x — y of L*.

Subcase 1.1: ¢?|, # 1. We have just observed that 6 =0, so f = 2, and
that ¢ = a!7?b and b lie in the same H ,(o)-orbit. In (III) we still must show
that T = g, so assume that 1 = g60.

Since wl(cx + cc®x%) = alby + bb°y°) = c(a°y) + cc’(2°y)’, it follows that
w(x + ¢'x°) = v + ¢°v°, where v = a°ye L since ae L. As before we find first
that w(x — ¢™x%) = v — ¢“, then that k(x? — (c*x%)?) = v® — (c“v”)* where
k=ww is a square in K, ¢=¢" = —¢° and x"*=x° and then that
kx? — v? = c?(kx? — v?).

Now v? = kx? for all xe L, where v is an additive function of x and k is a
square in K. Thus, for all xe L, v = mx for some me K. Then m® = m, and
w(x 4+ ¢x%) = mx + ¢®mx? for all x € L. This implies both that w = m and that
wc' = ¢’m = —c'm, which is ridiculous. Thus, 7 = 0.

Subcase 1.2: ¢%|;, = 1. Since 6|, = 1|, # 1, 6> = 0 = % and hence 7 = o or
o~ 1. This proves (III) in this situation, so by (I) we may assume that 7 = o.
Recall that ¢’ = fb. If B #* 0 then b and c lie in the same H ((0)-orbit.
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Assume that f = 0 and hence 6 = « — & = 2. Since (1) holds with t = ¢
we have ¢6°b° =96, so that ca’b®=a. By (3), W(—cx + cc’x’) =

—o—by + bb°y°), so that (w—w)x + (w+ W)ce’x” =20by and
(w + w)ex + (w — W)ee™x® = 2abb’y’. Then

{w + Wyex + (w — w)ec®xja”
=20ba’h’y° = ab{(w — W)cx + (W + W)cc’x’}°

for all xeK. Consequently, (w+ W)ca® = ab(w + w)°c’c®® and
(w — W)ec®a® = ab(w — w)°c’. If w#w then c= {(w—w)/e}° 'b with
(w — w)/ae L*, so that b and ¢ are in the same H,(o)-orbit. Suppose that
w = w. Then w? = ww is a square in K, so that we K. Now w = w = w’, so

that (w + w)ca® = ab(w + w)c’c and hence co® = —abc’c. Now —a =
(@) = (—abc’)’ = —a’b’c = o°b°c, whereas we already knew that
co’h? = a.

Case 2: W(cL) = «h(L). This time there is a permutation x — y of L* such
that cx + cc™x* = a(y + by°). Then —cx + cc*x* =a(y — by°), so that
2ex = 8y + Bby° and 2¢c™x" = By + oby’, where f=a + dand d =a — & as
before. Now c(8y + Bby°)* = By + 6by° for all yeL. As in the proof of
Lemma 1 this implies first that cé*(u* — u™)z" = Bu — u”)z + ob(u” — u")z°
for all u, ze L, and then that 1|, = ¢*?|.

Now suppose that |, = o|;, (cf. (I)). Then

(c6° — 8b)(u® — u”*)z® = Plu — u”’)z for all u, zeL,
which as before yields that cd° — 8b = 0 and either f =0 or ¢?|;, = 1. Now
c6°y° + cfb'y’° = By + by’ implies that cfb*y”* = By. Then ¢fb* = B, and
either B = 0 or ¢2|, = 1. Since we already know that cd® = b, where §* = °
or §° = §° = —&°, one of the following holds:

B=0,6#0and c= +6'", or
p#0, ¢c=p1"?p""and o2, = 1.
Since g normalizes (¢ it must send the {tY-orbits on &}, to those on & .
Thus, ah(bL) = t’i(L) for some j; write w = . Then
4) w(x + ¢x®) = a(by + bb°y°)
for another permutation x — y of L*.
Subcase 2.1: 62|, # 1. If T = o then §° = %, so that ¢ = 6" ~°b and b lie in
the same H ,(o)-orbit, as required in (ITT). It remains to assume that Tt = g6, or

equivalently, ¢ = —&' ~’b, and derive a contradiction.
We have f =0, 6 = o — & = 2o and ca® = —ab. By (4),

w(x + cx%) = a(by + bb°y°) = —ca’y — ca’(—ca’/a)’y" = v — cv®
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with v = —ca°y. Here ve L since & = —a. Now k(x? — ¢2x?%) = v? — ¢2p?°
where k = ww is a square in K. Then kx? — v? = c%(kx* — v?)° implies that,
for some me K and all xe L, v = mx. Thus, w(x + ¢x%) = mx — ¢mx®, so that
w =m and ¢w = —cm, which is impossible.

Subcase 2.2: ¢?|;, = 1. Asin Subcase 1.2 we may assume that t = ¢. If § # 0
then ¢ = 67 9b, and hence b and ¢ are in the same H,(c)-orbit.

Assume that 6=0, so that aelL and o=ce’h’. By (4),
w(x — ¢x°) = o —by + bb°y°), so that (w + W)x + (w — w)ex® = 2abb’y® and
(w — W)x + (w + W)cx® = 2aby. Then

{w+ v‘v\)x + (w — WexTo®
=2aba’b’y’ = ab{(w — W)x + (W + W)ex}°

for all xeK. Consequently, (w 4+ w)a® = ab(w + w)°c® and (w — W)ca’ =
abw —w)°. If w#w then c¢={(w—w)/a}’ b with (w— w)aebL?
so that b and ¢ are in the same H,(c)-orbit. Suppose that w = w. Then
w?=ww is a square in K, so that we K. Now w=w=w’, so that (w+w)a’=
ab(w + w)c® and hence o = abc®. Then o= a’ = a’h’c"® = a°b’c=
—a’b’c, whereas we already knew that a = ca’b°. [

Proof of Theorem 2, continued. (iii) Assume that there is a cyclic group
acting transitively on the line at infinity. By Sylow’s Theorem we may assume
that 3, lies in that cyclic group. Then that cyclic group is contained in
Crri (o) = {&|ae F*}. In the notation of the proof of Lemma 2(IIL, IV) we
have b =c, and there must be a collineation g =& of II,, such that
oh(L) = h(bL).

If 62|, # 1 then Case 2 of that proof yields that = 0 and b = 6' ~°b. Thus,
6° = §and § = o — & ¢ L. Consequently, the fixed field of o is not contained in
L, which is not the case in (iii).

If 62|, = 1 then we are in the situation of the proof of Lemma 2, Subcase
2.2, where it was shown that b = 6' ~°b or b = {(w — w)/a}°*b. Then § or
(w — w)/a lies in the fixed field of ¢ but not in L, which is not the case.

(iv) As in the proof of Theorem 1(iii), if ¢ is any power of ¢ then
z— (b@ Ve~ )t-os¢ fixed b, and moreover lies in H, (o), since
pe—Vie-DepkxpL*. Thus, b7 < |H(0)/|o| for any b, so that the
number of H,(c)-orbits on bL* is at least |g|(¢" — 1)/(H (o).

Let n/n* be the smallest prime factor of n. Choose ¢ = ¢ where
1 < jn* < nand j is odd; note that no two of these automorphisms of F are
inverses of one another. In (iii) we require that the fixed field of 4 is contained
in L, and this holds since (jn*, 2n) = n* is a factor of »n (recall that j is odd).
Note that |o| = 2n/n*, and

|H (o)l = den(q" — /2" — 1), 0 — 1) = den(q" — D/(g" — 1)
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since (¢ — 1)/¢™ — 1) is odd. Consequently, the number of H;(g)-orbits on
bL* is at least (2n/n*)(q" — 1)/|H (0)| = (¢" — 1)/2en*.

If n/n* = 2 then this is precisely the assertion of (iv). If n/n* is odd then, by
varying j, we obtain (iv).

(v) Moreover, if n is prime then n* =1 and o =g’ for some j with
1 <j < 2n. By Lemma 2(I) we may assume that j < n; and the requirement in
(iii) that (j,2n)n forces j to be odd. If, in addition, g is prime, then
|H,(0)| = 4n(g" — D/(g — 1) and [p"| < |H,(o)l/lo] = 2(¢" — D/(g — D).
However, there are 2(q" — 1)/(g — 1) images of b under the linear mappings
z — o} ~°z with e L* U bL*. Thus, |p:©@]| = 2(¢" — 1)/(g — 1) for each b, and
hence H,(c) has exactly (g — 1)/2 orbits on bL*. 0

REMARKS. 1. Suppose that n =n'n" is the product of odd integers #’,
n” > 1, and that ¢" = 1(mod 4). Let ¢ be the automorphism ¢” of F. Then the
condition g, # 1 in Theorem 1 is certainly satisfied, and the fixed field of ¢ is
contained in L. By Theorem 2(iii), IT, , % IT; ,. Moreover, the spreads % ,
and &} , share half of their members: some sort of ‘net replacement’ is at
work here.

2. In Theorem 2 suppose that n is odd but the fixed field of ¢ is not
contained in L. Claim: The spreads &, , and &, , coincide. Namely, let 6 =4,
so the fixed field of ¢ is GF(g*) where k = (r, 2n). Then k|2n but k } n, so that
2n/k is odd. Let ue F* have order (¢" + 1)(¢*/*> — 1), let j = %g" + 1), and
write o = 1. Since (¢" — 1)/(¢** — 1) is odd, a¢ L and o*e L. Then a” = o,
& = —a, and ab, a/be L. It follows that «(x + bx”) = b(ax/b) + bb°(ax/b)’ and
a(bx + bb"x%) = (abx) + b(abx)°, so that (i) is a collineation group transitive
on the line at infinity of IT, ,. Since the kernel of II; , contains GF(¢*?), we
are in the situation of Theorem 1 but with K replaced by GF(¢*/?) and s by u.
This implies the Claim.

In particular, the Claim explains the restriction on the fixed field of ¢ in
Theorem 2(iii).

3. Theorem 2 allows the possibility that 2n = 4, a case studied intensively
by Baker and Ebert [1], [2]. I am indebted to Gary Ebert for pointing out
that the construction in Theorem 2 — which is just Suetake’s in that case (since
we might as well let 6 = ¢ by Lemma 2(I)) - settles the conjecture made on p.
13 of [2] concerning the coordinate description of the planes studied there.
The results in [1], [2] imply that every odd order nondesarguesian flag-
transitive translation plane of dimension 2 over its kernel is one of the planes
IT; ,.

In [1] the authors examine the isomorphism problem for these planes.
They use an unusual notion of isomorphism, viewing two translation planes
as isomorphic if and only if there is a linear isomorphism between the planes;
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and then they conjecture that the number of pairwise nonisomorphic planes
I} , is (g — 1)/2. This conjecture is precisely the content of Theorem 2(v) and
its proof (when n = 2),i.e, it is an immediate consequence of Lemma 2(I, IV).
On the other hand, if ¢ > 1 is odd then it is easy to check that the number of
planes is greater than (g — 1)/2e.

4. fG = {z—> 0z’ + u|ae F*, ueF, ¢ € Aut F} then the proofs of Lemmas
T and II easily imply that

GnAutll,, = {z—> 0z’ + ulaeL* ueF, peAutF,and o’ ! = p* "1}

GnAutlly , = {z > oz’ + ulacL* UbL*, ueF, pcAutF,
and o’ = b*71}

However, quite a bit more group theoretic machinery seems to be needed in
order to show that

Autll, , = Gn Autll,, and AutIl,,=GnAutll,, provided that
q">9.

It would be nice to have an elementary proof of this fact.

5. In view of the constructions in [3] and [4], there exists at least one
nondesarguesian flag-transitive affine plane of order p” whenever p is a prime,
n > 1, p" > 81, and either p is odd or n is odd. It would be very interesting to
know whether or not there exist such planes of order 2™ for any m > 2.
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