TWO FAMILIES OF FLAG-TRANSITIVE AFFINE PLANES

Dedicated to Otto Wagner on the occasion of his 60th birthday

ABSTRACT. Two families of flag-transitive nondesarguesian affine planes of odd order are defined, and isomorphisms among the various planes are studied.

Thirty years ago Wagner [5] proved the important result that every finite flag-transitive affine plane is a translation plane. However, since that time relatively few classes of such planes have been found. The purpose of this note is to comment on two constructions of flag-transitive affine planes due to Suetake [4]. These constructions will be generalized slightly and will be shown to produce fairly large numbers of pairwise nonisomorphic planes. Most of them are new (compare [1], [4] and the references therein), but those that are 2-dimensional over their kernels were known previously [1], [2].

Let $F = GF(q^{2n})$, $L = GF(q^n)$ and K = GF(q), where n > 1 and $q = p^e$ is a power of an odd prime p. Let $\sigma \in Gal(L/K)$; we will assume (unless stated otherwise) that $\sigma \neq 1$. Throughout this note we will identify each such automorphism σ with a power of q inducing it.

Assume that n is odd. Let $b \in F$ be such that $\overline{b} = -b$ (where bar denotes the involutory automorphism of F), so that $b^2 = -b\overline{b} \in L$. Let $s \in F^*$ have order $(q^n + 1)(q - 1)$. Write $h(x) = x + bx^{\sigma}$ for $x \in F$, and consider the set

$$\mathcal{S}_{b,\sigma} = \left\{ s^i h(L) \, | \, 0 \leqslant i \leqslant q^n \right\}$$

of subspaces of F, where F is always viewed as a K-space. This is very slightly more general than Suetake's construction (he assumes that $\sigma = q$ and $q^n \equiv 3 \pmod{4}$).

For $\alpha \in F$ let $\tilde{\alpha}$ denote the linear transformation $z \to \alpha z$ from F to itself.

THEOREM 1. (i) $\mathcal{S}_{b,\sigma}$ is a spread, and defines a nondesarguesian translation plane $\Pi_{b,\sigma}$.

- (ii) $\Pi_{b,\sigma}$ admits a flag-transitive group inducing a cyclic group on the line at infinity.
 - (iii) The number of pairwise nonisomorphic translation planes arising in this

Geometriae Dedicata 41: 191-200, 1992.

^{*}Research supported in part by NSF grant DMS 87-01794 and NSA grant MDA 904-88-H-2040.

^{© 1992} Kluwer Academic Publishers. Printed in the Netherlands.

manner is at least $\frac{1}{2}(n/n^*-1)(q^{n^*}-1)/2en^*$, where n/n^* is the smallest prime factor of n.

Proof. (i, ii) First of all, h is injective: if $x + bx^{\sigma} = 0$ with $x \in L$ then also $x + b\bar{x}^{\sigma} = 0$, so that x = 0. Thus, $\mathcal{S}_{b,\sigma}$ consists of n-dimensional K-spaces.

Clearly, \tilde{s} induces a cycle transitive on $\mathcal{S}_{b,\sigma}$, so that (ii) holds if (i) is presupposed.

Assume that $h(x) = s^i h(y)$ with $x, y \in L^*$ and $0 < i \le q^n$. Then

$$(x + bx^{\sigma})(x + \overline{b}x^{\sigma}) = s^{i}\overline{s}^{i}(y + by^{\sigma})(y + \overline{b}y^{\sigma}),$$

so that $x^2 - b^2(x^\sigma)^2 = k[y^2 - b^2(y^\sigma)^2]$ with $k = s^i \bar{s}^i \in K$. Then $x^2 - ky^2 = b^2(x^2 - ky^2)^\sigma$. However, $(x^2 - ky^2)^{\sigma-1}$ is the square of an element of L whereas b^2 is not. Consequently, $x^2 - ky^2 = 0$, so that x = my where $m \in L$ and $m^2 = k$. Since n is odd, so is $(q^n - 1)/(q - 1)$, and hence $m \in K$. Then $m(y + by^\sigma) = my + b(my)^\sigma = s^i(y + by^\sigma)$, so that $m = s^i$, $(s^i)^{q-1} = 1$, and hence $(q^n + 1)(q - 1)$ if (q - 1), whereas $0 < i \le q^n$. This contradiction proves (i).

Before proving (iii) we will need an isomorphism criterion. Let $H(\sigma) = \{z \to \alpha^{1-\sigma}z^{\varphi} \text{ for } z \in F \mid \alpha \in L^*, \ \varphi \in \operatorname{Aut} F \}$, so that $H(\sigma)$ induces a group of permutations of $bL^* = \{d \in F^* \mid \overline{d} = -d\}$. Note that $|H(\sigma)| = 2en(q^n - 1)/(q^n - 1, \sigma - 1)$.

LEMMA 1. (I) $\Pi_{b,\sigma} \cong \Pi_{b^{-1},\sigma^{-1}}$.

- (II) If $\Pi_{b,\sigma} \cong \Pi_{c,\tau}$ then $\tau = \sigma^{\pm 1}$.
- (III) $\Pi_{b,\sigma}$ is nondesarguesian.
- (IV) $\Pi_{b,\sigma} \cong \Pi_{c,\sigma}$ if and only if b and c are in the same $H(\sigma)$ -orbit.

Proof. The transformation $z \to b^{-1}z$ sends $x + bx^{\sigma}$ to $x^{\sigma} + b^{-1}(x^{\sigma})^{\sigma^{-1}}$, so (I) holds.

If b and c are in the same $H(\sigma)$ -orbit then $c = \alpha^{1-\sigma}b^{\varphi}$ for some $\alpha \in L$ and $\varphi \in \operatorname{Aut} F$. Then $(\alpha y^{\varphi}) + c(\alpha y^{\varphi})^{\sigma} = \alpha (y + by^{\sigma})^{\varphi}$, so that the transformation $z \to \alpha z^{\varphi}$ induces an isomorphism $\Pi_{b,\sigma} \cong \Pi_{c,\sigma}$, which proves part of (IV). We will prove (II), (III) and the harder part of (IV) simultaneously.

Note that $\mathcal{S}_{c,\tau}$ and $\Pi_{c,\tau}$ are also meaningful when $\tau=1$ – in which case $\Pi_{c,\tau}$ is desarguesian (since then $x+cx^{\tau}=(1+c)x$). With this in mind, assume that $\Pi_{b,\sigma}\cong\Pi_{c,\tau}$, where we temporarily allow the possibility that $\tau=1$. Note that K is contained in the kernel of both of these planes. (Recall that the kernel of $\Pi_{b,\sigma}$ is the field consisting of all endomorphisms of the abelian group F that map each line through 0 into itself.) It follows that there is a K-semilinear transformation $g: F \to F$ sending $\Pi_{b,\sigma}$ to $\Pi_{c,\tau}$ and hence sending $\mathcal{S}_{b,\sigma}$ to $\mathcal{S}_{c,\tau}$.

Let $s_0 \in \langle s \rangle$ have prime order and generate F^* (s_0 exists by [6]). Then a

Sylow $|s_0|$ -subgroup of $\Gamma L(F)$ is cyclic. Clearly, g conjugates the collineation group of $\Pi_{b,\sigma}$ to that of $\Pi_{c,\tau}$. By Sylow's Theorem, we may assume that g conjugates $\langle \tilde{s}_0 \rangle$ to itself. Then g has the form $z \to \alpha z^{\varphi}$ with $\alpha \in F^*$ and $\varphi \in \operatorname{Aut} F$ (for all $z \in F$). Since $\Pi_{b,\sigma} \cong \Pi_{b^{\varphi},\sigma}$ (by the part of (IV) already verified) and $\varphi^{-1}g$ is an isomorphism from $\Pi_{b^{\varphi},\sigma}$ to $\Pi_{c,\tau}$, by replacing g by $\varphi^{-1}g$ we may assume that $\varphi = 1$. Similarly, by replacing g by $g\tilde{s}^i$ for some i we may assume that $\alpha h(L) = h(L)^g = h'(L)$, where $h'(x) = x + cx^x$ for $x \in F$.

Thus, for each $x \in L^*$ there is some $y \in L^*$ such that $x + cx^{\tau} = \alpha(y + by^{\sigma})$; and $x \to y$ defines a permutation of L^* . Then $x - cx^{\tau} = x + \bar{c}x^{\tau} = \bar{\alpha}(y + \bar{b}y^{\sigma}) = \bar{\alpha}(y - by^{\sigma})$. Write $\beta = \alpha + \bar{\alpha}$ and $\delta = \alpha - \bar{\alpha}$. Then $2x = \beta y + \delta by^{\sigma}$ and $2cx^{\tau} = \delta y + \beta by^{\sigma}$, so that $c\{\beta y + \delta by^{\sigma}\}^{\tau} = \delta y + \beta by^{\sigma}$. Note that $\beta, \delta b \in L$. Then

(1)
$$c\beta^{\tau}y^{\tau} + c(\delta b)^{\tau}y^{\sigma\tau} = \delta y + \beta b y^{\sigma} \text{ for all } y \in L.$$

Write y = uz here, where $u, z \in L$. By two applications of (1),

$$c\beta^{\tau}u^{\tau}z^{\tau} + u^{\sigma\tau}\{\delta z + \beta bz^{\sigma} - c\beta^{\tau}z^{\tau}\} = \delta uz + \beta bu^{\sigma}z^{\sigma},$$

so that

(2)
$$c\beta^{\tau}(u^{\tau}-u^{\sigma\tau})z^{\tau}=\delta(u-u^{\sigma\tau})z+\beta b(u^{\sigma}-u^{\sigma\tau})z^{\sigma} \text{ for all } u, z \in L.$$

If $\tau = 1$ then (since $\sigma \neq 1$) (2) implies that $c\beta = \delta$. Then $c\delta b = \beta b$ by (1), so that $c^2\beta = \beta$. Since $c \neq \pm 1$ it follows that $\beta = 0$; but then $\delta = 0$, so that $\alpha = 0$, which is not the case. This proves (III). From now on we may assume that σ , $\tau \neq 1$.

Suppose that $\beta \neq 0$. Choose $u \in L$ not fixed by σ . Then (2) can be rewritten in the form $z^{\tau} = Az + Bz^{\sigma}$ for all $z \in L$, where A, $B \in F$. In particular, 1 = A + B and $(Au + Bu^{\sigma})^2 = u^{2\tau} = Au^2 + Bu^{2\sigma}$, so that $(A^2 - A)u^2 + (B^2 - B)u^{2\sigma} + 2ABuu^{\sigma} = 0$. Then $AB(u - u^{\sigma})^2 = 0$, so that A = 0 or B = 0. It follows that either $z^{\tau} = z$ for all $z \in L$ or $z^{\tau} = z^{\sigma}$ for all $z \in L$. Consequently, $\tau = \sigma$ in this case.

Now suppose that $\beta = 0$. Then $\delta \neq 0$, while (2) states that $\delta(u - u^{\sigma \tau})z = 0$. Thus, $\sigma \tau = 1$ in this case.

This proves (II). We may now assume that $\tau = \sigma$.

Claim: $c\beta^{\sigma} - \beta b = 0$ and $\delta = 0$. Namely, (2) states that

$$(c\beta^{\sigma} - \beta b)(u^{\sigma} - u^{\sigma^2})z^{\sigma} = \delta(u - u^{\sigma^2})z$$
 for all $u, z \in L$.

This proves the claim if $\delta = 0$. Since n is odd, $\sigma^2 \neq 1$. If $\delta \neq 0$ then z/z^{σ} is constant for all $z \in L^*$; and then $z/z^{\sigma} = 1$, which is not the case.

Consequently, $c = \beta^{1-\sigma}b$ with $\beta = 2\alpha \in L$, proving the first part of (IV).

Proof of Theorem 1 continued. (iii) Choose σ to be one of the automorphisms q^{jn^*} with $1 \le j \le \frac{1}{2}(n/n^* - 1)$. Note that no two of these automorphisms are inverses of one another, $(n/n^*, j) = 1$, and

$$|H(\sigma)| = 2en(q^n - 1)/(q^n - 1, \sigma - 1) = 2en(q^n - 1)/(q^{n^*} - 1).$$

For each of the n/n^* automorphisms σ^{2i} with $0 \le i < |\sigma| = n/n^*$, the stabilizer $H(\sigma)_b$ of b contains $z \to b^{(1-\sigma)\cdot(\sigma^{2i}-1)/(\sigma-1)}z^{\sigma^{2i}}$, where $b^{(\sigma^{2i}-1)/(\sigma-1)} \in L$ since $(\sigma^{2i}-1)/(\sigma-1)$ is even. Then the orbit $b^{H(\sigma)}$ has length $|b^{H(\sigma)}| \le |H(\sigma)|/|\sigma|$, so that the number of $H(\sigma)$ -orbits on bL^* is $\ge (q^n-1)/(|H(\sigma)|/|\sigma|) = (q^{n^*}-1)/2en^*$. By varying j we obtain at least $\frac{1}{2}(n/n^*-1)(q^{n^*}-1)/2en^*$ nonisomorphic planes by Lemma 1.

REMARKS. 1. The kernel of $\Pi_{b,\sigma}$ is the fixed field of σ . Namely, if K' is the kernel then the K-space F must also be a vector space over K'. Then K is a subfield of K', and s_0 is a K'-linear transformation. It follows that K'^* lies in the centralizer of s_0 in GL(F)-i.e., in F^* .

Now if $g \in K'^*$ then g must fix the line h(L) and hence, in the proof of Lemma 1, b = c and g has the form $z \to \alpha z$ for some $\alpha \in F^*$. That proof yields that $b = \alpha^{1-\sigma}b$ with $\alpha \in L$, so that α is in the fixed field of σ . The converse is trivial.

- 2. We used n^* in order to minimize the order of $H(\sigma)$. For example, if $\sigma = q^j$ with (j, n) = 1 then K is the fixed field of σ , so that $(q^n 1)/(|H(\sigma)|/|\sigma|) = (q 1)/2e$ and for composite n we obtain significantly fewer planes than in (iii).
- 3. It may be instructive to compare the above construction, as well as those in [4], with one in [3]. There, spreads for flag-transitive planes consist of the following subspaces whenever q is even, n is odd, $r \in GF(q^2) GF(q)$, and t(x) = T(x) + rx where $T: GF(q^n) \to GF(q)$ is the trace map: $\{s^i t(L) | 0 \le i \le q^n\}$. Moreover, r and $r' \in GF(q^2) GF(q)$ determine isomorphic planes if and only if $r' + 1 = \alpha(r + 1)^{\varphi}$ with $\alpha \in GF(q)^*$, $\varphi \in Aut GF(q^2)$.

We now turn to a second family of flag-transitive planes. Again let $F = \mathrm{GF}(q^{2n})$, $L = \mathrm{GF}(q^n)$ and $K = \mathrm{GF}(q)$, where n > 1 and this time $q^n \equiv 1 \pmod{4}$. Let $\sigma \in \mathrm{Gal}(F/K)$, and let $\sigma|_L$ denotes its restriction to L (note the new meaning for σ !). Assume that $\sigma|_L \neq 1$.

Let p, e, s, b and h be as before; write $t = s^2$. Set

$$\mathcal{S}_{b,\sigma}' = \{t^i h(L) \mid 0 \leqslant i \leqslant \frac{1}{2}(q^n - 1)\} \cup \{t^i h(bL) \mid 0 \leqslant i \leqslant \frac{1}{2}(q^n - 1)\}.$$

This construction again is due to Suetake when $\sigma = q$.

THEOREM 2. (i) $\mathcal{S}'_{b,\sigma}$ is a spread, defining a translation plane $\Pi'_{b,\sigma}$.

- (ii) $\Pi'_{b,\sigma}$ admits a flag-transitive group inducing a noncyclic group on the line at infinity.
- (iii) If the fixed field of σ is properly contained in L then $\Pi'_{b,\sigma}$ does not admit a cyclic group acting transitively on the line at infinity.
- (iv) The number of pairwise nonisomorphic translation planes arising in (iii) is at least

$$\begin{cases} (n/n^*-1)(q^{n^*}-1)/4en^* & \text{if n is odd and n/n^* is the smallest} \\ & \text{prime factor of n} \\ (q^{n/2}-1)/en & \text{if n is even.} \end{cases}$$

(v) If n and q are primes then the number in (iv) is exactly (q-1)/2. Proof. (i, ii) As before, $\mathcal{S}'_{b,q}$ consists of n-dimensional K-spaces.

Here $\langle \tilde{t} \rangle$ has just two orbits on $\mathcal{S}'_{b,\sigma}$. The transformation $z \to bz^{\sigma}$ sends $t^i(x+bx^{\sigma})$ to $t^{i\sigma}([bx^{\sigma}]+b[bx^{\sigma}]^{\sigma})$ and $t^i([bx]+b[bx]^{\sigma})$ to $t^{i\sigma}([bb^{\sigma}x^{\sigma}]+b[bb^{\sigma}x^{\sigma}]^{\sigma})$, where $bb^{\sigma} \in L$. This proves (ii) if (i) is presupposed. As before, if $h(x)=t^ih(y)$ with $x,y\in L^*$ and $0< i \leq \frac{1}{2}(q^n-1)$, then

$$(x + bx^{\sigma})(x + \bar{b}x^{\sigma}) = t^{i}\bar{t}^{i}(y + by^{\sigma})(y + \bar{b}y^{\sigma}),$$

so that $x^2 - b^2(x^\sigma)^2 = k(y^2 - b^2(y^\sigma)^2)$, where this time $k = t^i \overline{t}^i = (s^i \overline{s}^i)^2$ is a square in K. As before, it follows in turn that $x^2 = ky^2$; that x = my with $m \in K$; that $m = t^i$; that $(t^i)^{q-1} = 1$; and finally that $\frac{1}{2}(q^n + 1)(q - 1) \mid i(q - 1)$, which contradicts the fact that $0 < i \le \frac{1}{2}(q^n - 1)$.

In view of transitivity, it remains to consider the possibility that $h(x) = t^i h(by)$ for some $x, y \in L^*$ and some i. This time

$$x^{2} - b^{2}x^{2\sigma} = (x + bx^{\sigma})(x + \bar{b}x^{\sigma})$$
$$= t^{t}\bar{t}'(by + b(by)^{\sigma})(\bar{b}y + \bar{b}(\bar{b}y)^{\sigma}) = -k[b^{2}y^{2} - b^{2}(by)^{2\sigma}]$$

where $k=t^i \overline{t}^i$ is a square in K. Then $x^2+kb^2y^2=b^2(x^2+kb^2y^2)^\sigma$, and $(x^2+kb^2y^2)^{\sigma-1}$ is the square of an element of L but b^2 is not. Consequently, $x^2+kb^2y^2=0$, so that x=mby with $m^2=-k$. Note that $x,y\in L^*$ but $b\notin L$, so that $m\notin L$. On the other hand, since $q^n\equiv 1\ (\text{mod }4)$ we have $-1=l^2$ for some $l\in L$. Then $(ml)^2=k$ is a square in K, whereas $ml\notin K$ since $l\in L$ and $m\notin L$. This contradiction proves (ii). (N.B. This argument did not use the hypothesis $\sigma|_L\neq 1$. However, if $\sigma|_L=1$ then $\Pi'_{b,\sigma}$ is desarguesian.)

Once again we need an isomorphism criterion. Let $H_1(\sigma) = \{z \to \alpha^{1-\sigma} z^{\varphi} \text{ for } z \in F \mid \alpha \in L^* \cup bL^*, \ \varphi \in \text{Aut } F\}$, so that $H_1(\sigma)$ induces a group of permutations of bL^* . Note that $|H_1(\sigma)| = 2en \cdot 2(q^n - 1)/(2(q^n - 1), \sigma - 1)$.

LEMMA 2. (I) $\Pi'_{b,\sigma} \cong \Pi'_{b^{-1} \cdot \sigma^{-1}}$.

- (II) If b and c are in the same $H_1(\sigma)$ -orbit then $\Pi'_{b,\sigma} \cong \Pi'_{c,\sigma}$.
- (III) If $\Pi'_{b,\sigma} \cong \Pi'_{c,\tau}$ then $\tau = \sigma^{\pm 1}$.
- (IV) If $\Pi'_{b,\sigma} \cong \Pi'_{c,\sigma}$ then b and c are in the same $H_1(\sigma)$ -orbit.

Proof. (I) The transformation $z \to b^{-1}z$ sends $x + bx^{\sigma}$ to $x^{\sigma} + b^{-1}(x^{\sigma})^{\sigma^{-1}}$ and $bx + bb^{\sigma}x^{\sigma}$ to $b^{-1}(bb^{\sigma}x^{\sigma}) + b^{-1}b^{-\sigma^{-1}}(bb^{\sigma}x^{\sigma})^{\sigma^{-1}}$, where $bb^{\sigma} \in L$.

(II) If $c = \alpha^{1-\sigma}b^{\varphi}$ with $\alpha \in L^*$, $\varphi \in \operatorname{Aut} F$, then the transformation $z \to \alpha z^{\varphi}$ sends $x + bx^{\sigma}$ to $(\alpha x^{\varphi}) + c(\alpha x^{\varphi})^{\sigma}$ and $bx + bb^{\sigma}x^{\sigma}$ to $c[(\alpha b^{\varphi}/c)x^{\varphi}] + cc^{\sigma}[(\alpha b^{\varphi}/c)x^{\varphi}]^{\sigma}$, where $\alpha b^{\varphi}/c \in L$.

If $c = \alpha^{1-\sigma}b^{\varphi}$ with $\alpha \in bL^*$, $\varphi \in \operatorname{Aut} F$, then the transformation $z \to \alpha z^{\varphi}$ sends $x + bx^{\sigma}$ to $c[(\alpha/c)x^{\varphi}] + cc^{\sigma}[(\alpha/c)x^{\varphi}]^{\sigma}$ and $bx + bb^{\sigma}x^{\sigma}$ to $[\alpha b^{\varphi}x^{\varphi}] + c[\alpha b^{\varphi}x^{\varphi}]^{\sigma}$, where α/c , $\alpha b^{\varphi} \in L$.

(III, IV) As in Lemma 1, if $\Pi'_{b,\sigma} \cong \Pi'_{c\tau}$ then we may assume that an isomorphism is induced by a transformation g of the form $z \to \alpha z^{\varphi}$ for some $\alpha \in F^*$ and some $\varphi \in \operatorname{Aut} F$. As before, we may also assume that $\varphi = 1$, and, by using $\langle \tilde{t} \rangle$, also that $\alpha h(L) = h'(L)$ or h'(cL). Let θ denote the automorphism $z \to \bar{z}$.

Case 1: $h'(L) = \alpha h(L)$. As in the proof of Lemma 1, (1) and (2) hold and we have $\tau|_L = \sigma^{\pm 1}|_L$. Moreover, by (I) we may assume that $\tau|_L = \sigma|_L$ (so that $\tau = \sigma$ or $\sigma\theta$). This time (2) implies that $c\beta^{\tau} - \beta b = 0$, and either $\delta = 0$ or $\sigma^2|_L = 1$ (where $\beta = \alpha + \bar{\alpha} \in L$ and $\delta = \alpha - \bar{\alpha}$ as before). Here $\beta^{\tau} = \beta^{\sigma}$, so that $c\beta^{\sigma} = \beta b$.

Since g normalizes $\langle \tilde{t} \rangle$ it must send the $\langle \tilde{t} \rangle$ -orbits on $\mathcal{S}'_{b,\sigma}$ to those on $\mathcal{S}'_{c,\tau}$. Thus, $\alpha h(bL) = t^j h'(cL)$ for some j; write $w = t^j$. Then

(3)
$$w(cx + cc^{\tau}x^{\tau}) = \alpha(by + bb^{\sigma}y^{\sigma})$$

for another permutation $x \to y$ of L^* .

Subcase 1.1: $\sigma^2|_L \neq 1$. We have just observed that $\delta = 0$, so $\beta = 2\alpha$, and that $c = \alpha^{1-\sigma}b$ and b lie in the same $H_1(\sigma)$ -orbit. In (III) we still must show that $\tau = \sigma$, so assume that $\tau = \sigma\theta$.

Since $w(cx + cc^{\tau}x^{\tau}) = \alpha(by + bb^{\sigma}y^{\sigma}) = c(\alpha^{\sigma}y) + cc^{\sigma}(\alpha^{\sigma}y)^{\sigma}$, it follows that $w(x + c^{\tau}x^{\tau}) = v + c^{\sigma}v^{\sigma}$, where $v = \alpha^{\sigma}y \in L$ since $\alpha \in L$. As before we find first that $\bar{w}(x - c^{\tau}x^{\tau}) = v - c^{\sigma}v^{\sigma}$, then that $k(x^2 - (c^{\tau}x^{\tau})^2) = v^2 - (c^{\sigma}v^{\sigma})^2$ where $k = w\bar{w}$ is a square in K, $c^{\tau} = \bar{c}^{\sigma} = -c^{\sigma}$ and $x^{\tau} = x^{\sigma}$, and then that $kx^2 - v^2 = c^{2\sigma}(kx^2 - v^2)^{\sigma}$.

Now $v^2 = kx^2$ for all $x \in L$, where v is an additive function of x and k is a square in K. Thus, for all $x \in L$, v = mx for some $m \in K$. Then $m^{\sigma} = m$, and $w(x + c^{\tau}x^{\sigma}) = mx + c^{\sigma}mx^{\sigma}$ for all $x \in L$. This implies both that w = m and that $wc^{\tau} = c^{\sigma}m = -c^{\tau}m$, which is ridiculous. Thus, $\tau = \sigma$.

Subcase 1.2: $\sigma^2|_L = 1$. Since $\sigma|_L = \tau|_L \neq 1$, $\sigma^2 = \theta = \tau^2$ and hence $\tau = \sigma$ or σ^{-1} . This proves (III) in this situation, so by (I) we may assume that $\tau = \sigma$. Recall that $c\beta^{\sigma} = \beta b$. If $\beta \neq 0$ then b and c lie in the same $H_1(\sigma)$ -orbit.

Assume that $\beta=0$ and hence $\delta=\alpha-\bar{\alpha}=2\alpha$. Since (1) holds with $\tau=\sigma$ we have $c\delta^{\sigma}b^{\sigma}=\delta$, so that $c\alpha^{\sigma}b^{\sigma}=\alpha$. By (3), $\bar{w}(-cx+cc^{\sigma}x^{\sigma})=-\alpha(-by+bb^{\sigma}y^{\sigma})$, so that $(w-\bar{w})cx+(w+\bar{w})cc^{\sigma}x^{\sigma}=2\alpha by$ and $(w+\bar{w})cx+(w-\bar{w})cc^{\sigma}x^{\sigma}=2\alpha bb^{\sigma}y^{\sigma}$. Then

$$\{(w + \bar{w})cx + (w - \bar{w})cc^{\sigma}x^{\sigma}\}\alpha^{\sigma}$$

= $2\alpha b\alpha^{\sigma}b^{\sigma}v^{\sigma} = \alpha b\{(w - \bar{w})cx + (w + \bar{w})cc^{\sigma}x^{\sigma}\}^{\sigma}$

for all $x \in K$. Consequently, $(w + \bar{w})c\alpha^{\sigma} = \alpha b(w + \bar{w})^{\sigma}c^{\sigma}c^{\sigma\sigma}$ and $(w - \bar{w})cc^{\sigma}\alpha^{\sigma} = \alpha b(w - \bar{w})^{\sigma}c^{\sigma}$. If $\bar{w} \neq w$ then $c = \{(w - \bar{w})/\alpha\}^{\sigma-1}b$ with $(w - \bar{w})/\alpha \in L^*$, so that b and c are in the same $H_1(\sigma)$ -orbit. Suppose that $\bar{w} = w$. Then $w^2 = w\bar{w}$ is a square in K, so that $w \in K$. Now $\bar{w} = w = w^{\sigma}$, so that $(w + w)c\alpha^{\sigma} = \alpha b(w + w)c^{\sigma}\bar{c}$ and hence $c\alpha^{\sigma} = -\alpha bc^{\sigma}c$. Now $-\alpha = (\alpha^{\sigma})^{\sigma} = (-\alpha bc^{\sigma})^{\sigma} = -\alpha^{\sigma}b^{\sigma}\bar{c} = \alpha^{\sigma}b^{\sigma}c$, whereas we already knew that $c\alpha^{\sigma}b^{\sigma} = \alpha$.

Case 2: $h'(cL) = \alpha h(L)$. This time there is a permutation $x \to y$ of L^* such that $cx + cc^{\tau}x^{\tau} = \alpha(y + by^{\sigma})$. Then $-cx + cc^{\tau}x^{\tau} = \bar{\alpha}(y - by^{\sigma})$, so that $2cx = \delta y + \beta by^{\sigma}$ and $2cc^{\tau}x^{\tau} = \beta y + \delta by^{\sigma}$, where $\beta = \alpha + \bar{\alpha}$ and $\delta = \alpha - \bar{\alpha}$ as before. Now $c(\delta y + \beta by^{\sigma})^{\tau} = \beta y + \delta by^{\sigma}$ for all $y \in L$. As in the proof of Lemma 1 this implies first that $c\delta^{\tau}(u^{\tau} - u^{\sigma\tau})z^{\tau} = \beta(u - u^{\sigma\tau})z + \delta b(u^{\sigma} - u^{\sigma\tau})z^{\sigma}$ for all $u, z \in L$, and then that $\tau|_{L} = \sigma^{\pm 1}|_{L}$.

Now suppose that $\tau|_L = \sigma|_L$ (cf. (I)). Then

$$(c\delta^{\tau} - \delta b)(u^{\sigma} - u^{\sigma^2})z^{\sigma} = \beta(u - u^{\sigma^2})z$$
 for all $u, z \in L$,

which as before yields that $c\delta^{\tau} - \delta b = 0$ and either $\beta = 0$ or $\sigma^{2}|_{L} = 1$. Now $c\delta^{\tau}y^{\sigma} + c\beta^{\tau}b^{\tau}y^{\sigma\sigma} = \beta y + \delta by^{\sigma}$ implies that $c\beta^{\tau}b^{\tau}y^{\sigma^{2}} = \beta y$. Then $c\beta^{\tau}b^{\tau} = \beta$, and either $\beta = 0$ or $\sigma^{2}|_{L} = 1$. Since we already know that $c\delta^{\tau} = \delta b$, where $\delta^{\tau} = \delta^{\sigma}$ or $\delta^{\tau} = \bar{\delta}^{\sigma} = -\delta^{\sigma}$, one of the following holds:

$$\beta = 0$$
, $\delta \neq 0$ and $c = \pm \delta^{1-\sigma}b$, or $\beta \neq 0$, $c = \beta^{1-\sigma}b^{-\tau}$ and $\sigma^2|_L = 1$.

Since g normalizes $\langle \tilde{t} \rangle$ it must send the $\langle \tilde{t} \rangle$ -orbits on $\mathscr{S}'_{b,\sigma}$ to those on $\mathscr{S}'_{c,\tau}$. Thus, $\alpha h(bL) = t^j h'(L)$ for some j; write $w = t^j$. Then

(4)
$$w(x + cx^{\tau}) = \alpha(by + bb^{\sigma}y^{\sigma})$$

for another permutation $x \to y$ of L^* .

Subcase 2.1: $\sigma^2|_L \neq 1$. If $\tau = \sigma$ then $\delta^{\tau} = \delta^{\sigma}$, so that $c = \delta^{1-\sigma}b$ and b lie in the same $H_1(\sigma)$ -orbit, as required in (III). It remains to assume that $\tau = \sigma\theta$, or equivalently, $c = -\delta^{1-\sigma}b$, and derive a contradiction.

We have $\beta = 0$, $\delta = \alpha - \bar{\alpha} = 2\alpha$ and $c\alpha^{\sigma} = -\alpha b$. By (4),

$$w(x + cx^{r}) = \alpha(by + bb^{\sigma}y^{\sigma}) = -c\alpha^{\sigma}y - c\alpha^{\sigma}(-c\alpha^{\sigma}/\alpha)^{\sigma}y^{\sigma} = v - cv^{\sigma}$$

with $v = -c\alpha^{\sigma}y$. Here $v \in L$ since $\bar{\alpha} = -\alpha$. Now $k(x^2 - c^2x^{2\sigma}) = v^2 - c^2v^{2\sigma}$ where $k = w\bar{w}$ is a square in K. Then $kx^2 - v^2 = c^2(kx^2 - v^2)^{\sigma}$ implies that, for some $m \in K$ and all $x \in L$, v = mx. Thus, $w(x + cx^{\sigma}) = mx - cmx^{\sigma}$, so that w = m and cw = -cm, which is impossible.

Subcase 2.2: $\sigma^2|_L = 1$. As in Subcase 1.2 we may assume that $\tau = \sigma$. If $\delta \neq 0$ then $c = \delta^{1-\sigma}b$, and hence b and c are in the same $H_1(\sigma)$ -orbit.

Assume that $\delta = 0$, so that $\alpha \in L$ and $\alpha = c\alpha^{\sigma}b^{\sigma}$. By (4), $\bar{w}(x - cx^{\sigma}) = \alpha(-by + bb^{\sigma}y^{\sigma})$, so that $(w + \bar{w})x + (w - \bar{w})cx^{\sigma} = 2\alpha bb^{\sigma}y^{\sigma}$ and $(w - \bar{w})x + (w + \bar{w})cx^{\sigma} = 2\alpha by$. Then

$$\{(w + \bar{w})x + (w - \bar{w})cx^{\sigma}\}\alpha^{\sigma}$$

$$= 2\alpha b\alpha^{\sigma}b^{\sigma}y^{\sigma} = \alpha b\{(w - \bar{w})x + (w + \bar{w})cx^{\sigma}\}^{\sigma}$$

for all $x \in K$. Consequently, $(w + \bar{w})\alpha^{\sigma} = \alpha b(w + \bar{w})^{\sigma}c^{\sigma}$ and $(w - \bar{w})c\alpha^{\sigma} = \alpha b(w - \bar{w})^{\sigma}$. If $\bar{w} \neq w$ then $c = \{(w - \bar{w})/\alpha\}^{\sigma-1}b$ with $(w - \bar{w})/\alpha \in bL^*$, so that b and c are in the same $H_1(\sigma)$ -orbit. Suppose that $\bar{w} = w$. Then $w^2 = w\bar{w}$ is a square in K, so that $w \in K$. Now $\bar{w} = w = w^{\sigma}$, so that $(w + w)\alpha^{\sigma} = \alpha b(w + w)c^{\sigma}$ and hence $\alpha^{\sigma} = \alpha bc^{\sigma}$. Then $\alpha = \alpha^{\sigma\sigma} = \alpha^{\sigma}b^{\sigma}c^{\sigma\sigma} = \alpha^{\sigma}b^{\sigma}\bar{c} = -\alpha^{\sigma}b^{\sigma}c$, whereas we already knew that $\alpha = c\alpha^{\sigma}b^{\sigma}$.

Proof of Theorem 2, continued. (iii) Assume that there is a cyclic group acting transitively on the line at infinity. By Sylow's Theorem we may assume that \tilde{s}_0 lies in that cyclic group. Then that cyclic group is contained in $C_{\Gamma L(F)}(\tilde{s}_0) = \{\tilde{\alpha} \mid \alpha \in F^*\}$. In the notation of the proof of Lemma 2(III, IV) we have b = c, and there must be a collineation $g = \tilde{\alpha}$ of $\Pi'_{b,\sigma}$ such that $\alpha h(L) = h(bL)$.

If $\sigma^2|_L \neq 1$ then Case 2 of that proof yields that $\beta = 0$ and $b = \delta^{1-\sigma}b$. Thus, $\delta^{\sigma} = \delta$ and $\delta = \alpha - \bar{\alpha} \notin L$. Consequently, the fixed field of σ is not contained in L, which is not the case in (iii).

If $\sigma^2|_L = 1$ then we are in the situation of the proof of Lemma 2, Subcase 2.2, where it was shown that $b = \delta^{1-\sigma}b$ or $b = \{(w - \bar{w})/\alpha\}^{\sigma-1}b$. Then δ or $(w - \bar{w})/\alpha$ lies in the fixed field of σ but not in L, which is not the case.

(iv) As in the proof of Theorem 1(iii), if φ is any power of σ then $z \to (b^{(\varphi-1)/(\sigma-1)})^{1-\sigma}z^{\varphi}$ fixed b, and moreover lies in $H_1(\sigma)_b$ since $b^{(\varphi-1)/(\sigma-1)} \in L^* \cup bL^*$. Thus, $|b^{H_1(\sigma)}| \le |H_1(\sigma)|/|\sigma|$ for any b, so that the number of $H_1(\sigma)$ -orbits on bL^* is at least $|\sigma|(q^n-1)/(H_1(\sigma))$.

Let n/n^* be the smallest prime factor of n. Choose $\sigma = q^{jn^*}$ where $1 \le jn^* < n$ and j is odd; note that no two of these automorphisms of F are inverses of one another. In (iii) we require that the fixed field of σ is contained in L, and this holds since $(jn^*, 2n) = n^*$ is a factor of n (recall that j is odd). Note that $|\sigma| = 2n/n^*$, and

$$|H_1(\sigma)| = 4en(q^n - 1)/(2(q^n - 1), \sigma - 1) = 4en(q^n - 1)/(q^{n^*} - 1)$$

since $(q^{jn^*}-1)/q^{n^*}-1)$ is odd. Consequently, the number of $H_1(\sigma)$ -orbits on bL^* is at least $(2n/n^*)(q^n-1)/|H_1(\sigma)|=(q^{n^*}-1)/2en^*$.

If $n/n^* = 2$ then this is precisely the assertion of (iv). If n/n^* is odd then, by varying j, we obtain (iv).

- (v) Moreover, if n is prime then $n^*=1$ and $\sigma=q^j$ for some j with $1\leqslant j<2n$. By Lemma 2(I) we may assume that $j\leqslant n$; and the requirement in (iii) that (j,2n)|n forces j to be odd. If, in addition, q is prime, then $|H_1(\sigma)|=4n(q^n-1)/(q-1)$ and $|b^{H_1(\sigma)}|\leqslant |H_1(\sigma)|/|\sigma|=2(q^n-1)/(q-1)$. However, there are $2(q^n-1)/(q-1)$ images of b under the linear mappings $z\to\alpha^{1-\sigma}z$ with $\alpha\in L^*\cup bL^*$. Thus, $|b^{H_1(\sigma)}|=2(q^n-1)/(q-1)$ for each b, and hence $H_1(\sigma)$ has exactly (q-1)/2 orbits on bL^* .
- REMARKS. 1. Suppose that n=n'n'' is the product of odd integers n', n''>1, and that $q^n\equiv 1\pmod 4$. Let σ be the automorphism $q^{n'}$ of F. Then the condition $\sigma|_L\neq 1$ in Theorem 1 is certainly satisfied, and the fixed field of σ is contained in L. By Theorem 2(iii), $\Pi_{b,\sigma}\not\cong\Pi'_{b,\sigma}$. Moreover, the spreads $\mathscr{S}_{b,\sigma}$ and $\mathscr{S}'_{b,\sigma}$ share half of their members: some sort of 'net replacement' is at work here.
- 2. In Theorem 2 suppose that n is odd but the fixed field of σ is not contained in L. Claim: The spreads $\mathcal{G}_{b,\sigma}$ and $\mathcal{G}'_{b,\sigma}$ coincide. Namely, let $\sigma=q^r$, so the fixed field of σ is $GF(q^k)$ where k=(r,2n). Then $k\mid 2n$ but $k\nmid n$, so that 2n/k is odd. Let $u\in F^*$ have order $(q^n+1)(q^{k/2}-1)$, let $j=\frac{1}{2}(q^n+1)$, and write $\alpha=u^j$. Since $(q^n-1)/(q^{k/2}-1)$ is odd, $\alpha\notin L$ and $\alpha^2\in L$. Then $\alpha^\sigma=\alpha$, $\bar{\alpha}=-\alpha$, and $\alpha b, \alpha/b\in L$. It follows that $\alpha(x+bx^\sigma)=b(\alpha x/b)+bb^\sigma(\alpha x/b)^\sigma$ and $\alpha(bx+bb^\sigma x^\sigma)=(\alpha bx)+b(\alpha bx)^\sigma$, so that $\langle \tilde{u}\rangle$ is a collineation group transitive on the line at infinity of $\Pi'_{b,\sigma}$. Since the kernel of $\Pi'_{b,\sigma}$ contains $GF(q^{k/2})$, we are in the situation of Theorem 1 but with K replaced by $GF(q^{k/2})$ and s by u. This implies the Claim.

In particular, the Claim explains the restriction on the fixed field of σ in Theorem 2(iii).

3. Theorem 2 allows the possibility that 2n = 4, a case studied intensively by Baker and Ebert [1], [2]. I am indebted to Gary Ebert for pointing out that the construction in Theorem 2 – which is just Suetake's in that case (since we might as well let $\sigma = q$ by Lemma 2(I)) – settles the conjecture made on p. 13 of [2] concerning the coordinate description of the planes studied there. The results in [1], [2] imply that every odd order nondesarguesian flagtransitive translation plane of dimension 2 over its kernel is one of the planes $\Pi'_{b,q}$.

In [1] the authors examine the isomorphism problem for these planes. They use an unusual notion of isomorphism, viewing two translation planes as isomorphic if and only if there is a *linear* isomorphism between the planes;

and then they conjecture that the number of pairwise nonisomorphic planes $\Pi'_{b,q}$ is (q-1)/2. This conjecture is precisely the content of Theorem 2(v) and its proof (when n=2), i.e., it is an *immediate* consequence of Lemma 2(II, IV). On the other hand, if e>1 is odd then it is easy to check that the number of planes is greater than (q-1)/2e.

4. If $G = \{z \to \alpha z^{\varphi} + u \mid \alpha \in F^*, u \in F, \varphi \in \text{Aut } F\}$ then the proofs of Lemmas I and II easily imply that

$$G \cap \operatorname{Aut} \Pi_{b,\sigma} = \{ z \to \alpha z^{\varphi} + u \, | \, \alpha \in L^*, \, u \in F, \, \varphi \in \operatorname{Aut} F, \text{ and } \alpha^{\sigma-1} = b^{\varphi-1} \}$$

$$G \cap \operatorname{Aut} \Pi'_{b,\sigma} = \{ z \to \alpha z^{\varphi} + u \, | \, \alpha \in L^* \cup bL^*, \, u \in F, \, \varphi \in \operatorname{Aut} F,$$

$$\operatorname{and} \alpha^{\sigma-1} = b^{\varphi-1} \}.$$

However, quite a bit more group theoretic machinery seems to be needed in order to show that

Aut
$$\Pi_{b,\sigma} = G \cap \operatorname{Aut} \Pi_{b,\sigma}$$
 and Aut $\Pi'_{b,\sigma} = G \cap \operatorname{Aut} \Pi'_{b,\sigma}$ provided that $q^n > 9$.

It would be nice to have an elementary proof of this fact.

5. In view of the constructions in [3] and [4], there exists at least one nondesarguesian flag-transitive affine plane of order p^n whenever p is a prime, n > 1, $p^n > 81$, and either p is odd or n is odd. It would be very interesting to know whether or not there exist such planes of order 2^{2m} for any $m \ge 2$.

REFERENCES

- Baker, R. D. and Ebert, G. L., 'Enumeration of two-dimensional flag-transitive planes', Algebras, Groups Geom. 3 (1985), 248-257.
- Baker, R. D. and Ebert, G. L., 'Construction of two-dimensional flag-transitive planes', Geom. Dedicata 27 (1988), 9-14.
- Kantor, W. M., 'Spreads, translation planes and Kerdock sets. II', SIAM J. Algebraic Discrete Methods 3 (1982), 308-318.
- 4. Suetake, C., 'Flag transitive planes of order q^n with a long cycle on l_{∞} as a collineation' (to appear).
- 5. Wagner, A., 'On finite affine line transitive planes', Math. Z. 87 (1965), 1-11.
- 6. Zsigmondy, K., 'Zur Theorie der Potenzreste', Monatsh. Math. Phys. 3 (1892), 265-284.

Author's address:

W. M. Kantor, Dept. of Mathematics, University of Oregon, Eugene, OR 97403-1222, U.S.A.