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By Burton Fein*) at Corvallis, William M. Kantor*) at Eugene and Murray Schacher*)
at Los Angeles

§ 1. Introduction

Let Lo K be fields and let B(L/K), the relative Brauer group of L/K, denote the
subgroup of the Brauer group B(K) of K consisting of those Brauer classes of finite
dimensional central simple K-algebras which are split by L. In this paper we continue
the investigation of the structure of B(L/K) begun in [10].

Let L > K be global fields and let p be a prime dividing [L: K]. (By a global field
we mean either an algebraic number field or an algebraic function field in one variable
over a finite field.) As shown in the proof of [10], Proposition 4, the p-primary component
B(L/K), of B(L/K) is infinite if L is Galois over K. Example 1 of [10] shows, however,
that this need not hold if L is not Galois over K. This raises the following natural question:
do there exist global fields L o K, L + K, with B(L/K) finite? We show in § 3 that the existence
of such fields is equivalent to the existence of a finite transitive permutation group G
acting on a set Q, |Q|>1, with the property that all nontrivial elements of G of prime
power order have fixed points on Q. Under the assumption that the classification of
the finite simple groups is complete, we sketch a proof in § 2 that no such pair (G, Q)
exists.

In § 3 we determine the precise structure of B(L/K), for L>K global fields. In this
case B(L/K), has the form ®,[Z(p" @ Z(p" ") ®---® Z(p)]1® H, where H,, is finite;
here Z(m) denotes the cyclic group of order m, w denotes the cardinality of the natural
numbers, and @, G denotes the direct sum of a copies of the group G. This leads us to
define an abelian torsion group G to be of relative Brauer type if G satisfies the following
conditions:

(1) 1Gl=o,
(2) G,= {0} for all but finitely many primes p, and

(3) for each prime p there is an integer n = n( p) = 0 such that
G, =@ [Z(PNBZ(p"H®---®Z(p)]®H,

where H , is ﬁnite’.

*) This material is based upon work supported by the National Science Foundation under Grant
Numbers B. Fein, MCS 79 — 00698, W. M. Kantor, MCS 79 — 03130, M. Schacher, MCS 78 — 27582.
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If Lo K are global fields, then B(L/K) is of relative Brauer type. We investigate
the converse question in § 3: which groups of relative Brauer type are isomorphic to
B(L/K) for some global fields L o K?

Let G be a group of relative Brauer type. We prove in § 3 that G~ B(L/K) for
algebraic number fields Lo K if and only if there exists a finite transitive permutation
group having certain special properties determined by G. These group theoretic
considerations enable us to show that certain classes of groups of relative Brauer type are,
in fact, relative Brauer groups for number fields; in particular, Example 1 of [10] is
generalized to yield examples where B(L/K), is any preassigned finite abelian p-group.

We turn in § 4 to the question of whether B(L/K) can be finite for Lo K, L*+K, K
finitely generated over a global field, and L finite over K. Suppose L is Galois over K and
a Sylow p-subgroup of the Galois group Gal(L/K) of L/K has exponent p". We prove,
under these hypotheses, that B(L/K), has a direct summand isomorphic to
@ [Z(PDZ(p" H@®---® Z(p)]. This result is in marked contrast to the theorem of
Roquette’s [21], Corollary XVIa, that B(L/K) can be {0} for K an elliptic function field
over a local field and L a cyclic constant field extension. We conclude by raising several
natural questions that arise from this investigation.

We will use freely in what follows standard results from the classical theory of central
simple algebras and the classification theory of such algebras over global fields by Hasse
invariants; we refer the reader to [9] or [20] for expositions of the relevant theory assumed.
In § 2 we will also assume that the reader is familiar with various properties of the finite
simple groups; we refer the reader to [12] for a general discussion of these groups.

We will, for the most part, maintain the notation and terminology of [10]. By
“algebra” we shall always mean “finite dimensional algebra”. If 4 and B are central
simple algebras over a field K we write 4 ~ Bto indicate that A4 is similar to B; the equivalence
class of 4 in B(K) is represented by [4]. We will write Brauer groups additively; thus
[4]1+[B]=[4 ®k B]. If L is a cyclic extension of K with Gal(L/K)= (o) and ae K—{0},
we let (L/K, o, a) denote the usual cyclic algebra generated over L by an element u with
u"=aqand ul=o(l)uforle L [20], § 30. For K a global field and = a prime of K, we denote
the completion of K at n by K,. For [4] € B(K), we denote the Hasse invariant of [A4]
at n by inv,[4]. The index of 4 ®x K, will be referred to as the local index of [4] at .
p will always denote a rational prime. If n= p®r where ptr, we set n,=p® and write
v,(n) =b. We denote the characteristic of a field K by char K. If LK are fields, we let
t.d. L/K denote the transcendence degree of L over K. For L finite over K, we let Ny x
denote the norm map from L to K. We have already defined

Z(P®Z(p" HN® - DZ(p];

we adopt the convention that this expression equals {0} if n=0. If G is a group acting
on a set 2, we let Orbg () denote the orbit under G of a € Q. By a p-element of G we mean
an element of order a power of p. In general the notation H < G means H is contained in G
and may be equal to G; we use H & G to say the containment is proper. Finally, if L is
a finite extension of K, we denote by Res, x and Corp the restriction and corestriction
maps of cohomology theory; we refer the reader to [4], pages 254—257, for the relevant
. properties of these maps. Additional notation will be introduced as needed.
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§ 2. Group theoretic preliminaries

In this section, we will sketch a proof of the following result.

Theorem 1. Let G be a finite group acting transitively on a set Q with || > 1. Then there
exists a prime r and an r-element g € G such that g acts without fixed points on L.

In proving this result we make the basic assumption that the classification of the
finite simple group is complete. More precisely, consider the following families: 1. the
groups of prime order, 2. the alternating groups 4,, n=>35, 3. the groups of Lie type (any
characteristic), and 4. the 26 sporadic groups. We refer the reader to [12] (see also [5]) for
a discussion of these groups and their properties. With this notation, our standing
assumption amounts to the following:

Hypothesis. Every finite simple group is one of the above.

Our proof of Theorem 1 is unpleasant. We reduce quickly to the case where G is
a finite simple group acting primitively on Q. Invoking the classification of the finite
simple groups, we proceed to eliminate potential counterexamples to the theorem by
a tedious case by case verification. It is unfortunate and perhaps even outrageous that
our proof of Theorem 1 requires all of this machinery; it would be desirable to have a direct
proof of this result. We will not treat each case in complete detail; such a procedure would
be repetitious, unenlightening, and would lengthen the paper considerably. We will,
instead, give complete arguments for several of the most typical cases and we will indicate
the general procedure to be followed in the remaining cases.

Finally, the reader should bear in mind that, with hypotheses as in Theorem 1, there
need not exist any g € G of prime order acting without fixed points on Q. Consider, for
example, the group G consisting of all affine transformations of GF(p?) of the form
x —ax+b, ae GF(p*)—{0}, be GF(p?), where p is a Mersenne prime. Let H be the
subgroup of G consisting of these transformations where a, b € GF(p). Let Q be the left
cosets of H in G and let G act on Q by translation. It is easy to verify that every element of
prime order in G has a fixed point on Q. There are, however, 2-elements in G which act
without fixed points.

Sketch of proof of Theorem 1. Assume that the theorem is false and let (G, Q)
be a minimal counterexample. Then G must act faithfully and transitively on Q and every
element of G of prime power order has fixed points on Q. Let H be the stabilizer of a point
of Q. Then H satisfies the following condition:

(%) for each prime r, each r-element of G is conjugate to an element of H.

In view of (%) we may assume that H is a maximal subgroup of G. Consequently,
if {1}+N<G, then G=HN so that N is transitive on . Since every element of N of
prime power order has fixed points on Q, N=G by our minimality assumption. Thus G
is a simple group. Since G is clearly non-abelian, our Hypothesis implies that G is one
of the following types: (1) A,,n=5, (2) Chevalley or twisted of characteristic p, or
(3) sporadic. The various cases are handled separately.
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Casel.G=A,,n=5.Let Y={1,2,...,n} and let G act on Y. We show first that H
must be transitive on Y. Suppose not. Then Y can be partitioned into subsets of lengths &
and n — k respectively where 1< k <n and where each orbit of Y under H lies in one or
the other of these subsets. In particular, H < (S, x S,—) N 4,. By the maximality of
H, H=(S;x S,-x) N A,. Let p be a prime dividing n and let n=n,t. For p odd, let ge 4,
be the product of ¢ disjoint cycles each of length n,. By (), H contains a conjugate of g.
In particular, n,|k. Similarly, if p =2 and n, > 2, H contains an element which is the product

of 2¢ disjoint cycles each of length nz_2, and so ’12—2 k. Thus, for n odd n|k, and for n even, % k.

2
It follows that n must be even and k=%. Thus H=(S, x S,) " 4, and so |H|“:(%>!} .
3 3

By Bertrand’s Postulate [27] (or [13], Theorem 418) there is a prime p satisfying % < p<n.

But then A, contains elements of order p while H can not contain any such element. This
contradicts (%) and so H must be transitive on Y.

We see from () that H contains a 3-cycle. By [14], Satz 4. 5, Page 171, H must
act imprimitively on Y. By [14], Satz 1. 2, Page 145, there exist m and k with m>1, k> 1,
and n=mk, such that |H| divides (m!) (k!)™. Using Bertrand’s Postulate again, we take p

. ., h . n n . -
prime with 7< p<n. Since m§7, k_g?, we obtain a contradiction to (%) exactly
as above. This finishes Case 1.

Before turning to Chevalley and twisted groups, we recall a theorem of Zsigmondy [30].
Let ¢ > 1 be a power of a prime p and let k > 1. A prime r is called a primitive divisor of g*—1
provided r|(g“*—1) but r}fpi—1 whenever 1< pi< g*. Zsigmondy’s theorem asserts that
g*—1 has a primitive divisor except in the following cases: (1) g=2and k=6, and (2) ¢ is
a Mersenne prime and k =2.

Case2. G=PSL(2,q), g=4. We note first that g=+4,5, or 9 by Case 1 [14],
Chapter 2, §8. Let ¢= p’/. The possibilities for H are restricted by the fact that H is
a maximal subgroup of PSL(2, q) containing elements of order p and of order r for every
prime r dividing g*—1. An examination of the list of subgroups of PSL(2, q) (see [14]
Satz 8. 27, p. 213) shows there are four possibilities for maximal subgroups containing
elements of order p. These are:

(1) [G:H]=q+1 and H is the normalizer of a Sylow p-subgroup;
(2) H=PSL(2, q) or PGL(2, q') with GF(¢q') < GF(q);

(3) Hisdihedral of order 2(¢ +1) and p=2; or

(4) His Ssor Asand p=3.

Since G has elements of prime power order >2 dividing either ¢—1 or g +1, (1), (3)
and (4) cannot occur. In case (2), g cannot be a Mersenne prime, and a primitive divisor
of g> —1 then exists and cannot divide |H|.

Case 3. G=PSL(n, q),n=>3. By (%), H contains (projective) transvections of the
underlying vector space V. Let H* be the normal subgroup of H generated by all
transvections of H.
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We temporarily exclude the case n=6, g =2, and we take r to be a primitive divisor
of ¢"—1. An element of order r acts irreducibly. If P is a Sylow p-subgroup of H*, then
H= H*Nyx(P) by the Frattini argument. P has fixed points on V' spanning a proper
subspace, and this space is invariant for Ny (P). Thus Ny (P) cannot act irreducibly,
and so r¥|Ng(P)|. Then r| |H*| and H* is irreducible. By [16], Theorem 2, H* < PSp(n, g).
Since H contains a cyclic group of prime power order dividing ¢" ' —1 which fixes
exactly one 1-space, we have a contradiction.

Similarly, if G=PSL(6, 2), then elements of order 9 and 31 yield the irreducibility
of H and H*, respectively, and we can proceed as before.

Case 4. G=PQ*(2n, q). This is very similar to the preceding case. Define H* as
above using long root elements. Using elements of order dividing ¢"—1 and ¢*"2—1,
we find that first H, and then H*, is irreducible. Primitive divisors can also be used to show
that H* is not contained in an orthogonal group defined over a proper subfield of GF(q).
According to [16], this still leaves one possibility: n=4 and H* =Q(7, q), with H* embedded
in G via a triality automorphism. But then H fails to meet a suitable conjugacy class of
elements of order dividing ¢ +1.

Case 5. G = Eg(q). Define H* as before. Let r be a primitive divisor of ¢*°—1.
Then r does not divide the order of any parabolic subgroup of G. By [3], r does not divide
the order of any p-local subgroup of G. Then r| |H*| as in Case 3. By [7], (3. 8), H* is
the product of pairwise commuting subgroups, each of which is generated by an H*
conjugacy class of root elements. Thus, since r[ |H*|, H* is generated by such a conjugacy
class.

Now [8] applies. A glance reveals that no possibility for H* listed there has order
divisible by r. This eliminates the case G = Eg(q).

Case 6. G = Sz(q). Here we have that |H| is divisible by 2, by a primitive divisor of
g*—1, and by a prime divisor of g—1. By [26],§ 15, H=G.

Case 7. G="F,(q)". Let B be a Borel subgroup of *F;(q). Then
[CR(@:Bl1=(q°+1) (> +1D) @+ 1) (g+1)

is relatively prime to |B|. If r is a prime dividing [2F;(q) : B], then a Sylow r-subgroup of
2F,(q) is either cyclic or can be written as the direct product of two non-conjugate cyclic
groups. Consequently, [*F;(q): B] divides |H| by (). Then 2F,(q)=BH, and so H=G
by [25].

Remark. The cases of other Chevalley and twisted groups can similarly be reduced
to [25]. However, in general, [G: B] and |B| are not relatively prime so that great deal
more care is required, in the form of uninteresting subcases and elementary number
theory.

Case 8. @ is sporadic.

Let II be the set of primes r| |G| such that if R is a Sylow r-subgroup of G, then |R|=r.
The largest prime divisor of |G| is in IT (and Ng(R) is a Frobenius group). If G is not
the simple group .2 (see [12] for definitions) and if a non-trivial p-group is normalized
by an element of order r for all r € II, then IT = { p}.
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Let M be a minimal normal subgroup of H. Recall that |H]| is divisible by every prime
dividing |G|. If G #.2, it follows that M cannot be a p-group for any prime p. Then M is
a direct product of isomorphic non-abelian simple groups. Let P be any nontrivial Sylow
subgroup of M. Then H= M Ng(P) by the Frattini argument. Since every member of IT
divides |H|, it follows that some such member r divides |M]|. Since r*}|G|, M must be
simple. Consequently, we are left with the problem of checking whether G can have
a simple subgroup M such that H=Ng(M) satisfies (). This check will be described
in one case: that of the previously excluded group G=.2.

Let G=.2. There is a unique class of p-subgroups P such that |G| and |Ng(P)|
have exactly the same set of prime divisors. Here |P|=2!! and Ng(P)/P=M,;. However,
G has two different conjugacy classes of subgroups of order 5, so 52|tH | by (*). Thus
H =+ Ng(P). Proceeding as before, we find that M is simple and non-abelian. Since
Cu(M)< M, we have Cy(M)={1}, so H< Aut(M).

Since 23||H| but 194 |H|, M cannot be an alternating group.

If M is sporadic, a trivial check of orders shows that only M,;, M,,, and .3 have
exactly the same primes dividing their orders as does G. As above, subgroups of order 5
eliminate the first two groups. Similarly, .3 = Aut(.3) has two classes of involutions, while G
has three such classes. Thus M = .3, and M cannot be sporadic.

Finally, if M is a Chevalley or twisted group of characteristic p, then p" ‘ M|
where N is the number of positive roots. It follows easily that p=2 or 3. Also, |M|/p" is
a product of cyclotomic polynomials evaluated at a power of p, divided by a small
greatest common divisor related to the rank of M. Since 2'' —1=23 -89 and 3°—1=2-112
while 23 - 11||G|, 89.4|G| and 112 ¥|G|, (*) yields a contradiction.

This shows that G =+ .2. All the remaining sporadic groups can be eliminated in a very
similar manner. It is necessary to use published or unpublished information concerning
conjugacy classes and centralizers of elements of prime power order.

This completes our sketch of a proof of Theorem 1.

We conclude this section by constructing an example of a permutation group G
on a set Q such that, for certain prescribed primes g, all g-elements of G have fixed points
on Q. This example will be used in § 3.

Example. Let ¢,,..., g, be a set of rational primes and let ¢y, ..., ¢, be integers
with 1=<¢; for j=1,...,w. Then there exists a finite group G acting faithfully and
transitively on a set Q such that q§f| |Q| for j=1,..., w, and such that all g;-elements of G

have fixed points on Q.

Construction. Let k< w. We will construct inductively a group G, and a subgroup H;
of G, such that the following conditions are satisfied: (1) H, does not contain any nontrivial
normal subgroup of Gy, (2) ¢;/|G;| for j>k, (3) q¥|[Gy: H,] for j<k, and (4) for each
J =k, each g;-element of G, fixes a left coset of H; in G,.

We begin our induction by setting Go = Ho = {1}. Let 0 <k <w and assume that G,
and H, have been constructed satisfying conditions (1)—(4) above. We will show how to
construct G+ and Hpq.
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k m
Cn+1 q —1
Let g=(qn+)™"', N=(q—1) G\ I g, m=1+ 1 p(p—1) and M= =1
j=1 1#p/N -
We claim that (M, N)=1. For, if r is a prime dividing (M, N), then the order of g in
GF(r)— {0} dividesbothmand r—1.Sincem =1 (mod(r — 1)), we conclude that g =1 (mod r).
Then M=14+g+--4+¢" '=14+14+--- +1=m=1(mod r), whereas M=0(modr). This
proves our claim.

Let G denote the group consisting of all affine transformations of GF(q™) of the
form x — ax+b, where a, b€ GF(q™) and a®=1. Let H be the subgroup of G consisting
of those transformations of the form x — x+b, beGF(q). Set Gy+1=G,xG and
Hy+1 = H, x H. We claim that G, and H,, satisfy conditions (1)—(4).

Before verifying this, we note that the multiplicative group of GF(¢g™) is the direct
product of its subgroups of order M and g—1, since the latter numbers are relatively
prime. Consequently, every transformation x — x + b, b € GF(g™) lies in some G-conjugate
of H.

We now proceed to verify (1)—(4).

(1) Let (h, 0) € Hy+; belong to a normal subgroup of Gy, lying in H,.s; here
h e H, and ¢ € H. Since (1) holds for G, and H,, h=1. Since the G-conjugates of H cover
GF(q™), o0=1. Thus (1) holds for G+, and H, ..

(2) Note that |Gy+1|=|Gilg™M. If g; divides |Gy44| for some j>k+1, then g;|N
while (M, N)=1. Then qj, |G|, whereas (2) holds for G, and H,. This proves (2).

(3) follows because [Gy+;: Hy+1]=[Gi: H g™ ' M.

(4) Suppose that j<k+1 and (g, 7) is a gj-element of G, ;. Note that |G,| divides N,
|G |divides g" M, and (¢ M, N) =1, (using (2) for Gy tosee that (¢, N) =1). Thus (| Gi[,|G|) =1,
and we see that t=1if j<k and g=1if j=k +1. Since condition (4) holds for G, and H,,
we may assume that j=k +1. We have already noted that each element of G of order g,
lies in a G-conjugate of H. This proves (4), completing the induction.

Now set G = G,, and let Q be the set of left cosets of H,,in G,,..

§ 3. The structure of B(L/K): the global case

In this section we will study the structure of B(L/K) when L>K are global fields.
We begin our investigation by determining the structure of the various p-primary
components of B(L/K).

Let L oK be global fields and let « be a prime of K. We say that n satisfies D(p', L)
if min{v,([L;: K,])} =i where the minimum is taken over all extensions ¢ of n to L.
We denote the set of primes of K satisfying D(p, L) by N(p’, L/K). With this notation we
can now describe B(L/K),.

Journal fiir Mathematik. Band 328 7
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Theorem 2. Let Lo K be global fields, let p be a fixed prime, and let m=v,([L: K]).
There exist integers n=n(p, L|K) =0 and r(p’, L|K) =0 for n<i<m such that

m

B(LIK), =@ [Z(pDZ(p" H @ 692(1))]@)[ ® @ Z(pi)]-

i=n+1 r(p,L/K)

The integers n( p, LIK) and r(p’, L|K) are determined as follows:

(a) Suppose L is separable over K. Let L=K(a) and let E be a Galois closure of L
over K. Then:

(1) n(p, L/K)=v,,(m3x {rrlliin{|0rb<a>(/3)}}

where the minimum is taken over all roots B in E of Irr(a, K) and the maximum is taken
over all p-elements o of Gal(E/K). In particular, if L is Galois over K, p" equals the exponent
of a Sylow p-subgroup of Gal(L/K).

(2) Let t be maximal with N(p', LIK)*0. If i>t, then r(p', LIK)=0. Assume
t>n(p, LIK). If ne N(p', L|K) withn(p, L|K) <i<t, then n is ramified in L; in particular,
IN(p', LIK)|< oo for such i. r(p', L|K)=|N(p', L|K)| for n(p, LIK)<i<t and

r(p', LIK)=|N(p', LIK)|—1.

Suppose, moreover, that charK=q >0 and p=l=q. Let p* equal the exponent of a Sylow
p-subgroup of Gal(E/K). Then r(p', LIK)=0 if i >2v.

(b) Let F denote the separable closure of K in L. If p+charK, B(L/K),= B(F/K),.
Suppose p=charK. Let [L: F]= p”. Then n(p, L|K)=n(p, F/IK)+w and

r(p'*™, LIK)=r(p', FIK) for n(p, FIK)<i<m.

Proof. (a) Assume that L is separable over K, L =K (), and let E be a Galois closure
of L over K. Let n be a prime of K which is unramified in E. Let Irr(a, K)= fi(x)--- fu(x)
where f;(x) is a monic irreducible polynomial in K,[x] of degree n;. Then = has u
extensions J;,...,0, to L and [L;:K,]=mn;, i=1,...,u. Now let y be any extension
of n to E and let t be the Frobenius automorphism of E, over K,. Since Gal(E,/K,) is
isomorphic to a subgroup of Gal(E/K) by [29], Proposition 4-10-5, we may assume that
7 € Gal(E/K). Since 7 generates Gal(E,/K,) and since each f;(x) splits completely in E,,
{t) is transitive on the set of roots in E, of each of the f;(x). It follows that t has cycle type
(ny, ..., n,) viewed as a permutation of the set Q of roots of Irr(a, K) in E. Now suppose
that = satisfies D(p/, L). Then min{v,(n;)|i=1, ..., u} = j. Let  have order p“b where p b
and set o=1". Then ¢ is a p-element of Gal(E/K) and v,,(rnﬂjn{IOrb@(ﬁ)l}): j where

the minimum is taken over all f € Q. Conversely, suppose that ¢ is a p-element of Gal(E/K)
and j=v, (mﬁin {{lOrb.,,(B)|, BeQ2}}). By the Tchebotarev density theorem [28],

Theorem 12, page 289, there is an infinite set of primes of K such that for each prime = in
the set, 7 is unramified in £ and ¢ is the Frobenius automorphism of E, over K, for some
extension y of m to E> By the above argument, n satisfies D(p’, L). Define n(p, L/K)
to be vp(mfx {rnﬂin{IOrb<,,> (B)I}}) as in the statement of Theorem 2(a). We have shown

that N(p’, L/K) is infinite for j<n(p, L/K) and N(p’, L/K) is finite, consisting only of
primes of K ramified in L, if j > n(p, L/K).
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Since |K|=w, |B(L/K),|<w. By [20], Theorems 28.5 and 29. 22, B(L/K), has
no elements of order p™**. Thus B(L/K), is isomorphic to a direct sum of cyclic groups.
Let ¢ be maximal with N(p', L/K)+0. If [4] € B(L/K), has local index p’ at a prime =
of K, then ne N(p? L/K) for some z=j by [9], Chapter 7, §5, Satz 2. In particular,
B(L/K), has exponent at most p* by [9], Chapter 7, § 5, Satz 6. Let j<t. Fix te N(p', L/K).

. : . 1 . -1
For ue N(p’, L|K), p#m, there exists [4,]€ B(K), such that inv,[4,]=—, inv,[4,]=—F,
p
and inv,;[4,]=0 for all other primes 6 of K [9], Chapter 7, § 5, Satz 9. Then [4,]€ B(L/K),.
It is also clear that B(L/K), is generated by the various [4,]. It follows that

B(LIK),=®[Z(pOZ(p" H® - ®Z(p)]1®H,

where n=n(p, L/K) and where H, is a finite abelian p-group. Express H, as a direct sum
of cyclic p-groups and let r(p’, L/K) be the number of direct summands isomorphic
to Z(p'). We clearly may assume that n(p, L/K)<i<t. By the above argument we have
r(p', LIK)=|N(p', L|K)| for n(p,L/K)<i<t and r(p',L/K)=|N(p',L/K)|—1 if
IN(p', L/IK)|=2. But if |[N(p', L/K)|=1, then r(p',L/K)=0 by [9], Chapter7, §5,
Satz 9. Thus r(p', L/K)=|N(p', L/|K)|—1. Finally, we note that if L is Galois over K,
then L is generated by any root of Irr(a, K) and so only the identity of Gal(L/K) fixes
an element of Q. In particular, if o is a p-element of maximal order in Gal(L/K), then
all orbits of Q under (o) have length equal to the order of a. It follows that ¢ has order p"
with n=n(p, L/K).

We have now proved all of part (a) of the Theorem with the exception of the last
assertion of (2). Suppose then that char(K)=¢g >0 and p=#q. Let p* equal the exponent
of a Sylow p-subgroup of Gal(E/K) and suppose for some i > 2v, r(p', L/K) +0. We argue
as in the proof of [10], Proposition 5. Suppose B(L/K), contains an element [4 ] of order
p***1. [4] must have local index p?**! at some prime n of K. Since [4] is split by L,
n satisfies D(p’, L) for some j=2v+1. Let y be any extension of n to E and let V be
the maximal tamely ramified extension of K, in E,. Since [E,: V]=g4" for some r, we
conclude that p’ divides [V: K,]. In particular, p?**! divides [V: K,]. Since V is tamely
ramified over K,, Gal(V/K,) is metacyclic [29], § 3—6. But then Gal(V/K,) contains
an element of order p**. Since Gal(V/K,) is a homomorphic image of Gal(E/K,) = Gal(E/K),
we conclude that Gal(E/K) contains an element of order p***. This contradiction completes
the proof of part (a) of the Theorem.

(b) Suppose next that L is not separable over K and let F be the separable closure
of K in L. Then [L:F]=¢" where g=charK. If g+ p, B(L/K),=B(F|K),. Suppose
g=p. Then L splits every element of B(F) of order dividing p* [23], Corollary, page 244.
Let © and u be primes of K satisfying, respectively, D(p', F) and D(p’, F) where > .
Let [B,] be the element of B(K), of order p’ such that

. 1 . . .
inv,[B,]= 17;;, inv,[B,]= p— and inv;[B,]=0 for all other primes J of K.

iFw

Then [B, ®k F] has order p* in B(F) so [B,] e B(L/K),. We now repeat the argument
used in proving part (a) using the [ B, ]'s instead of the [4,]’s. This proves (b) and completes
the proof of Theorem 2.

7*
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Corollary 3. Let L be a finite separable extension of a global field K and let E be
a Galois closure of L over K. Let L=K(a) and let Q be the set of roots in E of Irr(a, K).
Then B(L/K), is finite if and only if every p-element of Gal(E|K) fixes an element of Q.

Proof. B(L/K), is finite if and only if, in the notation of Theorem 2, n(p, L/K)=0.
The Corollary now follows from part (a) of Theorem 2.

An example where B(L/K)), is finite but non-zero appears in [10], Example 1. There
Gal(E/K)= A, and L is the fixed field under an element of Gal(E/K) of order 2. By the
theorem of Scholz-Froéhlich-Uchida [24], Satz 6 (or [11]), there exists a number field K,
and a Galois extension E, of K, with E, globally unramified over K, and Gal(Ey/Kp) = A,.
Taking L, again to be the fixed field of an element of Gal(E,/K,) of order 2, we obtain
an example of global fields L, o Ky with 2|[Lo: K] but B(Ly/Kp), = {0}. The triviality
of B(Lo/Ky), follows from Theorem 2.

Corollary 4. Let L= K be global fields, L = K. Then B(L|K) is infinite.

Proof. By Theorem 2, part (b), we may assume that L is separable over K. Let
L= K(a), let E be a Galois closure of L over K, and let Q be the set of roots of Irr(a, K) in E.
By Corollary 3, B(L/K) is finite if and only if all elements of prime power order in Gal(E/K)
have fixed points on Q. But this is impossible by Theorem 1.

We note that, in our statement of Corollary 4, we are maintaining the assumption
of § 2 that the classification of the finite simple groups is complete. It would, of course,
be more satisfying to have a proof of Corollary 4 which does not depend on the classification
of the finite simple groups. We point out, however, that it is easy to show that Theorem 1
and Corollary 4 are equivalent; this follows from an application of the theorem of
Scholz-Frohlich-Uchida referred to above. In particular, a more elementary proof of
Corollary 4 would also yield a simpler proof of Theorem 1.

Assume, for simplicity, that L is separable over K and let E be a Galois closure of L
over K. Let L=K(a). Then the action of Gal(E/K) on the set of roots in E of Irr(a, K)
is equivalent to the natural action of Gal(E/K) on the left cosets of Gal(E/L) in Gal(E/K).
Thusn(p, L/K) is determined purely group-theoretically in terms of Gal(E/K) and Gal(E/L).
On the other hand, the integers r(p’, L/K) are determined number-theoretically by
the properties of the primes of K which are ramified in L.

We turn next to the question of determining the groups occurring as B(L/K) with Lo K
global fields. It should be clear from the preceding results that this is a very subtle question
and is one which is closely tied to difficult group-theoretic considerations. Any result
asserting that a particular group G is isomorphic to B(L/K) with L>K global fields
is equivalent, by Theorem 2, to a result about the existence of global fields with prescribed
local behavior. For example, Corollary 4 is equivalent to the assertion that given any
global fields Lo K, L# K, there exists a prime p and a prime 7 of K unramified in L such
that = satisfies D(p, L). In what follows we will restrict our analysis to algebraic number
fields; a similar discussion can presumably be given for the function field case. We begin
by defining a class of groups which are the natural candidates for groups of the form
B(L/K).
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We say that a group G is of relative Brauer type if G is an abelian torsion group of
cardinality w such that G,= {0} for all but finitely many primes p and such that for each
prime p there exists an integer n=n(p) =0 such that

GE=@Z(P®Z(P" H® - DZ(p)1® Hy,

where |H,|<oco. If LoK are global fields, then B(L/K) is of relative Brauer type; this
follows from Theorem 2 and Corollary 4. It should be clear from Theorem 2 that if a group G
of relative Brauer type is to be isomorphic to B(L/K) for some algebraic number fields L > K,
there must exist a permutation group G on a set Q having certain special properties
determined by the structure of G. Our next definition describes the class of permutation
groups that we will need to consider.

Let V be a non-empty finite set of rational primes, V={py,..., p,}, and let
ay, by, az, by, ..., a, b, be integers with 1<a;<bh; for 1<i<v. Let W be a possibly
empty set of rational primes disjoint from V, W={q,...,q,}, and let ¢,...,c, be
integers with 1 < ¢; for 1 <j<w. Let G be a finite transitive permutation group on a set £.
We say that (G, Q) is of Type B with respect to {(p;, a;, by), (q;, c)I1Si<v, 1<j<w}
if the following three conditions are satisfied:

(1) pitq?|IQ| for1<isv, 1<j<w,

(2) if p||Q|, p ¢ V, then every p-element of G has fixed points on Q, and

(3) for each i, 1<iZw, vpi,(max{rr}gin{|Orb<6>(ﬂ)|}})=ai where the minimum is

taken over all f € Q and the maximum is taken over all p-elements ¢ of G.

Theorem 5. Let G be a group of relative Brauer type. Let V={pi,..., p,} be the
set of primes p such that G, is infinite, let a;=n(p;), and let H,, have exponent p;'. Let
W={q1,...,q.} be the set of primes p such that G, is finite but non-zero and let H,, have
exponent q5. Then there exist algebraic number fields L> K with B(L/K) =G if and only if
there exists a finite transitive permutation group G on a set Q such that (G, Q) is of Type B
with respect to {(p;, a;, by), (g, cp)[1 Sisv, 1< j<w}

Proof. If there exists a number field K(o) > K with B(K(a)/K)=G, then it is clear
from the preceding results that (Gal(E/K), Q) is of Type B with respect to

{(pi: ai, bi)9 (qj’ Cj)l1 éiév’ 1 §J§W}

where E is a Galois closure of K(a) over K and Q is the set of roots of Irr(a, K) in E.
Conversely, assume that there exists (G, Q) which is of TypeB with respect to
{(pi, ai, by), (g;, cpl1Sisv, 1< j<w}. We will construct algebraic number fields L>K
with B(L/K)=G. The construction will involve four steps; for simplicity of notation we
will denote the relevant pair of fields constructed at each stage by L and K.

Step 1. In this step we will construct a pair of number fields L> K such that B(L/K),
is infinite if and only if p € ¥ and such that there are “‘enough” primes = of K satisfying
D(p* L) for pe VU W, z “large enough”. The meaning of the phrases ‘“‘enough” and
“large enough” will become clear as the proof proceeds.
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Let G — S,, the symmetric group on u symbols, and let d be a large integer to be specified
later; d will depend on G, @, and u. We start by determining a number field F by two
applications of the Grunwald-Wang theorem [2], Chapter 10, Theorem 5. (The use of
the Grunwald-Wang theorem is not really necessary; we use it only for convenience.)
To begin we take Fj, a cyclic extension of Q(l/iT) of degree d such that if = is a prime
of Q(Vj) with 7|Q=p and plu!, then = is unramified of degree d in F,. We then
take F cyclic of degree d over F, such that if 7 is a prime of Fy and n|Q = p with p|u!,
then 7 splits completely in F. Let S(p) be a Sylow p-subgroup of §,. We assume that
d has been chosen sufficiently large so that if 7 is a prime of F with n|Q = p, p|u!, then
there exists a totally ramified Galois extension E, of F, with S(p)=Gal(E,/F;); this
is possible by the results of [17], § 10. We now imitate the proof of [22], Theorem 9. 1.
By [22], Theorem 8. 3, E, is the splitting field over F, of a monic polynomial f;(x) € F;[x]
of degree u. Using the strong approximation theorem, [29], Proposition 4-1-4, we can
construct a sequence {f,(x)} of monic polynomials f,(x) € F[x], each of degree u, such
that |f,(x) — fx(x)|.< 1/n for all primes © of F extending a rational prime p with p|u!;
here | |, denotes the valuation in F,. Let = be as above and let g,(x) be an irreducible
factor in F,[x] of f,(x). By the argument on Pages 44—46 of [1], we can choose n large
enough so that for every root «; of f,(x), there is a root B of f,(x) belonging to o; with
{B"} — a;; the B{” are elements of an algebraic closure of E,. Let o= o, be a root of g,(x)
and let Irr(B{", F,) =g,(x). Extracting a subsequence of {f,(x)}, we may assume that
{g.(x)} all have the same degree. Since {f{"} — a;, {g,(x)} — g,(x). Thus

[Fo(B"™): Frl= [Fu(0) : F;]

for n sufficiently large. By Krasner's Lemma [1], Page 44, F,(B{") > F,(«) and so we
conclude that F,(B{")= F,(«) for n sufficiently large. It follows that E, is the splitting
field of f,(x) over F, for n sufficiently large.

Choose n sufficiently large so that f(x)= f,(x) has splitting field E, over F; for all
primes 7 of F with n|Q = p where p|u!. Let E be the splitting field of f(x) over F. Since
f(x) has degree u, Gal(E/F) < S,. Since Gal(E,/F,) = S(p) cGal(E/F) for all p|u!, we see
that Gal(E/F) = S,. Let K be the fixed field of G, let A be the stabilizer of a point in Q,
and let L be the fixed field of A. By Theorem 2, B(L/K), is infinite if and only if p € V.

Let n be a prime of F with n|Q = p where pe VU W. Since [K: F]=3 [K,: F],
A

the sum being taken over all extensions A of 7 to K, there exists an extension J of w to K
such that v,([K;: F,]) Sv,([K:F]). Let b=b; if p=p;eV and let b=c; if p=q;e W.
Suppose v,([Lg: K;])<b for some extension § of é to L. Let y be any extension
of 6 to E. Since Gal(E,/F,)=S(p), v,(LE,: F;])=v,([E: F]). Since E is Galois over
L, v,([E,: Lg]) Sv,([E: L]). Since p”I [Q|=[L:K], b<v,([L:K]). Thus

vp( [EF]) =Up([Ev:Fn]) =Up([Ey:L9\])+vp( [LO:Kﬁ]) +Up( [Ké:Fn])
<v ([E:L])+b+v,([K:F1) Sv,([E: LD +v,([L: K]) +v,([K: F])=v,([E: F]).

We conclude that v,([Le: K5]) = b for all extensions 6 of 6 to L. In particular, J satisfies
D(p? L) for some z=b. Since there are at least d primes n of F with n|Q=pe V u W,
we see that there are at least d such 6’s as above. This completes Step 1.
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Step 2. In this step we will modify F, K, L, and E so as to be able to assume that all
primes 7 of F with n|Q = p ¢ V' U W are unramified in E. Let n be a prime of F which is
ramified in E and let p=mn|Q. Suppose p¢ VU W. Let y be any extension of n to E.
Then E, is a Galois extension of F, of degree dividing u!. Let E,=F,(a,) and set
gx(x) = (Irr (o, F,,))"" where k,=u!/[E,:F;] is such that g,(x) has degree u!. Now
suppose p € V'u W. Let g.(x) be a monic irreducible polynomial in F,[x] of degree u!
such that any root of g.(x) generates the unramified extension of F, of degree u! over F,.
Finally, let A be any prime of F which splits completely in E; the existence of A is guaranteed
by the Tchebotarev density theorem. Let g, (x) be a monic irreducible polynomial of degree u!
in F,[x] such that any root of g,(x) generates the unramified extension of F; of degree u!
over F;. We construct g(x) € F[x] monic of degree u! sufficiently close to g;(x) in the
J-topology and sufficiently close to g,(x) in the n-topology for all primes n of F ramified
in E. Since g,(x) is irreducible in F;[x], g(x) is irreducible in F[x]. Let M= F(ff) where 8
is a root of g(x). We have M n E=F since A splits completely in E but is inertial in M.
Thus Gal(ME/M)=S,. Let 7 be a prime of F ramified in E and let a be any root of g(x)
over F,. Since g(x) is sufficiently close to g,(x) = (Irr(a,, F,))*~, a is close to some root of
Irr(ay,, Fy). By Krasner’s Lemma, F,(a)> Fy(a,)=E,. It follows that if J is any extension
of m to M, then ¢ splits completely in ME. It is now clear that the properties established
in Step 1 are still preserved if we replace F by M, K by MK, L by ML, and E by ME;
in addition, we also have the property that now the only primes of F ramifying in E lie
over rational primes in V' U W. By Theorem 2, B(L/K),=0if p ¢ VU W. This completes
Step 2.

Step 3. Let pe VU W and express H, as a direct sum of cyclic groups. Assume
that Z( p') occurs r(p’) times in this decomposition; we may assume that a;< t <b; if p=p;
and 1=t =c;if p=gq;. Define s(p’) to be r(p') unless p=p;and t=5, or p=gq;and t=c;;
define s(p‘) tobe r(p')+1if p=p;and 1 =b; or p=g;and t = ¢;. In this step we will modify
K, L, and E, preserving the properties established in Steps 1 and 2, so as to ensure that
there are sets M(p’) of primes of K with |M(p')|=s(p") for pe V' U W and such that if
n € M(p') then 7 satisfies D( p', L).

For pe VU W and ¢ with s(p') 0, arbitrarily choose a set M(p') of primes of K
satisfying: (1) |M(p")|=s(p"), (2) if n e M(p"), then & satisfies D(p?, L) with z>¢, and
(3) if e M(p"), then 7|Q = p. We require also that M(p*) N M(¢°) =0 unless p=¢q and
t=z. By Steps 1 and 2, we can choose d sufficiently large so as to guarantee the existence
of these sets.

Let me M(p"), let y be any extension of n to E, and let ® =y|L. By assumption,
v,([Le: K;]) = t. Since Gal(E,/K,) is a p-group, there is a subfield T, of E,, Le> T, o K,,
with [Le: T, ]= p'. Let T,= K,(B,). Since [T,: K, ] divides u!, k,=u!/[T,: K,] is an integer.
Set hq(x) = (Irr(B,, K,) )~ so that h,(x) has degree u!. Let A be any prime of K splitting
completely in E and let /;(x) be a monic irreducible polynomial of degree u! in K;[x]
such that any root of A;(x) generatés the unramified extension of K, of degree u!.
Construct A(x) € K[x] monic of degree u! sufficiently close to 4,(x) in the A-topology and
sufficiently close to #,(x) in the n-topology for all = e M(p') with s(p')+0. Let B be
a root of h(x). Replace K by K(B), L by L(f), E by E(B). For each n € M(p"), arbitrarily
choose one extension of n to K() which satisfies D (p*, L(B)); the set of primes so chosen
will be the new M (p'). Asin Step 1and 2, it is easy to verify that the new choices of K, L, and E
have the properties required of them.
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Step 4. In this final step we will modify K and L so that B(L/K)=G. In view of
Theorem 2, we need to modify K and L, preserving the properties established in Steps 1—3,
so that a prime n of K which is ramified in L satisfies D(p, L) with t>a; if p=p; or
t21if p=g;ifand only if S(p’) #0and = € M(p").

Let n be a prime of K which is ramified in L. By Step 2, n|Q € V' U W. Suppose n
satisfies D(p', L) with t>aq; if p=p; or t=21 if p=g;. Since Gal(E,/K,) is a group of
prime power order, the prime being n|Q, we see that n|Q must equal p; here y is any
extension of © to E. Exactly as in Step 2, we construct an irreducible polynomial f(x) € F[x]
of degree u! such that the field K(f) generated over K by a root f§ of f(x) has the following
properties: (1) K(f) n E=K, (2) if J is any extension of n to K(f) where = is ramified
in L and satisfies D(p', L) with t>aq; if p=p,; or t 21 if p=g;, then ¢ splits completely
in E(f), and (3) if 1 € M(p") then 7 is unramified in K(f) of local degree u!. We replace K
by K(B) and L by L(f); it is clear from the above that the new K and L have the required
properties. This completes the proof of Theorem S.

Corollary 6. An abelian torsion group G is isomorphic to B(L/K) with L > K algebraic
number fields where L is Galois over K if and only if G is of relative Brauer type and G, is
infinite for all primes p with G, % {0}.

Proof. The necessity is clear from Theorem 2. Conversely, suppose G is of relative
Brauer type and also has the property that G, is infinite whenever G, #{0}. Let
V={p1,..., p,} be the set of primes p where G, + {0}. In the notation of Theorem 5,

let a;=n(p;) and let H,, have exponent p¥. Let W=0. Let G= @ [®,,Z(p)] and let
i=1

L > K be algebraic number fields with L Galois over K and Gal(L/K)2~G. Let L=K()
and let Q be the set of roots in L of Irr(a, K). Then (G, Q) is of Type B with respect to
{(pi, a;, b)|1 £i<v}. Let H be the stabilizer in G of a point in Q. Since L is Galois over
K, only the identity can fix a point so H = {1}. From the proof of Theorem 5 we can arrange
E=Land B(L/K)=G.

Corollary 7. Let H be any finite abelian group. Then there exist algebraic number
fields L> K such that B(L|K), is isomorphic to the Sylow p-subgroup of H for all p| |H|.

Proof. Let qq, .. ., q,, be the set of primes dividing |H| and let g5 be the exponent
of the Sylow ¢ subgroup of H. In view of Theorem 5, we need to construct a finite transitive
permutation group G on a set  such that (G, Q) is of Type B with respect to
{(pi» ai, by), (gj, cpl1SiZv, 1< j<w} for some set of primes p;,..., p, and some
integers ay, by,. .., a,, b,. Since the p;s are irrelevant for our problem, it is clear that
we need to construct a finite group G acting faithfully and transitively on a set Q such
that g5 |]Q| for j=1,..., w, and such that each gelement of G has a fixed point on Q.
Such a pair (G, Q) is constructed in the Example in § 2.

§ 4. Finitely generated extensions of global fields

Let K be a finitely generated extension of a global field F, and L be a finite dimensional
Galois extension of K. Let p" be the exponent of a Sylow p-subgroup of Gal(L/K). If K
happens to be global (that is, K is algebraic over Fy), then, according to Theorem 2,
B(LIK), =@ [Z(p"DZ(p" ) D ---® Z(p)]® H,, where H, is finite. Our next result

gives some information in the case that K is not algebraic over K.
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Theorem 8. Let K be a finitely generated extension of a global field and let L be
a finite dimensional Galois extension of K. Let p" be the exponent of a Sylow p-subgroup
of Gal(L/K). Then B(L|K), has a direct summand isomorphic to

DZPY®Z(p"H D D Z(P)].

Proof. Let 6 € Gal(L/K) have order p" and let ;;=¢?" . Let L; denote the subfield
of L which is the fixed field of {t;>. Then L=Lo>L;> ---> L, and L is a cyclic extension
of L; of degree p’ with Gal(L/L;) = {t;). Consider the following statement:

(%) therearesets T;= L;— {0}, i=1, ..., n, satisfying:
MW |Tl=w fori=1,...,n,

(2) Resykx Corpk[(L/L;, ti, b)] has order p' in B(L/L;) for all be T; and all
i=1,...,n,and

(3) {Resy, x Corp, x[(L/Ly, 71, 0)]lbeT;, i=1,...,n} is a set of independent
elements of B(L/L,).

We show that the Theorem follows from (% ). Assume that ( 3 ) has been shown to hold
and let G be the subgroup of B(L/K) generated by {Cory,x [(L/L;, t;, b)1lbe T, i=1,...,n}.
We will show that G is a direct summand of B(L/K) and that

G=@[Z(PYDZ(p" HD--- @ Z(p)].

Let b€ T;. Since the order of [(L/L;, t;, b)] in B(L/L;) divides the index of
(L/L;, t, b), [(L/L;, w, b)] has order dividing p’. Since Res,x and Cor, g are homo-
morphisms, we conclude by (2) of () that Cor, x [(L/L;, t;, b)] has order p’ in B(L/K).
Now suppose there is a relation:

0=2 a; Cory,yk [(L/Lig» Tig» b))]
J

where 1 <i(j) <n for all j and b; € T;;. We may assume that p'’ yq; for all j. Multiply
this relation by p” where r is maximal such that p’?} pa; for some j. Eliminating terms
which have been annihilated by p’, we may assume that our relation has the form:

0=3 ¢;p""™" Cory,yx [(L/Lip, Tigy» b))
J
where p fc;for all j. Thus

0=3 c¢;Resy, x (p'" Cory,yx [(L/Ligy» Tiy» b)])-
i

But
Resy, x (p'?™" Corp, gk [(L/Lig, T b;)])
= Resy, i Corg, gy [Ls : Lig]- [L/Ligy: Tgp» b)]
=Res, ik Cory,gyx Cory ) Resyyr, iy (L] Ligys Tigps )]
=Res;, x Cory, x[(L/Ly, 71, bj)]

Journal fiir Mathematik. Band 328 8
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by [4], pages 255—256, formulas 6 and 8. We conclude that
0= Z cjResy, x Corp x [(L/Ly, 11, bj)]

J
where p fc; for all j. This contradicts condition (3) of (% ). From condition (1) of (%) we
conclude that

G=@Z(PVBZ(P" H® - DZ(p)].

Finally, to show that G is a direct summand of B(L/K) we must show that if p"x € G
with x € B(L/K) then p"x=0. Suppose x € B(L/K) with p"x € G—{0}. Express p"x in
terms of the given set of generators of G. As above multiply through by p” where r is chosen
suitably. Then for some m2n, p"x=3 d;p'?~" Cory, , x [(L/Lij, Ty, b;)1 where ptd;

J
for all jand b; € T;;. Applying Res,, x to both sides we obtain:
p" Resy, gx =2 d;Resy, g Cory,x [(L] Ly, 11, b))
J

ButRes;, xx € B(L/L,).Since [L: L;]=pand p™ = p" = p, p™ Res;, xx =0. By condition (3)
of (%), pld; for all j. This contradiction shows that () implies the Theorem.

We now prove (). Suppose first that K is a global field. Let Y;={do|do is a prime
of K unramified in L and 7; is the Frobenius automorphism for some extension of do to L}.
|Y;| = w by the Tchebotarev density theorem. For each dy € Y; fix some extension J of J,
to L;. Then o splits completely in L; and d is inert from L; to L. Let Z;={5|do € Y;}.
Fix ye Z;,. For 6e€Z;, 6%y, define A;€ B(L;) to be the element of B(L;) such that

. 1 . 1 : . : .
mvyA,;:?, invsA;= ——E, and inv, 4;=0 for all primes p of L;, u ¢ {y, 6}. Since L splits

Az, As=[(L/L;, t;, bs)] for some bs € L;. by is determined up to norms from L. For each
0 € Z; with d #+y fix some b; as above and let T; be the set of by’s as selected. We claim
that the various T;, i=1, .. ., n, satisfy (). Condition (1) of () is clear. By [6], page 187

. 1 . 1 .
or [19], page 235, inv,, Cor, xA;=—, invs Cor,xA;= ——, and invy Cory, xA4;=0
p p

for all primes 0 of K, 0 ¢ {Jo, y0}. Thus Res,,x Cory,x A5 has invariant 1/p’ at all primes
of L, lying over y,, invariant —1/p" at all primes of L; lying over d,, and invariant 0 at all
other primes of L;. It follows that condition (2) of (%) holds. Finally, let b5 € 7;. Then
[(L/L;, 11, bs)]=Resy., A;. It follows that [(L/L;, 11, bs)] has invariant 1/ p at the unique
prime of L, extending y, invariant —1/p at the unique prime of L; extending J, and
invariant 0 at all other primes of L;. Thus Res,,x Cory x[(L/L;, 11, bs)] has non-zero
invariant at a prime p of L, if and only if u extends either y, or do. But ¥; n ¥;=0 unless
i = j. The results of [20], § 32, now show that condition (3) of () holds.

Suppose now that K is an arbitrary finitely generated extension of a global field F,
and let d=t.d. K/F,. We proceed by induction on d. The case d =0 has been treated above
so we may assume that d>1. By [15], page 166, there is a subfield F of K of transcendence
degree d—1 over a global subfield of K and an element ¢ of K, ¢ transcendental over F,
such that L is a finite separable extension of F(¢). Let E be a Galois closure of L over F(¢)
and let E= F(r) (o). Let f(x, t) =Irr(a, F(r)). We have

r—1
f(x9 t)=xr+ Z ai(t) b,-(t)“lxi
i=0
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where a;(t), b;(t) € F[t] and b;(¢)+0. By the Hilbert Irreducibility Theorem [18],
Theorem 2, page 155, there exists ¢ € F such that b;(¢)+0 for i=1,...,r—1, f(x,¢) is
irreducible in F[x], and if a;(¢) 0, then a;(c) 0. Let ¢ be the discrete rank one valuation
of F(¢) trivial on F and having ¢ — ¢ as uniformizing parameter. We extend ¢ to E and
denote the extended valuation by ¢ also. Since f(x, ¢) is monic and has coefficients in
the valuation ring of ¢, a is also in the valuation ring of ¢. Let B — B denote the residue
of (x, 1)
0x

class map. Since E is separable over F(t), -

of(x, )
Ox

#0. Since a;(c) +0 if a;(¢) £0, and

bi(c) +0 for all j, it follows that £0. Thus f(x, ¢) is a separable irreducible

polynomial in F[x] and « is a root of f(x, ¢). Since f(x, c¢) has degree [E: F(?)],
[F(o): F1=[E:F(t)]

and F(&) is separable over F. Thus ¢ is unramified and inertial in E. From valuation
theory we conclude that L is Galois over K and Gal(L/K) = Gal(L/K) under the natural
isomorphism, ¢ — & and 7; — T;.

By our inductive hypothesis applied to L/K there exist sets T;< L;— {0}, i=1,..., n,
satisfying (%). For each i=1, ..., n, and each b € T;, choose b € L; with b — b. Let T; be
the set of »’s chosen, one for each b € T;. We will show that the various T}’s, i=1,..., n,
satisfy (). Condition (1) of () is satisfied since |7;| = w. We must verify conditions (2)
and (3).

Consider the following statement:
(%) if d is an element of the valuation ring of L; with d+ 0 and if
Resz, k Corg, ik, [(L/Ly, 71, d)]#0,
then Resy, x Corp x[(L/Ly, 11, d)]#0.
Assume that we have proved (% ). If condition (2) of (%) does not hold, then
p' ' Res,x Corp x[(L/L;, t;, b)]=0 forsome be T;.

As we have seen, this implies that Resy, x Cory, x[(L/L;, 11, b)]1=0. But b € T; so since
condition (2) of () holds for T},

p'~! Resg, g Corg,g (L/L;, T, b)]=Resg, g Corg, g [(L/Ly, 71, D)1 0.
By (3 %) we conclude that Res, x Cory, x[(L/L1, 71, b)]# 0. This proves that condition (2)
of (%) is satisfied for 7;. Finally, suppose that condition (3) of (%) does not hold for
the T;, i=1,..., n. Then there will exist by,..., b, € Ln) T; and ay, ..., a, integers with
pka; for j=1,...,r, such that Resy,xCory,x[(L/Ly, 7y, b%--b)]=0. But this is
impossible by (% %) and the fact that each b; lies in O T;. Thus we need only prove that
(* %) holds. o

8*
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Suppose that d is an element of the valuation ring of L; with d+0 and with
Resi, g Corg, g ((L/Ly, Ty, d)]+0. We must show that Resy,x Cory, x[(L/L, 7, d)]#*0.
For 0 e Gal(L/K), let ¢y denote the conjugation isomorphism between B(L/L;) and
B(L/0(L,)) [4], page 255. Since <1,) is cyclic of order p, {t;) N {O7;07') = {1} or {7;).
It follows by [4], Proposition 9. 1, page 257, that

Res;, x Corp, x[(L/Ly, 11, d)]1=2 co[(L/Ly, 11, d)]

where the sum is taken over certain 6 € Gal(L/K) with 6(L;)=L,. For such 6 an easy
computation shows that ¢, [(L/L;, 71, d)]=[(L/Ly, 01,07, 0(d))]. Let 07,0~ ' =1} and let
nt=1(mod p). Then [(L/L;, 07,0, 6(d))]=[(L/Ly, i, 0(d)™)]=[(L/L;, 11, 0(d)")] by
[9], Satz 3, page 66. Thus there are elements 6,, . . ., 0, of Gal(L/K) and integers ny, . . ., 1,
such that

Res;, x Corp x [(L/Ly, 11, d)]= [(L/Ll, 7y, 01 ()™ O, (d)™ -+ 0,(d)™ )]

Set e=0,(d)" 0,(d)"---0,(d)"™ and suppose ResLl/K CorLl,K [/ Ly, 14, d)]=0. Then
[(L/Ly, 11, €)]=0 so e= Ny, (u) for some ue L. Let L, L,, and K denote, respectively,
the completions of L, L,, and K with respect to ¢. Since Gal(L/L y=Gal(L/L,) we have
e=T1 p(u) where the product is taken over all p € Gal(L/L,). Since d is a unit in L;, so

P
also is e. Since u and p(u) have the same valuations in L, p(u) is also a unit in L for all
p € Gal(L/L,). Reducing modulo the maximal ideal of the valuation ring of L yields
é¢=]1 p(it) where the product is taken over all p € Gal(L/L,)~Gal(L/L,) =Gal(L/L,).

, o o
It follows that 0;(d)"0,(d)"---0,(d)™= Ni, (4). Thus, reversing the above argument,
we conclude that Resg, x Corg, g [(L/Ly, 71, d)]=0. This contradicts our assumption and
completes the proof of Theorem 8.

Corollary 9. Let K be a finitely generated extension of a global field and let L be
a separable extension of K of prime degree p. Then B(L/K)=@® Z(p).

Proof. Let E be a Galois closure of L over K. Since Gal(E/K) is a subgroup of
the symmetric group on the p roots of Irr(«, K) where L=K(«), p> Y[E: K]. By Theorem 8,
B(E|K),=@® Z(p). Since pf[E:L], every element of B(E/K) of order p is split by L

so B(LIK)=@® Z(p).
We conclude by posing three natural questions raised by Theorem 8. Let K be

a finitely generated extension of a global field, let L be a finite dimensional Galois
extension of K and let p" equal the exponent of a Sylow p-subgroup of Gal(L/K).

Question 1. Is B(L/K) of relative Brauer type?

Question 2. Can B(L/K), have a direct summand isomorphic to @ Z(p™) for some

m>n?

Question 3. Suppose M is a finite extension of K. Must B(M/K) # {0}? Must B(M/K)
be infinite?
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Note added in proof. The authors have recently extended the results of §4 to prove
that if L is a non-trivial finite algebraic extension of K with K finitely generated over
a global field, then B(L/K) is infinite; in particular, both questions posed in Question 3
have affirmative answers.
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