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Abstract
Given an integer k ≥ 3 and a group G of odd order, if there exists a 2-(v, k, 1)-design and if
v is sufficiently large then there is such a design whose automorphism group has a subgroup
isomorphic to G. Weaker results are obtained when |G| is even.
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1 Introduction

About 40 years ago Babai [1, p. 8] proposed the following “subgroup problem”:

PROBLEM 2.7. Prove for every k ≥ 3, that, given a finite group G, there is a BIBD
of block size k (a 2-(v, k, 1)-design) X such that G ≤̃ Aut X .

Wilson proved this when k is a multiple of |G| [1, p. 8]; [10, Theorem 12.1] contains this
when k − 1 is a multiple of |G|. (These results are also in [14, p. 311].)

In this note we will prove other special cases of Babai’s problem:

Theorem 1.1 Given an integer k ≥ 3 and a group G of odd order, if v satisfies the divisibility
conditions for a 2-(v, k, 1)-design and is sufficiently large then there is a 2-(v, k, 1)-design
whose automorphism group has a subgroup isomorphic to G.

When k = 3 stronger results appear in [3,5].

Theorem 1.2 Given an odd integer k ≥ 3 and a group G of even order such that (k, |G|) = 1,
there are infinitely many v for which there is a 2-(v, k, 1)-design whose automorphism group
has a subgroup isomorphic to G.
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Theorem 1.3 Consider an even integer k ≥ 4 and a group G of even order. Assume that
every prime power dividing |G| either divides k or is relatively prime to k(k − 1). Then there
are infinitely many v for which there is a 2-(v, k, 1)-design whose automorphism group has
a subgroup isomorphic to G.

When k or k − 1 is a prime power, see [1, p. 8] or [8] for a stronger type of result: there
are infinitely many 2-(v, k, 1)-designs D for which G ∼= Aut D. Babai [1, Conjecture 2.8]
asked for such a stronger result for arbitrary k ≥ 3, but this presently seems out of reach:
there appears to be no method for recovering the classical geometry underlying one of our
designs as was done when k or k−1 is a prime power. See Remark 2.5 and Sect. 8 for further
comments about proving this stronger result.

The single idea behind the above three theorems is to place copies of a 2-(p, k, 1)-design
in the lines of an affine space AG(d, p) in a G-invariant manner, for large d and a suitable
prime p; this occurred in [9, Sect. III.C] for a very different purpose. The 2-(p, k, 1)-designs
we use admit suitable automorphism groups (which are cyclic for Theorems 1.2 and 1.3),
and are special cases of lovely results in [10,13,14].

Theorem 1.2 is proved in Sect. 3, while Theorem 1.3 is in Sect. 5. The remainder of
this paper is devoted to Theorem 1.1: Sect. 2 contains a proof that there are infinitely many
designs behaving as in Babai’s problem when |G| is odd, while Propositions 6.2 and 7.1
(based on Theorem 4.1) contain the background needed for the proof of Theorem 1.1 at the
end of Sect. 7.

All of our proofs are the same for abelian and nonabelian groups. The fact that |G| is odd in
Theorem 1.1 is used for its combinatorial implications rather than its implications for group
structure. In all of the results mentioned above |G| is tiny relative to v. Our theorems do not
deal with the case |G| ≡ 0 (mod 4) and k ≡ 2 (mod 4). The case (|G|, k) &= 1 &= (|G|, k−1)
seems especially difficult when |G| is even.
Preliminaries If G is a group of permutations x '→ xg of a set X , and L ⊆ X , then
GL := {g ∈ G | Lg = L} is the set-stabilizer of L in G, which induces the subgroup GL

L of
the symmetric group Sym(L).

A permutation group C on a set X is semiregular if xc &= x whenever x ∈ X and
1 &= c ∈ C ; and C is regular if it is transitive and semiregular. If 〈c〉 and 〈c′〉 are semiregular
cyclic groups of permutations of X having the same order then c and c′ are conjugate in
Sym(X).

We will use the same symbol to denote a design and its set of points.

2 Odd order

Theorem 2.1 (Wilson [13, pp. 22–26]) Given k ≥ 3, for all sufficiently large primes p ≡ 1
(mod k(k − 1)) there is a 2-(p, k, 1)-design E whose set of points is F := Fp and whose
automorphism group contains {x '→ x + b | b ∈ F}.

Moreover, if p = 1+ k(k − 1)t with t odd then E can be chosen so that {x '→ sx | s ∈
F, st = 1} is also a group of automorphisms of E.
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If t = (p − 1)/k(k − 1) is odd, the subgroup of F∗ of order 2t factors as S × 〈−1〉 for a
subgroup S of order t . Then [13] obtains A ⊂ F such that {s A + b | s ∈ S, b ∈ F} is the
set of blocks of E .

The preceding theorem lets us handle Babai’s problem when |G| is odd:
Theorem 2.2 Given an integer k ≥ 3 and a group G of odd order, there are infinitely many v
for which there is a 2-(v, k, 1)-designwhose automorphism group has a subgroup isomorphic
to G.

Proof By Dirichlet’s Theorem there is a prime p ≡ 1+ k(k − 1)|G| (mod 2k(k − 1)|G|). If
we write p − 1 = k(k − 1)t , it follows that (p − 1)/{k(k − 1)} = t is odd and divisible by
|G|. As above, let F = Fp and let S be the subgroup of F∗ of order t .

We will prove the theorem by using suitable powers v = pd . Let V = Fd , where d is
chosen so that G is (isomorphic to) a group of permutations of a basis of V and hence is in
GL(V ). (For example, any integer d ≥ |G| can be chosen.)

We will use the affine space A := AG(d, p) whose set of points is V . Clearly G <

GL(V ) < AGL(V ). (Here AGL(V ) = {v '→ vM + c | M ∈ GL(V ), c ∈ V } is AutA if
d > 1.) Let L be a set of representatives of the orbits of G on the lines of A.

Let L ∈ L. View L as F , so the group AGL(1, p) of p(p − 1) affine transformations
x '→ ax + b for a ∈ F∗, b ∈ F , corresponds to the affine group AGL(L) on L obtained
from AGL(V ). Then {x '→ sx + b | s ∈ S, b ∈ F} corresponds to a subgroup S(L) of
AGL(L) of order pt . Each subgroup of AGL(L) of order dividing |S| = t lies in S(L) (since
the quotient group AGL(1, p)/{x '→ x + b | b ∈ F} is isomorphic to the cyclic group F∗).

The set-stabilizer GL induces on L a subgroup GL
L of AGL(L). Since |G| divides t = |S|

so does |GL
L |. Then GL

L ≤ S(L) by the preceding paragraph. (In fact, GL
L is even more

restricted since p > |GL
L |, but we will not need this fact.)

Use each L ∈ L as the set of points of a 2-(p, k, 1)-design DL behaving as E does at the
end of Theorem 2.1, so GL

L ≤ S(L) ≤ Aut DL . (The end of Theorem 2.1 needed t to be odd.
Since |G|

∣∣t , this is where we need |G| to be odd.)
For each L ∈ L let BL be the set of blocks of DL . If g ∈ G let DLg denote the design

(DL)
g whose set of points is Lg and whose set of blocks is (BL)

g .
This well-defined: if Lg = Lg′

for g, g′ ∈ G then (DL)
g = (DL)

g′
. For, if h = g′g−1

then h ∈ G and Lh = L , so the permutation hL induced by h on L lies in GL
L ≤ Aut DL .

Then hL sends DL to itself, so (DL)
g = (DL)

g′
, as required.

Define a design D as follows:
points are the points of A
blocks are the elements of

⋃

L∈L, g∈G
(BL )

g .

It is elementary that D is a 2-(pd , k, 1)-design: any two points lie in a unique line Lg for
L ∈ L and g ∈ G, and then in a unique member of (BL)

g . Since G is in AGL(V ) and
permutes the sets (DL )

g it is a subgroup of Aut D. 12
Remark 2.3 By the last sentence of Theorem 2.1, the first paragraph of the above proof
contains a solution to Babai’s problem for the cyclic group of order |G|. The proofs of
Theorems 1.2 and 1.3 involve something similar: a cyclic group case of Babai’s problem is
used to deal with much more general groups.

Remark 2.4 Placing designs on the blocks of another design is standard [13, p. 28]. Preserving
the automorphismgroup is less standard. The above simplemethodwas used in [9, Sect. III.C]
to construct flag-transitive designs; preserving a group of automorphisms of the larger design
was as essential there as it is here.
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Remark 2.5 We used A with an arbitrary group G of odd order. Given the action of G on V ,
the groups GL and GL

L are known; since p > |G|, the group GL
L is cyclic.

However, there is flexibility with the designs DL . We only needed to have GL
L ≤ Aut DL

(for each L ∈ L) in order for the proof to work. Thus, each of the original designs DL (L ∈ L)
can be replaced by (DL)

h(L) for any permutation h(L) of the points of L that normalizes GL
L .

Suitable changes of this sort might provide a way to obtain a 2-(pd , k, 1)-design D′ such
that G ∼= Aut D′. For this purpose it appears to be necessary to recover the affine space A
from some such design D′. However, we have been unable to do this (cf. Sect. 8).

Remark 2.6 On the other hand, each design DL admits the group S(L) < AGL(L) =
AGL(V )LL as a group of automorphisms that is regular on blocks: {s A + b |s ∈ S, b ∈ F} is
the set of |S|p = p(p− 1)/k(k − 1) blocks of each design constructed in [13, p. 22] starting
from a suitable initial block A ⊂ F . Once again this uses the fact that t and |G| are odd.

Remark 2.7 If B is a block of the design D constructed in the proof of Theorem 2.2 then
GB

B = 1. For, B is in a unique line L of A, so L is fixed by GB . Then GL
B ≤ S(L) as in

the above proof. However, as already noted in the preceding remark, S(L) is regular on the
blocks of DL , so GL

B ≤ S(L)B = 1 and hence GB
B = 1.

This will be crucial in Sect. 7.
If d is large then G has many fixed points so there are many lines of A fixed pointwise by

many elements of G.

3 Theorem 1.2

When |G| is even we use a consequence of a theorem of Lamken and Wilson [10]; but first
we need a prime:

Lemma 3.1 Let k ≥ 3, and let h be a multiple of 4 such that (k, h) = 1. Then there are
infinitely many primes p > h satisfying the following conditions for some integer n :
(i) p = 1+ (k − 1)n,
(ii) n(n − 1) ≡ 0 (mod k),
(iii) n(n − 1) ≡ 0 (mod 4k) if k ≡ 3 (mod 4), and
(iv) (p − 1, h) = (k − 1, h).

Proof Let w be a positive integer such that kw ≡ 1 (mod h). Then
(
1 + k(k −

1)w, hk(k − 1)
)
=

(
1+ k(k − 1)w,h

)
= (1 + (k − 1),h) = 1. By Dirichlet’s Theorem

there are infinitely many integers y such that p := 1 + k(k − 1)w + {hk(k − 1)}y =
1 + (k − 1)n is prime, where n := kw + hky ≡ 0 (mod k). Then (ii) is clear, and (iii)
holds: n − 1 = (kw − 1) + hky is a multiple of h and hence of 4. Finally, (iv) holds:
(p − 1, h) =

(
k(k − 1)w + {hk(k − 1)}y, h

)
=

(
kw(k − 1), h

)
= (k − 1, h). 12

Theorem 3.2 (Lamken and Wilson [10, Theorem 12.1]) Given k, for all sufficiently large p
satisfying the first three conditions of Lemma 3.1 there is a 2-(p, k, 1)-design E such that
Aut E has a cyclic subgroup of order k − 1 having one fixed point and semiregular on the
remaining points.

Proof of Theorem 1.2 We imitate the proof of Theorem 2.2. In Lemma 3.1 let h := |G|, where
we increase G if necessary in order to have h divisible by 4. (Admittedly this is annoying.)
Choose a sufficiently large p > |G| so that the lemma applies. Choose d sufficiently large so
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thatG is (isomorphic to) a subgroup of the symmetric group Sd and hence also of AGL(d, p).
The points of our design D are the points of A = AG(d, p).

Let L ∈ L, where L is a set of representatives of the orbits of G on the lines of A. Then
GL

L ≤ AGL(L) ∼= AGL(1, p) and p > |G| ≥ |GL
L |, so GL

L is a cyclic group of order
dividing (p − 1, |G|) = (k − 1, |G|) by Lemma 3.1(iv). This cyclic group fixes a point, and
all remaining orbits have length |GL

L |; all permutations of L having this cycle structure are
conjugate in Sym(L). After identifying L with the set of points of the design in Theorem 3.2
and conjugating by an element of Sym(L), we may assume that GL

L is contained in the cyclic
group of order k − 1 provided by Theorem 3.2. Thus, L is the set of points of a design DL ,
isomorphic to the design E in that theorem, such that GL

L ≤ Aut DL .
Now repeat the last three paragraphs of the proof of Theorem 2.2. 12

4 Moore and Ray-Chaudhuri

Wilson [13, p. 29] credits Ray-Chaudhuri for the following generalization of a standard,
fundamental result due to Moore [11, p. 276]:

Theorem 4.1 A 2-(w, k, 1)-design W , a transversal design T D(k, y − x) and a 2-(y, k, 1)-
design Y with an x-point subdesign X produce a 2-(w(y − x)+ x, k, 1)-design.

Here a transversal design T D(k, n) consists of kn points, n2 subsets of size k called
“blocks”, and a partition of the points into k “groups” of size n, such that each block meets
each group in a single point and any two points in different groups are in a unique block.

The following proof is based on [13, pp. 29–30], and is included since we need properties
of the constructed design.

Proof If Z := Y − X as a set of points, then X ∪ (W × Z)will be the set of points of our new
design. Let A be a block of W , hence of size k. There is a transversal design T D(k, y − x)
on A × Z whose set of groups is {a × Z | a ∈ A} and whose set of blocks will be denoted
BA×Z ; this transversal design, denoted TA×Z , has nothing to do with the design on Y .

Imitating Moore [11, p. 276] produces a new design as follows:
points: elements of X ∪ (W × Z);
blocks are of four sorts:

• the blocks of X ,
• for each a ∈ W and each block B of Y not inside X ,

– a × B if B ∩ X = ∅, or
– x ∪

(
a × (B − x)

)
if B ∩ X = x , and

• ⋃{BA×Z | A is a block ofW }.
There is no conflict between the blocks in TA×Z for different choices of A: distinct

intersecting sets A × Z and A′ × Z intersect in a group.
The only other part the proof worth a comment concerns a pair (a1, z1), (a2, z2) ∈ W × Z

with a1 &= a2. Since a1 &= a2 there is a unique block A of W containing them, and (a1, z1)
and (a2, z2) belong to different groups a1 × Z and a2 × Z of TA×Z . Then there is a unique
block in BA×Z containing them. 12

Remark 4.2 The existence of aT D(k, n) is equivalent to the existence of a set of k−2mutually
orthogonal Latin squares of order n [12, Lemma 2.1]. If N (n) denotes the maximum number
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2150 W. M. Kantor

of mutually orthogonal Latin squares of order n, then [4] proves that there is an integer n0
such that N (n) ≥ 1

3n
1/91 if n > n0 (and there are better bounds known [12]). Thus, if

n(k) := max(n0, (3k)91) then

If n > n(k) then there is a T D(k, n). (4.1)

5 Nets and even k

As in Sects. 2 and 3 the proof of Theorem 1.3 requires a suitable design on a prime number
of points. Whereas Theorem 1.2 used a 2-(p, k, 1)-design having a cyclic automorphism
group of order k−1 fixing one point and semiregular on the remaining points (Theorem 3.2),
this time we need a 2-(p, k, 1)-design having a cyclic automorphism group of order k fixing
one point and semiregular on the remaining points (Theorem 5.4). For this purpose we use
Theorem 4.1 and transversal designs. However, it will be easier to start with nets.

5.1 Nets

The dual of a transversal design T D(k, n) is a (k, n)-net: a set of n2 points and kn subsets of
size n called “lines” such that distinct lines meet at most once and the points are partitioned
into k “parallel classes" each consisting of n lines. (Parallel classes correspond to groups.)
The examples we need arise from unions of k parallel classes of lines of a desarguesian affine
plane AG(2, n); the translation group of the plane acts as a group of automorphisms of the
net. Clearly these examples exist whenever n is a prime power and k ≤ n + 1.

Lemma 5.1 Let q and m be powers > 1 of a prime p, and E = Fqm ⊃ F = Fq . Let
σ : x '→ xq and let T : E → F be the trace map. If a ∈ E − Ker T and h : x '→ xσ + a,
then 〈h〉 has order pm and is semiregular on E .

Proof By induction, hi : x '→ xσ i + ∑i−1
j=0 aσ j for all i ≥ 1, so hm : x '→ xσm + T (a) =

x + T (a) and h has order pm.
If x ∈ E then T (x) = ∑m−1

j=0 xσ j and T (x(σ −1)) = T (x)σ −T (x) = 0, so Im(σ −1) ⊆
Ker T . If i ≥ 1, d := (m, i) < m and xσ i = x , then T (x) = (m/d)

∑d−1
j=0 xσ

j = 0 since
m/d is a multiple of p, so Im(σ − 1)+ Ker(σ i − 1) ⊆ Ker T .

For semiregularity, let 0 < i < pm and suppose that hi fixes x . Then x(1 − σ i ) =∑i−1
j=0 aσ i , so x(1−σ i )(σ −1) = a(σ i −1) and x(σ −1)+a ∈ Ker(σ i −1). If i &= m then

(m, i) < m; we have seen that this implies that Ker T contains Im(σ − 1) + Ker(σ i − 1)
and hence also a, which is not the case. If i = m then we obtain the same contradiction:
0 = x(1 − σm) = ∑m−1

j=0 aσ j = T (a). 12

Lemma 5.2 Let q and m be powers > 1 of a prime p. Let 3 ≤ k < q. Then there is a
(k, qm)-net having a cyclic automorphism group of order m that is semiregular on both the
points and lines and leaves invariant each parallel class.

Proof We use the notation of the preceding lemma. Consider the affine plane AG(2, qm)
defined using E . Our net will consist of the points of this plane and any union of k parallel
classes of lines of the form y = t x + b with 1 &= t ∈ F (so tσ = t).

Let g : (x, y) '→ (xh, yh). By the preceding lemma, 〈g〉 has order pm and is semiregular
on points. Moreover, if i ≥ 1 then gi sends the line {(x, t x + b) | x ∈ F} to the parallel line
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{
(
xσ i + ai , t(xσ i )+ bσ i + ai

)
| x ∈ F}, where ai :=

∑i−1
j=0 aσ j . As above, ai (σ − 1) =

a(σ i − 1).
We still need semiregularity on lines. If 0 < i < pm and gi fixes a line y = t x + b

of the net, then t(xσ i ) + bσ i + ai = t(xσ i + ai ) + b, so b(σ i − 1) = ai (t − 1). Then
b(σ − 1)(σ i − 1) = a(σ i − 1)(t − 1), so b(σ − 1) − a(t − 1) ∈ Ker(σ i − 1). If i &= m
then a(t − 1) ∈ Im(σ − 1) + Ker(σ i − 1) ⊆ Ker T (as seen above), which is impossible
since 0 &= t − 1 ∈ F and a is not in the F-space Ker T . Thus, i = m and 0 = b(σm − 1) =
am(t − 1) = T (a)(t − 1), which is again impossible since t &= 1.

This proves that 〈gp〉 behaves as required. 12
Lemma 5.3 Let k ≥ 3 be an integer and let p1, . . . , pr be its distinct prime factors. For each
i let mi > k be a power of pi , so k|π := ∏

i mi .
Then for each integer s > n(k) there is a (k, s

∏
i m

mi
i )-net having a cyclic automorphism

group of order π that is semiregular on both points and lines while leaving invariant each
parallel class. 12

Remark 4.2 contains the definition of n(k). We emphasize that s and themi are not related.

Proof For each i , by using Lemma 5.2 with q = m = mi we obtain a (k,m
mi
i )-net Ni having

a cyclic automorphism group Ci of order mi that is semiregular on both points and lines and
leaves invariant each parallel class.

By Remark 4.2, if s > n(k) then there is a (k, s)-net N∞. The net required in the lemma
is a product N = N1 · · · Nr N∞, which we now define.

Let Xi be the set of points of Ni and Li1, . . . ,Lik the parallel classes of Ni , so
⋃

j Li j is
the set of lines of Ni . Then N is defined as follows: X := X1 × · · · × Xr × X∞ is its set of
points, while its parallel classes are L j := L1 j × · · · × Lr j × L∞ j , 1 ≤ j ≤ k, and

⋃
j L j

is its set of lines.
In general, the groupsAut Ni are not involved inAut N sincewe used an arbitrary ordering

of the parallel classes of each Ni . However, for our purposes this is not a problem since
Ci leaves invariant each parallel class of Ni and we will use the identity on N∞: there
is a cyclic automorphism group C ∼=

∏
i Ci of N of order π = ∏

i mi , consisting of all
(x1, . . . , xr , x∞) '→ (xc11 , . . . , xcrr , x∞) for ci ∈ Ci . (This is an automorphism of N : ci
permutes the lines in each Li j , so if (x1, . . . , xr , x∞) ∈ (L1 j , . . . , Lr j , L∞ j ) ∈ L j then
(xc11 , . . . , xcrr , x∞) ∈ (Lc1

1 j , . . . , L
cr
r j , L∞ j ) ∈ L j .)

The only way a point (or line) of N can be fixed by the above element of C is for a point
(or line) of every component to be fixed, and then each ci = 1 by the semiregularity of each
Ci . 12

5.2 Theorem 1.3

Following the models in Sects. 2 and 3 we need a prime p and a 2-(p, k, 1)-design admitting
a suitable automorphism group.

Proposition 5.4 Given integers k ≥ 3 and h ≥ 1 such that (k−1, h) = 1, there are infinitely
many primes p such that (p−1, h) divides some power of k and there is a 2-(p, k, 1)-design
having a cyclic automorphism group of order k fixing one point and semiregular on the
remaining points.

Proof We will use a design in Theorem 4.1 whose set of points is U := X ∪
(
W × Z

)
,

Z := Y − X , where X is a subset of size 1 of the design Y (as in [2, Corollary 2C.1]). For
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this we need three ingredients involving one choice of a suitable prime q > h, a suitable
choice in Lemma 5.3 of the mi such that π = ∏

i mi is divisible by k, and infinitely many s
(chosen below in (I)):

(1) a 2-(qk, k, 1)-design W having a cyclic automorphism group C of order k that is
semiregular on points and whose q point-orbits are blocks of W [14, Theorem 1.2 and
pp. 308–309],

(2) a transversal design T = T D(k, (k − 1)hπs) having a cyclic automorphism group of
order k that is semiregular on both points and lines (T exists for all sufficiently large s
by Lemma 5.3), and

(3) a 2-(y, k, 1)-design Y with y := 1 + k(k − 1)(π/k)s, and an arbitrary point X of Y
(Y exists for all sufficiently large s [13, Theorem 1.1]). (Note that we do not have any
information concerning automorphisms of Y .)

Moreover, we require that

(4) p := 1+ qk · (k − 1)πs = 1+ |W |(y − 1) is prime, and
(5) (p − 1, h) divides some power of k (a condition in the proposition).

We will proceed in four steps.
(I) Number Theory : π, p and s. Write h = h0h′, where (k, h′) = 1 and all primes dividing
h0 also divide k. Then (k(k − 1), h′) = 1 since (k − 1, h) = 1, so h′ is odd. We may assume
that h0 divides the product π of the mi used in Lemma 5.3.

We have a prime q > h in (1), so (qk(k − 1)π, h′) = 1 since (k, h′) = 1 = (k − 1, h).
Let t be a positive integer such that qk(k − 1)π t ≡ 1 (mod h′). Then (t, h′) = 1 and(
1 + qk(k − 1)π t, qk(k − 1)πh′) =

(
1 + qk(k − 1)π t, h′) = (1 + 1, h′) = 1 since h′ is

odd. By Dirichlet’s Theorem there are infinitely many integers f such that

p := 1+ qk(k − 1)π t + qk(k − 1)πh′ f

is a prime.
Choose s := t+h′ f with f so large that the designs in (2) and (3) exist. Clearly (4) holds.
Moreover, (p−1, h)divides

(
q(k − 1)(t + h′ f ), h′)kπh0 =

(
(k−1)t, h′)kπh0 = kπh0,

which divides some power of k, as required in (5).
Now that we have W , T and Y we need to turn the set U = X ∪

(
W × Z

)
of size p into

a design.
(II) The cyclic group C̄ . We need a group C̄ ∼= C of permutations of U . Extend each c ∈ C
(cf. (1)) to a permutation c̄ of U that fixes the point in X and sends (a, z) '→ (ac, z) for
a ∈ W , z ∈ Z . Then C̄ = {c̄ | c ∈ C} is a group of k permutations of U fixing X and
semiregular on the remaining points. This is not yet a group of automorphisms of anything.

We will construct the design in Theorem 4.1 by placing (in (III)) copies of the transversal
design T in the sets B × Z of size k(y − 1) arising from blocks B ofW , and (in (IV)) copies
of Y in the sets Ya := X ∪

(
a × Z

)
of size y for a ∈ W .

(III) Copies of T . We will use copies of the transversal design T in (2) as the transversal
designs occurring in the proof of Theorem 4.1.

In view of the point-orbits in (1), the stabilizer in C of a block of W is either 1 or C .
Let B be a set of orbit representatives of C on the blocks of W . If B ∈ B let TB×Z ∼= T

have B × Z as its set of points and {b × Z | b ∈ B} as its set of groups. If the stabilizer
of B in C is 1, TB×Z is placed in B × Z arbitrarily. If B is a C-orbit we have to be more
careful. Initially, place TB×Z arbitrarily. We then have two semiregular cyclic permutation
groups of order k on B × Z : one is the restriction C̄ B×Z of C̄ to B × Z , and the other is
the cyclic automorphism group of TB×Z provided by (2). These cyclic groups of order k are
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conjugate by an element of Sym
(
B × Z

)
; conjugate by such an element in order to assume

that TB×Z has been placed in B × Z so that the cyclic groups coincide, and hence so that
C̄ B×Z ≤ Aut TB×Z .

For B ∈ B and c ∈ C let TBc×Z denote the transversal design (TB×Z )
c̄ having (B × Z)c̄ =

Bc×Z as its set of points. This iswell-defined: if Bc = Bc′
then c̄′c̄−1 induces the permutation

(c̄′c̄−1)B×Z of B × Z , which is an automorphism of TB×Z by the preceding paragraph, so
(TB×Z )

c̄ = (TB×Z )
c̄′
.

(IV) Copies of Y . Next we place copies of the design Y into the sets Ya = X ∪
(
a × Z

)
,

a ∈ W , in the same manner. Namely, let W be a set of orbit representatives of C on the
points of W . For a ∈ W place a copy of the design Y in Ya using the bijection X '→ X ,
z '→ (a, z) with z ∈ Z ; then let Yac := (Ya)c̄ for c ∈ C . As usual, this is well-defined since
ac = ac

′
implies that c = c′ by semiregularity (cf. (1)).

Using the construction in the proof of Theorem 4.1 we obtain a 2-(p, k, 1)-design U
having C̄ as a group of k automorphisms that fixes the point X and is semiregular on the
remaining points. 12

Proof of Theorem 1.3 Let h = |G| and p > h be as in the preceding proposition. We imitate
the proof of Theorem 2.2, regarding G as a group of automorphisms of A = AG(d, p) for
any sufficiently large d . Let L ∈ L, whereL is a set of representatives of the orbits ofG on the
lines of A. Then GL

L has order dividing
(
p(p − 1), |G|

)
= (p − 1, |G|); by the proposition,

this divides some power of k, and hence divides k by an hypothesis of the theorem.
The cyclic group GL

L fixes a point and is semiregular on the remaining points. After
identifying L with the set of points of the design U in Proposition 5.4 and conjugating by
an element of Sym(L), we may assume that GL

L is contained in the cyclic group of order k
provided by the proposition. Thus, L is the set of points of a design DL , isomorphic to U ,
such that GL

L ≤ Aut DL .
Now complete the proof by repeating the last three paragraphs of the proof of Theorem 2.2.

12

6 Large designs

The Doyen-Wilson Theorem [6] states that, whenever y ≥ 2x+1 and there are Steiner triple
systems on y and x points, there is a Steiner triple system on y points having a subsystem on
x points. The following is a significant generalization of that result [7]:

Theorem 6.1 If k ≥ 3 then there is an integer x0(k) > k such that, if x > x0(k), y > xk,
x − 1 ≡ y − 1 ≡ 0 (mod k − 1) and x(x − 1) ≡ y(y − 1) ≡ 0 (mod k(k − 1)), then there is
a 2-(y, k, 1)-design having an x-point subdesign.

We use this for a result concerning large designs (n(k) appears in Remark 4.2):

Proposition 6.2 Let S be a set of 2-(u, k, 1)-designs, let S̄ be the set of all such u that occur
for S, and letw ∈ S̄. Assume that, if x and y are as in Theorem 6.1 with y − x > n(k), then
x + w(y − x) ∈ S̄.

Then S̄ contains all sufficiently large u satisfying the divisibility conditions for a 2-
(u, k, 1)-design.

Our argument imitates [3]. Note that the hypothesis involves only the initial existence of
one w ∈ S̄.
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Proof For x0(k) in Theorem 6.1, let x1 > x0(k) > k be any representative for a congruence
class (mod k(k − 1)) of integers such that there exists a 2-(x1, k, 1)-design. Consider any
integer a ≥ wx1n(k) ≥ wx1 (cf. (4.1)). Choose y − x = x1k(k − 1)a, so y − x > a > n(k),
and then choose x = x1 + k(k − 1)t with 0 ≤ t < a, so x ≥ x1 > x0(k). Then x and
y = x1 + x1k(k − 1)a + k(k − 1)t satisfy y > kx . (For, since t < a and x1 > k, we
have y − kx = (k − 1)

(
− x1 + x1ka − k(k − 1)t

)
, where x1(ka − 1) − k(k − 1)t >

k(ka − 1) − k(k − 1)a > 0.)
Since x and y satisfy the divisibility conditions and the requirements x > x0(k) and y > kx

in Theorem 6.1, there is a 2-(y, k, 1)-design having an x-point subdesign. Theorem 4.1 also
needs a T D(k, y−x), which exists since y−x > n(k). By hypothesis, Theorem 4.1 produces
a 2-(u, k, 1)-design such that

u := x + w(y − x) ∈ S̄, with u = x1 + wx1k(k − 1)a + k(k − 1)t . (6.1)

Here u−1 ≡ x1−1 ≡ 0 (mod k−1) and u(u−1) ≡ 0 (modk(k−1)). We will show that the
set of all u obtained in (6.1) contains the set of all sufficiently large u ≡ x1 (mod k(k − 1))
satisfying these divisibility conditions.

Givena, we have y−x = x1k(k−1)a and x = x1+k(k−1)t . By choosing t = 0, . . . , a−1
in (6.1), we realize

u = x1 + wx1k(k − 1)a, . . . , x1 + wx1k(k − 1)a + k(k − 1)(a − 1).

For y − x = x1k(k − 1)(a + 1), we realize

u = x1 + wx1k(k − 1)(a + 1), . . . , x1 + wx1k(k − 1)(a + 1)+ k(k − 1)a.

In order not to leave any gaps, we require that these intervals abut or overlap. This occurs
as long as x1 + wx1k(k − 1)a + k(k − 1)a ≥ x1 + wx1k(k − 1)(a + 1), that is, a ≥ wx1,
which is a condition already satisfied by a. So we can achieve all sufficiently large x ≡ x1
(mod k(k − 1)).

Now let x1 > x0(k) run through a set of representatives for the congruence classes
mod k(k − 1) that satisfy the divisibility conditions for a 2-(x1, k, 1)-design. 12

7 Theorem 1.1

We call an automorphism group of a design 1-blocked if the set-stabilizer of any block is the
identity on the block; our basic example was in Remark 2.7. This notion is preserved by the
construction in Sect. 4:

Proposition 7.1 Let k ≥ 3 and let G be a 1-blocked automorphism group of a 2-(w, k, 1)-
design W. Then a 2-(y, k, 1)-design Y with a subdesign X on x points, together with a
transversal design T D(k, y − x), produce a 2-(w(y − x)+ x, k, 1)-design U such that G
is isomorphic to a 1-blocked subgroup of AutU.

Proof We use the construction and notation in the proof of Theorem 4.1. Each g ∈ G
induces on U the permutation ḡ sending b '→ b and (a, z) '→ (ag, z) for b ∈ X , a ∈ W ,

z ∈ Z . Clearly G ∼= Ḡ := {ḡ | g ∈ G}.
For each orbit-representative A of G on the blocks of W we have a transversal design

T DA×Z whose set of points is A × Z and whose set of groups is {a × Z | a ∈ A}. If
g ∈ G then (A × Z)ḡ = Ag × Z for a block Ag of W ; let T DAg×Z := (T DA×Z )

ḡ . As in
the proof of Theorem 2.2 this is well-defined: if Ag × Z = Ag′ × Z with g, g′ ∈ G then
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Ag = Ag′
, so g′g−1 = 1 on A since G is 1-blocked, and hence (T DA×Z )

ḡ = (T DA×Z )
ḡ′

since ḡ′ḡ−1 = 1 on A × Z .
By the construction in Sect. 4, each ḡ permutes the designs T DA′×Z with A′ a block of

W , and is the identity on any other block of U (i. e., a block of X , or else a × B if a ∈ W or
x ∪

(
a × (B − x)

)
if B ∩ X = x). Thus, Ḡ ≤ AutU .

We need to verify that Ḡ is 1-blocked. Consider a block E of U fixed by ḡ ∈ Ḡ. By
Sect. 4, either E is contained in X ∪ (a × B) for a ∈ W and a block B of Y , or E is a block
of some T DA×Z . In the former case it is clear that ḡ = 1 on E , so we are left with E in
T DA×Z . In view of the construction in Sect. 4, A is uniquely determined by E and hence is
fixed by g. Since G is 1-blocked on W , it follows that g = 1 on A. Then ḡ = 1 on A × Z
and hence on E . Thus, Ḡ is a 1-blocked subgroup of AutU . 12

Remark 7.2 An automorphism group of even order cannot be 1-blocked. For, an involution
interchanges two points, hence fixes the block containing them and acts nontrivially on that
block.

Proof of Theorem 1.1 Apply Proposition 6.2 to the set S of 2-(v, k, 1)-designs whose auto-
morphismgroup has a 1-blocked subgroup isomorphic toG. ByTheorem2.2 andRemark 2.7,
S contains some 2-(v, k, 1)-design.

We defined n(k) in Remark 4.2 and x0(k) in Theorem 6.1. Let x > max(n(k), x0(k)) and
y > kx be integers such that x − 1 ≡ y − 1 ≡ 0 (mod k − 1) and x(x − 1) ≡ y(y − 1) ≡ 0
(mod k(k − 1)). By Theorem 6.1 there is a 2-(y, k, 1)-design having an x-point subdesign.
Since y − x > kx − x > n(k) there is a T D(k, y − x) by (4.1). Then x + v(y − x) ∈ S̄ by
Proposition 7.1. Now use Proposition 6.2. 12

8 Conjectures

Our theorems are significantly weaker than the corresponding results in [1,5,8], where G is
isomorphic to the full automorphism group of the constructed design. We conclude with a
conjecture concerning affine spaces that would produce designs with this stronger property.

Conjectur 8.1 Given: an integer s ≥ 14, a prime p ≡ 1 (mod s), and an affine space A′

having the same set of points as the original affine space A = AG(d, p), such that
for any subspaces X of A and Y ′ of A′,
either X ∩ Y ′ = ∅ or |X ∩ Y ′| ≡ 1 (mod s).

Conjecture: A = A′ if d is sufficiently large.

Note that it is essential here that p is prime. For suppose that p = pe0 > p0 for a prime
p0 ≡ 1 (mod s). Let A0 = AG(ed, p0), let A be the set of affine Fp-subspaces of A0. If
g ∈ AGL(dn, p0)−AGL(d, p) thenA′ := Ag provides a counterexample to the conclusion
in the conjecture.

The condition s ≥ 14 reflects the fact that 14 is the smallest integer s = k − 1 ≥ 2 such
that neither s nor s + 1 is a prime power, so that [1,8] do not apply.

Theorem 8.2 Assume that the preceding conjecture is correct. Under the hypotheses in any of
Theorems 1.1–1.3, for infinitely many v there is a 2-(v, k, 1)-design D such that G ∼= Aut D.

Proof We may assume that p > s := k − 1 ≥ 14. Each theorem in Sect. 1 uses 2-(p, k, 1)-
designs appearing in Theorems 2.1 or 3.2, or Proposition 5.4. In the situation of any of

123



2156 W. M. Kantor

the theorems in Sect. 1, there are 2-(p, k, 1)-designs E1, E2, E3 with AG(1, p) as their set
of points such that there is no isomorphism between any two of these designs that lies in
AGL(1, p). (Namely, start with a design E1, and for i = 2, 3 apply an i-cycle of the points
to the blocks of E1 in order to obtain the blocks of Ei .)

Let d > 4 be as in the proofs, so we are using A = AG(d, p) based on a d-space V . Let
{v1, . . . , vd} be a basis of V . There is a connected graph $ with vertex set {v1, . . . , vd} such
that G ∼= Aut $.

Let c := ∑d
1 vt . Place E1 in each affine 1-space 〈vi 〉, place E2 in each affine 1-space

〈vi + v j 〉 + c such that {vi , v j } is an edge of $, and place E3 in every other affine 1-space
of A. (Note that, since d > 4, if 〈vi + v j 〉 + c=〈vi ′ + v j ′ 〉 + c then {i, j} = {i ′, j ′}.)

This produces a 2-(pd , k, 1)-design D with G (isomorphic to) a subgroup of Aut D.
(Compare the construction in [8].)

Let h ∈ Aut D and consider the affine spaceA′ = Ah . If X and Y ′ are subspaces ofA and
A′, respectively, and if X ∩ Y ′ &= ∅, then X ∩ Y ′ is the intersection of subdesigns and so is
a subdesign of D. Then |X ∩ Y ′| ≡ 1 (mod s). Thus, Ah = A by our hypothesis concerning
Conjecture 8.1, so h is an automorphism of A, and hence permutes the lines of A. Then h
also permutes the designs we have placed inside these lines, so h permutes the lines 〈vi 〉.
The intersection of these lines is 0, so h is a linear transformation. By construction, h also
permutes the lines 〈vi + v j 〉+ c, so it induces an automorphism of $, and hence agrees with
some g ∈ G = Aut $ in its action on the lines 〈vi 〉. Now h′ := hg−1 fixes each line 〈vi 〉,
and hence is a diagonal transformation: vh

′
t = atvt for some ai ∈ K ∗ and all t . Also h′ fixes

each edge of $: 〈vi + v j 〉 + c = (〈vi + v j 〉 + c)h
′ = 〈aivi + a jv j 〉 +

∑d
1 atvt . It follows

that all at = 1 for t &= i, j , so h′ = 1 since $ is connected, and then h ∈ G. 12

Remark 8.3 The fact that X ∩ Y ′ is a subdesign imposes arithmetic and structural conditions
that can be included in the hypotheses of the above conjecture.
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