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Abstract
We survey the area of strongly regular graphs satisfying the 4-vertex condition and
find several new families. We describe a switching operation on collinearity graphs of
polar spaces that produces cospectral graphs. The obtained graphs satisfy the 4-vertex
condition if the original graph belongs to a symplectic polar space.
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1 Introduction

In this note we look at graphs with high combinatorial regularity, where this regularity
is not an obvious consequence of properties of their group of automorphisms.

A graph ! is said to satisfy the t-vertex condition if, for all triples (T , x0, y0)
consisting of a t-vertex graph T together with two distinct distinguished vertices
x0, y0 of T , and all pairs of distinct vertices x, y of !, the number of isomorphic
copies of T in !, where the isomorphism maps x0 to x and y0 to y, does not depend
on the choice of the pair x, y but only on whether x, y are adjacent or nonadjacent.

This concept was introduced by Hestenes and Higman [14] (who refer to the
unpublished Sims [32]) in order to study rank 3 graphs. Clearly, a rank 3 graph satisfies
the t-vertex condition for all t . If the graph ! satisfies the t-vertex condition, where
! has v vertices and 3 ≤ t ≤ v, then ! also satisfies the (t − 1)-vertex condition. A
graph satisfies the 3-vertex condition if and only if it is strongly regular (or complete
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or edgeless). It satisfies the v-vertex condition if and only if it is rank 3. Thus, we get
a hierarchy of conditions of increasing strength between strongly regular and rank 3.

The present paperwill focus almost exclusively on the case t = 4.A simple criterion
for the 4-vertex condition is given in Proposition 2.1. Previously not many graphs
were known that satisfy the 4-vertex condition without being rank 3. Here we survey
the known examples and give several new constructions. One of our constructions
proceeds by switching symplectic graphs (see Sect. 7). As a consequence we find

Theorem 1.1 For v ≥ 4 there are at least $v1/6%! strongly regular graphs of order at
most v satisfying the 4-vertex condition.

It follows that among all non-isomorphic strongly regular graphs of order at most
v that satisfy the 4-vertex condition the fraction that is determined by their spectrum
goes to 0 when v goes to infinity.

2 The 4-Vertex Condition

A graph of order v is called strongly regular with parameters (v, k, λ, µ) if it is
neither complete nor edgeless, each vertex has degree k, any two adjacent vertices
have exactly λ common neighbors, and any two non-adjacent vertices have exactly µ
common neighbors.

A graph with vertex set V has rank r if its automorphism group is transitive on V
and has exactly r orbits on V × V . Rank 3 graphs are strongly regular.

If x is a vertex of the graph !, then the local graph !(x) of ! at x is the induced
subgraph in ! on the neighborhood of x . We say that ! is locally P when all local
graphs of ! have property P. If ! is strongly regular, then its 1st subconstituent (at
a vertex x) is the local graph at x , while its 2nd subconstituent (at x) is the induced
subgraph on the non-neighborhood of x . If xy is an edge (resp. nonedge) in !, then
the subgraph induced on !(x) ∩ !(y) is called a λ-graph (resp. µ-graph).

See [4] for further information about strongly regular graphs.
Details on the parameters of graphs satisfying the 4-vertex condition are given in

[14]. In particular, we have the following simple criterion for the 4-vertex condition:

Proposition 2.1 (Sims [32]) A strongly regular graph ! with parameters (v, k, λ, µ)
satisfies the 4-vertex condition, with parameters (α,β), if and only if the number of
edges in !(x) ∩ !(y) is α (resp. β) whenever the vertices x, y are adjacent (resp.
nonadjacent). In this case, k

((λ
2

)
− α

)
= β(v − k − 1).

The equality here follows by counting 4-cliques minus an edge.
It immediately follows that the collinearity graph of a generalized quadrangle (cf.

[28]) or partial quadrangle (cf. [7]) satisfies the 4-vertex condition (with α =
(λ
2

)
and

β = 0). The same holds for a graph ! with λ ≤ 1.
If ! is locally strongly regular, say with local parameters (v′, k′, λ′, µ′) (where

clearly v′ = k and k′ = λ), then !(x) ∩ !(y) has valency λ′ (resp. µ′) when x ∼ y
(resp. x ! y) so that! satisfies the 4-vertex conditionwithα = λλ′/2 andβ = µµ′/2.
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2.1 A Few Rank 4 Examples

Belowwe give a small table with the parameters of some edge-transitive rank 4 graphs
satisfying the 4-vertex condition. Except for the example with group H J .2 due to
Reichard [30], these do not seem to have been noticed in print.

v k λ µ λ′ µ′ α β Group Name Refs.

144 55 22 20 – 9 87 90 M12.2
280 36 8 4 – 2 1 4 HJ.2 [30]
300 104 28 40 – 8 78 160 PGO5(5) NO−

5 (5) Sect. 6
325 144 68 60 – 30 1153 900 PGO5(5) NO+

5 (5) Sect. 6
512 196 60 84 14 20 420 840 29.!L3(8) Dual hyperoval Sect. 4
729 112 1 20 0 0 0 0 36.2.L3(4).2 Games graph [3]

1120 729 468 486 297 306 69498 74358 PSp6(3).2 disj. t.i. planes Sect. 5
1849 462 131 110 – – 2980 1845 432:(42×D22) power diff. set Sect. 3.6

The numbers λ′, µ′ give the valency of the λ-andµ-graphs in case these are regular
(and then α = λλ′/2 and β = µµ′/2).

The examples on 144 and 729 vertices also satisfy the 5-vertex condition.

2.2 Strongly Regular Graphs with Strongly Regular Subconstituents

As we saw, graphs that are locally strongly regular satisfy the 4-vertex condition.
Sometimes it follows that also the 2nd subconstituents must be strongly regular.

Lemma 2.2 Suppose that a strongly regular graph with parameters (v, k, λ, µ) =
(4t2, 2t2−εt, t2−εt, t2−εt) (where ε = ±1) has first subconstituents that are strongly
regular with parameters (v′, k′, λ′, µ′) =

(
2t2−εt, t2−εt, 1

2 t(t−ε), t( 12 t−ε)
)
. Then

its second subconstituents are strongly regular with parameters (v′′, k′′, λ′′, µ′′) =(
2t2 + εt − 1, t2, 1

2 t(t − ε), 1
2 t

2).

More generally, the spectrum of the 2nd subconstituent at any vertex of a strongly
regular graph follows from that of the 1st subconstituent—see [8], Theorem 5.1.

Call the three parameter sets in the above lemma A(εt), B(εt), and C(εt),
respectively. They occur again in Sect. 3.3. The parameter sets A(t) and A(−t)
are known as (negative) Latin square parameters LSt (2t) (resp. NLt (2t)). The
complementary graphs have parameters LSt+1(2t) (resp. NLt−1(2t)).

Cameron et al. [8] studied the situation of a primitive strongly regular graph such
that, for some vertex, both subconstituents are strongly regular, and found that such a
graph either has a vanishingKrein parameter q111 or q

2
22, or has Latin square or negative

Latin square parameters. They conjectured that every non-grid example of the latter
has parameters as in the above lemma or has a complement with these parameters.
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3 Survey of the Known Examples and Results

3.1 Complements

A graph satisfies the t-vertex condition if and only if its complement does.

3.2 Generalized Quadrangles

Higman [13] observed that the collinearity graphs of generalized quadrangles satisfy
the 4-vertex condition (and there are many examples that are not rank 3, cf. [23]).

More generally the 4-vertex condition holds for partial quadrangles. For example,
the Hill graph with parameters (v, k, λ, µ) = (4096, 234, 2, 14) (derived from the
cap constructed in [15]) has a rank 10 group and satisfies the 4-vertex condition with
α = 1, β = 0.

Reichard [31] showed that the collinearity graphs of generalized quadrangles satisfy
the 5-vertex condition, and that the collinearity graphs of generalized quadrangles
GQ(s, s2) satisfy the 7-vertex condition.

More generally the 5-vertex condition holds for partial quadrangles.

3.3 Binary Vector Spaces with a Quadratic Form

The first non-rank-3 graph satisfying the 5-vertex condition was constructed by A.
V. Ivanov [21]: a strongly regular graph !0 whose subconstituents !1,!2 satisfy the
4-vertex condition. The parameters are as follows.

v k λ µ α β |G| Remarks

!0 256 120 56 56 784 672 220 · 32 · 5 · 7 Rank 4: 1+ 120+ 120+ 15
!1 120 56 28 24 216 144 212 · 32 · 5 · 7 Rank 4: 1+ 56+ 56+ 7
!2 135 64 28 32 168 192 212 · 32 · 5 · 7 Intransitive: 120+ 15

In [6] an infinite family of graphs !(m) (m ≥ 1) is constructed by taking as vertex
set F2m

2 , where vectors are adjacent when the line joining them meets the hyperplane
at infinity in a fixed hyperbolic quadric minus a maximal t.i. subspace. The graphs
!(m) have parameters A(2m−1) (see Sect. 2.2). They have a rank 4 group (for m ≥ 4)
and satisfy the 4-vertex condition.

The local graphs &(m) are strongly regular with parameters B(2m−1). They have a
rank 4 group (for m ≥ 4) and satisfy the 4-vertex condition.

By Lemma 2.2 also the 2nd subconstituents E(m) are strongly regular, with
parameters C(2m−1).

We checked by computer that the graph !(4) is isomorphic to the above !0.
In [30] it is shown that the graphs !(m) satisfy the 5-vertex condition.
In [29] it is shown that the graphs !(m) are triplewise 5-regular, a.k.a. (3,5)-regular,

where (s, t)-regularity is the analog of the t-vertex condition where s instead of two

123



Combinatorica (2023) 43:257–276 261

vertices are distinguished. It follows that the 2nd subconstituents E(m) of the graphs
!(m) also satisfy the 4-vertex condition.

In [22], two infinite families of graphs are constructed. One is the above !(m). The
second family has members '(m) with vertex set F2m

2 , where vectors are adjacent
when the line joining them hits the hyperplane at infinity either in a fixed elliptic
quadric minus amaximal t.i. subspace S or in S⊥\S. The graphs'(m) have parameters
A(−2m−1), have rank 5 (for m ≥ 5), and satisfy the 4-vertex condition.

Let !(V , X) be the graph on a vector space V where two vectors are adjacent
precisely when the joining line hits the subset X of the hyperplane PV at infinity.
Since !(V , X) is strongly regular if and only if X is a 2-character set ( [11]), that
is, if and only if |X ∩ H | takes only two distinct values when H runs through the
hyperplanes of PV , the set (Q \ S)∪ (S⊥\S) is a 2-character set when Q is an elliptic
quadric, and S a maximal t.i. subspace.

Let V be a vector space over F2. Then the local graph of !(V , X) is the collinearity
graph of the partial linear space with point set X and whose lines are the projective
lines (of size 3) contained in X .

The local graphs T(m) are strongly regular with parameters B(−2m−1). They are
intransitive (for m ≥ 5).

It follows from Lemma 2.2 that also the 2nd subconstituents ϒ (m) are strongly
regular, with parameters C(−2m−1). There is a tower of graphs here: If ϒ is the 2nd
subconstituent of '(m) at a vertex x , and s ∈ S, then the local graph of ϒ at its vertex
x + s is isomorphic to '(m−1). (For a proof, see Appendix A.)

In [22] it is conjectured that the graphs '(m) satisfy the 5-vertex condition, and
that the graphs T(m) and ϒ (m) satisfy the 4-vertex condition. The former was proved
in [30]. The latter is proved in Appendix A. In [29] it is announced that '(m) is even
(3, 5)-regular, but we are not aware of a proof in print.

3.4 Block Graphs of Steiner Triple Systems

Higman [13] investigated for which v-point Steiner triple systems the block graph
satisfies the 4-vertex condition. He found that either the system is a projective space
PG(m, 2) or v is one of 9, 13, 25. In [25] the cases 13 and 25 are ruled out, so that the
only other example is the affine plane AG(2, 3). The examples are rank 3.

3.5 Smallest Example

In [26] it is shown that the smallest non-rank-3 strongly regular graphs satisfying
the 4-vertex condition have v = 36 vertices. There are three examples. All have
(v, k, λ, µ) = (36, 14, 4, 6) and α = 0, β = 4.

3.6 Cyclotomic Examples

Given (q, e, J ), where e | (q − 1)/2 and J is a set of nonnegative integers, and a
fixed primitive element η of Fq , consider the cyclotomic graph with vertex set Fq ,

123



262 Combinatorica (2023) 43:257–276

where two elements are adjacent when their difference is in D = {ηie+ j | 0 ≤ i <
(q −1)/e, j ∈ J }. In some cases this yields a strongly regular graph that satisfies the
4-vertex condition. We give a few examples. The examples on 112 and 232 vertices
are due to Klin and Pech [27].

q p f e J η α β rk

1849 432 4 {0} Any 2980 1845 4
146689 3832 4 {0} Any 11353825 10662960 4
121 112 6 {0, 1, 2} Any 200 206 5
625 54 6 {0, 1, 2} Any 5913 6022 5
5041 712 6 {0, 1, 2} Any 395641 396270 5
529 232 8 {0, 1, 2, 3} η2 = η + 4 4215 4300 5

In all cases q = p f where p is semiprimitive mod e (that is, e | (pi + 1) for some
i), so that the parameters of the strongly regular graph can be found in [4, Thm. 7.3.2].

4 Graphs FromHyperovals

In [17], Huang et al. constructed various families of graphs. The complement of one
of them can be described as follows ( [2]). For q = 2m , take F3

q as the vertex set
of !. Let π be the plane at infinity of F3

q . Let H
∗ be a dual hyperoval of π (that is,

a set of q + 2 lines, no three on a point). The plane π is partitioned into two parts,
1
2 (q + 1)(q + 2) points on two lines of H∗ and 1

2q(q − 1) exterior points on no line
of H∗. Two vertices of ! are adjacent when the line joining them hits π in one of the
exterior points. Then ! is strongly regular and has parameters

(v, k, λ, µ) =
(
q3, 1

2q(q − 1)2, 1
4q(q − 2)(q − 3), 1

4q(q − 1)(q − 2)
)
.

Its local graphs are strongly regular with parameters

( 1
2q(q − 1)2, 1

4q(q − 2)(q − 3), 1
8q(q

2 − 9q + 22), 1
8q(q − 3)(q − 4)

)
.

Hence, as noted in Sect. 2, ! satisfies the 4-vertex condition. If m = 3, then ! has
rank 4.

5 Disjoint t.i. Planes in Symplectic 6-Space

Let V be a 6-dimensional vector space over Fq , provided with a nondegenerate
symplectic form. Let ! be the graph with as vertices the totally isotropic planes,
adjacent when disjoint.

Proposition 5.1 The graph ! is strongly regular, with parameters v = (q3 + 1)(q2 +
1)(q+ 1), k = q6, λ = q2(q3 − 1)(q − 1), µ = (q − 1)q5. If q is even, then ! is rank
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3, otherwise rank 4. Its local graph & is strongly regular with parameters v′ = k,
k′ = λ, λ′ = µ′ − q2(q − 2) and µ′ = q2(q − 1)(q3 − q2 − 1). It follows that !

satisfies the 4-vertex condition.

For convenience, we give the parameters of &̄, the complement of &:
v̄ = q6, k̄ = (q2 + 1)(q3 − 1), λ̄ = q4 + q3 − q2 − 2, µ̄ = q4 + q2.

Proof The dual polar graph ' belonging to Sp6(q) is distance-regular of diameter 3
and has eigenvalue −1. It follows that its distance-3 graph ! is strongly regular (see
[5], Prop. 4.2.17). More generally, the distance 1-or-2 graph of the symplectic dual
polar space Sp2m(q) is distance-regular (cf. [5], Prop. 9.4.10). For m = 3 it is the
complement of !.

For any vertex x , the subgraph induced by ' on '3(x) is isomorphic to the
symmetric bilinear forms graph on F3

q (see [5], Prop. 9.5.10). If q is odd, then distance
j ( j = 0, 1, 2, 3) in '3(x) corresponds to rk( f − g) = j in the symmetric bilinear
forms graph and hence to distance $( j + 1)/2% in the quadratic forms graph (see [5],
Sect. 9.6). It follows that & is the complement of the quadratic forms graph, and has
parameters as claimed.

If q is even, then ! is rank 3 (by triality, it is the complement of the O+
8 (q) polar

graph), and & is the complement of the rank 3 graph V O+
6 (q), with parameters as

claimed. ./

6 Nonsingular Points Joined by a Tangent

Let V be a vector space of dimension 2m + 1 over Fq with q odd, and let Q be a
nondegenerate quadratic form on V .We also use Q as the symbol for the set of singular
projective points.

The projective space PV has (q2m+1 − 1)/(q − 1) points, (q2m − 1)/(q − 1)
singular, and q2m nonsingular. The nonsingular points come in two types: there are
1
2q

m(qm + ε) points of type ε (where ε = ±1), with ε = +1 (resp. −1) for points x
for which x⊥, the hyperplane of points orthogonal to x , is hyperbolic (resp. elliptic).

Consider the graph NOε
2m+1(q) that has as vertex set the set of nonsingular points

of type ε, where two points are adjacent when the joining line is a tangent.

Proposition 6.1 (Wilbrink [34], cf. [3]) Let m ≥ 2. The graph NOε
2m+1(q) is strongly

regular with parameters v = 1
2q

m(qm+ε), k = (qm−1+ε)(qm −ε), λ = 2(q2m−2−
1)+ εqm−1(q − 1), µ = 2qm−1(qm−1 + ε).

For m = 1, ε = −1 the graph is edgeless. For m = 1, ε = 1 we have the triangular
graph T (q + 1). Wilbrink also handled the case of even q. We give an explicit proof
here; for a different and more general proof see [1].

Proof The neighbors of a vertex x lie on the tangents joining x with a singular point
of x⊥, and x⊥ has (qm−1 + ε)(qm − ε)/(q − 1) singular points. This gives the value
of k.

A common neighbor z of two adjacent vertices x, y lies on the line xy (and there are
q − 2 choices) or on some other tangent T on x . In the latter case the plane 〈x, y, z〉
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meets Q in a conic or double line. If it is a conic, then z is uniquely determined
on T by the fact that yz is the tangent on y other than xy. If it is a double line,
then each nonsingular point of T \ {x} is suitable. Let p be the singular point on
xy. Then {p, x}⊥/〈p〉 is a nondegenerate (2m − 2)-space of type ε, and has a =
(qm−2 + ε)(qm−1 − ε)/(q − 1) singular points. It follows that xy is in a planes that
hit Q in a double line, and in q2m−2 planes that hit Q in a conic. Consequently,
λ = q − 2+ q2m−2 + (q − 1)qa, as desired.

A common neighbor z of two nonadjacent vertices x, y determines a nondegenerate
plane π = 〈x, y, z〉 in which xz and yz are tangents, so that x, y, z are exterior points.
Now x, y are on two tangents each, and π contains 4 common neighbors of x, y. If
Q is a quadratic form on a (2m + 1)-space, then a point p is exterior if and only if
(−1)m det(Q) Q(p) is a nonzero square. In order to have p exterior in π but a ε-point
in V , the (2m − 2)-space π⊥ must be an ε-subspace of the (2m − 1)-space {x, y}⊥.
Since there are b = 1

2q
m−1(qm−1 + ε) such ε-subspaces, we find µ = 4b, as desired.

./

The automorphism group P!O2m+1(q) of the graph contains PGO2m+1(q). The
latter has (q+3)/2 orbits on pairs of vertices [1]. Hence, the graph has rank (q+3)/2
if q is prime.

For m = 2, ε = −1, this is the collinearity graph of a semi-partial geometry found
byMetz. Its lines have size s+1 = q and there are t+1 = q2+1 lines on each point.
Each point outside a line has either 0 or α = 2 neighbors on the line. See Debroey [9],
voorbeeld 1.1.3d, and Debroey–Thas [10], example 1.4d, and Hirschfeld–Thas [16],
p. 268, and Brouwer-vanLint [3], Sect. 7A, and Brouwer-VanMaldeghem Sect. 8.7,
example (ix).

Form = 2, ε = +1 this is the collinearity graph of a geometrywith t+1 = (q+1)2

lines of size s + 1 = q on each point, such that each point outside a line has 0, 2, or
q neighbors on the line ( [3], Sect. 7B).

We shall prove that these graphs satisfy the 4-vertex condition. First a lemma.

Lemma 6.2 Let S be a solid such that Q
∣∣
S is nondegenerate. Let x, y, z be distinct

nonsingular points of the same type ε such that 〈z, x〉 and 〈z, y〉 are tangents and
〈x, y〉 is nondegenerate. Put π = 〈x, y, z〉. Then there are either 0 or 2 nonsingular
pointsw ∈ S \π of type ε such that 〈x, w〉, 〈y, w〉, and 〈z, w〉 are tangents. For x, y, z
given, the number of w only depends on the type of S. It equals 2 if and only if the
nonzero number 2

( B(z,z)B(x,y)
B(x,z)B(y,z) − 1

)
det(Q

∣∣
S) is a square.

Proof Replace x by B(z,z)
B(x,z) x and y by B(z,z)

B(y,z) y. Then B(x, z) = B(z, z) = B(y, z). Put
x0 = x − z, y0 = y − z, w0 = w − z, then B(x0, z) = B(y0, z) = B(w0, z) = 0.
Since the lines 〈z, x〉, 〈z, y〉, and 〈z, w〉 are tangents, the points x0, y0, z0 are singular,
that is, Q(x0) = Q(y0) = Q(w0) = 0. The line 〈x, w〉 is a tangent, so Q(x+ tw) = 0
has a unique solution t . Now

Q(x + tw) = Q(z + x0 + t(z + w0)) = Q((1+ t)z + x0 + tw0)

= (1+ t)2Q(z)+ Q(x0 + tw0) = (1+ t)2Q(z)+ t B(x0, w0).
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It follows that
(
2+ B(x0,w0)

Q(z)

)2 = 4, that is B(x0,w0)
Q(z) ∈ {0,−4}.

As Q
∣∣
S is nondegenerate, z⊥ ∩ S is a nondegenerate plane. If B(x0, w0) = 0,

then 〈x0, w0〉 is a totally singular line in this plane, impossible. Hence, B(x0, w0) =
−4Q(z). Similarly, B(y0, w0) = −4Q(z).

In the plane z⊥ ∩ S, let u be the point of intersection of the tangents through the
points x0 and y0 and write w0 = ax0 + by0 + cu. Then B(x0, u) = B(y0, u) = 0 and
−4Q(z) = B(x0, w0) = B(x0, ax0 + by0 + cu) = bB(x0, y0). Similarly, −4Q(z) =
B(y0, w0) = aB(x0, y0), so that a = b = −4Q(z)

B(x0,y0)
, independent of w. Also,

0 = Q(w0) = Q(ax0 + by0 + cu) = abB(x0, y0)+ c2Q(u) = 16Q(z)2

B(x0, y0)
+ c2Q(u).

If −B(x0, y0)Q(u) is a square, then we have two solutions for c (so also w0 and,
therefore,w) and otherwise none. Since u is an exterior point in the plane σ = z⊥ ∩ S,
the number−Q(u) det Q

∣∣
σ
is a square. Also, det Q

∣∣
S = Q(z) det Q

∣∣
σ
and B(x, y) =

B(x0, y0)+ B(z, z). ./
Proposition 6.3 The graph NOε

2m+1(q) satisfies the 4-vertex condition.

Proof By Proposition 2.1 it suffices to check for x 2= y that the number of edges in
!(x) ∩ !(y) does not depend on the choice of the points x, y, but only on whether
x, y are adjacent or not.

Since Aut ! is edge-transitive, we only need to check !(x) ∩ !(y) for x ! y.
Claim: this subgraph !(x) ∩ !(y) is regular of valency 4q2m−3 + 3εqm−1 −

4εqm−2 − 1. In other words, this is the value of µ in the local graph (which is regular,
but not strongly regular).

If x ∼ z ∼ y, x ! y, then π = 〈x, y, z〉 is a nondegenerate plane in which the
common neighbors of x, y form a 4-cycle, so that x, y, z have two common neighbors
in π , say a and b.

The plane π lies in (q2m−3 − εqm−2)/2 solids of type O−(4, q), equally many
solids of type O+(4, q), and (qm−2 + ε)(qm−1 − ε)/(q − 1) degenerate solids.

If S is a degenerate solid through π with apex p, we see that w ∈ S \ π is in
!(x) ∩ !(y) ∩ !(z) if and only if gets projected from p onto an element of {a, b, z}
in π . Hence, |!(x) ∩ !(y) ∩ !(z) ∩ S \ π | = 3(q − 1). Hence, the total number of
choices for w equals 3(qm−2 + ε)(qm−1 − ε).

Now let S be a nondegenerate solid on π , and let p = S ∩ π⊥. By Lemma 6.2,
the number of w in S is 0 or 2, depending on the determinant of Q restricted to S.
Since π⊥ contains equally many points p with Q(p) a square as with Q(p) a non-
square, the total number of choices for w equals the number of choices for p which is
q2m−3 − εqm−2.

So the induced subgraph on !(x) ∩ !(y) has valency 2 + 3(qm−2 + ε)(qm−1 −
ε)+ (q2m−3 − εqm−2) = 4q2m−3 + 3εqm−1 − 4εqm−2 − 1. ./

7 Polar Switching

A polar space is a partial linear space such that for each line L any point outside L
is collinear to either all or precisely one of the points of L . A singular subspace is
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a line-closed set of points, any two of which are collinear. The polar space is called
nondegenerate when no point is collinear to all points. Finite nondegenerate polar
spaces are the sets of totally isotropic (t.i.) or totally singular (t.s.) points and lines
in a vector space over a finite field provided with a suitable symplectic, quadratic or
hermitian form. The rank of the polar space is the (vector space) dimension of its
maximal singular subspaces.

Let P be a nondegenerate polar space of rank d ≥ 3 in a vector space V over Fq .
Its collinearity graph !0 is strongly regular and satisfies the 4-vertex condition (since
it is rank 3). We shall construct cospectral graphs that satisfy the 4-vertex condition
(but are not rank 3) by a switching construction. Let x⊥ be the set of points collinear
with x (including x itself).

Suppose U is a maximal singular subspace of P (i.e., a maximal clique in !0), and
let H1, H2 be two hyperplanes ofU . We can redefine adjacency and make the points x
with x⊥ ∩U = H1 or H2 adjacent to the points in H2 or H1, respectively, and leave all
other adjacencies unchanged. This is an example ofWQH-switching (Wang, Qiu&Hu
[33], cf. [20]) and yields a graph cospectral with !0. One can repeat this interchange
of hyperplanes and get arbitrary permutations of all hyperplanes. We generalize this,
even allowing different designs on U .

7.1 Construction

Let P be the point set of P, and let the subset U be (the set of points of) a totally
isotropic d-space. Let D be a symmetric design with the same parameters as the
symmetric design of points and hyperplanes of PG(d − 1, q), so its parameters are
2-

( qd−1
q−1 ,

qd−1−1
q−1 , qd−2−1

q−1

)
. Let ϕ be a bijection from the setH of hyperplanes of U to

the blocks of D. We assume that the points of U are also the points of D.
Following ideas in [12, 24] we define a graph !ϕ on the vertex set of !0 as follows:

1. Vertices in U are pairwise adjacent.
2. Distinct vertices x, y /∈ U are adjacent if x ∈ y⊥.
3. Vertices x ∈ U , y /∈ U are adjacent if x ∈ (y⊥ ∩U )ϕ .

Clearly, !ϕ = !0 if we take the hyperplanes of U for the blocks of D and ϕ as the
identity.

Theorem 7.1 The graph !ϕ is strongly regular with the same parameters as the
classical graph !0.

Proof Let x and y be any two vertices.We show that the number of common neighbors
z of x, y in !ϕ does not depend on ϕ (but depends on whether x, y are equal, adjacent
or nonadjacent in !ϕ).

If x, y ∈ U , then any z ∈ U is a common neighbor. The number of z ∈ P \ U
such that x, y ∈ (z⊥ ∩U )ϕ does not depend on ϕ: each hyperplane H of U such that
x, y ∈ Hϕ contributes |H⊥ \U | such z.

Suppose that x, y /∈ U . Then we are counting the z in (x⊥ ∩U )ϕ ∩ (y⊥ ∩U )ϕ , and
also the z in (x⊥ ∩ y⊥) \U . The numbers of such z does not depend on ϕ.
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The remainder of the proof concerns the case x ∈ U , y /∈ U . If z ∈ U then the
requirements are z 2= x and z ∈ (y⊥ ∩ U )ϕ . The number of such z does not depend
on ϕ.

So we need to count the z /∈ U . First set I := y⊥ ∩ U , so Y := 〈y, I 〉 is totally
isotropic. If z ∈ Y then I ϕ = (z⊥ ∩ U )ϕ , and x, z are adjacent if and only if x, y are
adjacent. The number of such z is independent of ϕ.

It remains to count the z in y⊥ \ Y such that x ∈ (z⊥ ∩ U )ϕ ; here z⊥ ∩ U 2= I as
z /∈ Y . Let H 2= I be a hyperplane ofU such that x ∈ Hϕ . The number of H does not
depend on ϕ (note that x ∈ I ϕ if and only if x, y are adjacent in !ϕ). We show that
the number of z in y⊥ \ Y with z⊥ ∩U = H does not depend on ϕ or H . Using bars
to project (H ∩ I )⊥ into the nondegenerate rank 2 polar space (H ∩ I )⊥/(H ∩ I ), we
see totally isotropic lines Ū and Ȳ meeting at a point Ī , and a nondegenerate 2-space
〈ȳ, H̄〉; the number of z̄ in 〈ȳ, H̄〉⊥\ Ī does not depend on ϕ or H , so neither does the
number of required z. ./

7.2 Isomorphisms

7.2.1 Emptying Bijections'

Call a vertex e ∈ U emptying for ϕ if
⋂{H | H ∈ H, e ∈ Hϕ} = ∅. Call ϕ emptying

if the subspace U is spanned by emptying vertices.
Call a vertex f ∈ U dually emptying for ϕ if

⋂{Hϕ | f ∈ H ∈ H} = ∅. Call ϕ

dually emptying if the subspace U is spanned by dually emptying vertices.
If a is not emptying, then

⋂{H | H ∈ H, a ∈ Hϕ} = {b} for some vertex b.
If b is not dually emptying, then

⋂{Hϕ | b ∈ H ∈ H} = {a} for some vertex a.
This establishes a 1-1 correspondence between not emptying vertices a and not dually
emptying vertices b.

Proposition 7.2 If a permutation ϕ ofH is not dually emptying, then it is in P!L(U ).

Proof Let E denote the set of emptying vertices ofU , and put A = U \E . Let F denote
the set of dually emptying vertices of U , and put B = U \ F . Let ψ : B → A be the
1-1 correspondence found above. We show that if L is a line in U with |L ∩ B| ≥ q,
then L ⊆ B and Lψ is a line.

Indeed, let b, b′ ∈ L ∩ B and set M = 〈bψ , b′ψ 〉. Then L ⊆ H is equivalent to
M ⊆ Hϕ so that (L∩ B)ψ = M∩ A. If all points of L are in B with a single exception
w, then all points of M are in A with a single exception v, and all hyperplanes H with
w ∈ H satisfy v ∈ Hϕ (since every line meets every hyperplane), and v = wψ , that
is, w was no exception.

If ϕ is not dually emptying, then there exists a hyperplane H such thatU \ H ⊆ B.
By the above this implies B = U and ψ is in P!L(U ) and induces ϕ on the set H. ./

7.2.2 Large Cliques

We use the presence of maximal cliques of various sizes to study the structure of the
graphs !ϕ when ϕ is a permutation.
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Abbreviate the size qi−1
q−1 of an i-space withmi , so that maximal singular subspaces

have size md . Since md is the Delsarte-Hoffman upper bound for the size of cliques
in !ϕ , each vertex outside a clique of this size is adjacent to precisely md−1 vertices
inside, cf. [4, Proposition 1.1.7].

Lemma 7.3 Let d ≥ 3.

(i) If M 2= U is a maximal singular subspace of P, then C = (M \ U ) ∪ ⋂{Hϕ |
M ∩ U ⊆ H ∈ H} is a maximal clique in !ϕ of size at least qd−2(q + 1) (and
C \U = M \U).

(ii) If C 2= U is a maximal clique in !ϕ of size at least qd−2(q+1), then M = 〈C \U 〉
is a maximal singular subspace of P. If, moreover, |C | = md, then M \U = C \U.

Proof (i) Let M be a maximal singular subspace other than U . Then C = (M \
U ) ∪ ⋂{Hϕ | M ∩ U ⊆ H ∈ H} is the largest clique in !ϕ containing M \ U .
(Indeed, the set of hyperplanes of U of the form m⊥ ∩ U where m ∈ M \ U
equals the set of hyperplanes containing M ∩ U , so C is a clique. No further
point outside U ∪ C can be adjacent to all of C , since |M \ U | > md−1.) If
dim M ∩ U = d − 1, then |C | = |M | = md . If dim M ∩ U ≤ d − 2, then
|C | ≥ |M \U | ≥ md − md−2 = qd−2(q + 1).

(ii) Let C 2= U be a maximal clique of size at least qd−2(q + 1). If |C \U | ≤ md−1,
then |C ∩U | ≥ qd−2(q + 1) − md−1 > md−2. The set C ∩ U is the intersection
of sets Hϕ , each of sizemd−1, and any two distinct such sets meet inmd−2 points.
It follows that no two different H occur, that is, H = c⊥ ∩ U is independent of
the choice of c ∈ C \U . Now C is contained in, and hence equals, Hϕ ∪ (C \U ),
and |C \U | = md − md−1 > md−1, a contradiction.
If S is a clique in !0, then also 〈S〉 is a clique in !0. In particular, 〈C \ U 〉 is a
singular subspace. It is maximal since |〈C \U 〉| > md−1.
If |C | = md , then each vertex outside C is adjacent to precisely md−1 vertices
inside. Hence no point outside C ∪U can be adjacent to all of C \U . ./

Lemma 7.4 If the permutation ϕ is dually emptying, then U is uniquely determined
within the graph !ϕ .

Proof The subspace U is a clique of size md in !ϕ , with the two properties

(i) in the subgraph induced on its complement P \U all maximal cliques N have size
md − mi (where mi = |〈N 〉 ∩U |) for some i , 0 ≤ i ≤ d − 1, and

(ii) the number of maximal cliques of size md disjoint from U equals the number of
maximal singular subspaces disjoint from any given one.

Let E 2= U be a clique of !ϕ of size md with the same two properties. First we use
(i) to see that E ∩U must be a hyperplane in U .

Since E is a maximal clique, and ϕ is a permutation, E ∩ U is an intersection of
hyperplanes and hence a subspace ofU . By hypothesis, we can find a dually emptying
point f ofU not in E . If g ∈ f ⊥ ∩ (E \U ) (g will exist unless f ⊥ ∩ E = U ∩ E) and
M is a maximal singular subspace containing f and g, and meeting U in { f }, then
C = M \ { f } is a maximal clique in !ϕ of size md − 1. And N = C \ E is a maximal
clique in P \ E of sizemd −mi −1 in case |M ∩E | = mi . (Note thatC \U = M \U .)
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Why is N maximal? No point can be added since |N | > md−1, unless q = 2 and
|N | = |M∩E | = md−1. In that case, no point outside U can be added since 〈N 〉 = M .
And no point inside U can be added since N determines all hyperplanes on f , and f
is dually emptying.

Since M ∩ E 2= ∅, we have 1 ≤ i ≤ d − 1, and md − mi − 1 is not of the form
md − mh , violating (i). Therefore, f ⊥ ∩ E = U ∩ E , so that H = 〈E \U 〉 ∩ U and
Hϕ = E ∩U are hyperplanes.

Now we use (ii) to arrive at a contradiction.
We claim that if a maximal clique F of size md is disjoint from E , then 〈F \U 〉 is

disjoint from 〈E \U 〉. Suppose not. Since 〈E \U 〉\U = E \U and 〈F \U 〉\U = F \U
by Lemma 7.3(ii), a common vertex must lie in U . If 〈F \U 〉 meets U in me vertices
with e ≥ 2, then F meets U in a subspace of dimension e, but that would meet Hϕ ,
impossible. So, 〈F \ U 〉 meets U in a singleton { f } on the hyperplane H . As F has
size md , f is not dually emptying, so

⋂{Hϕ | f ∈ H} = { f ′} for some point f ′.
Now f ′ ∈ E ∩ F , a contradiction. This shows our claim.

By the claim and Lemma 7.3, we have an injection from the set of maximal cliques
of size md disjoint from E into the set of maximal singular subspaces disjoint from
〈E \U 〉. Since E satisfies (ii), both sets have the same size, so the injection is also a
surjection.

On the other hand, since ϕ is dually emptying, there is a dually emptying point o
in U \ H . This o lies in a maximal singular subspace O disjoint from 〈E \ U 〉, and
this O is not in the image of the surjection. Contradiction. ./

Lemma 7.5 Let P be a nondegenerate polar space with point set P, and U a maximal
totally isotropic subspace. Let h : P\U → P\U be a bijection preserving collinearity.
Then h can be uniquely extended to an automorphism h′ of P.

Proof Indeed, we can extend h as follows. For u ∈ U , let R be a maximal t.i. subspace
with U ∩ R = {u}. Then R \ {u} is a subspace of L of size |U | − 1 and is mapped
by h to a similar subspace S. In P this subspace is contained in a unique maximal
t.i. subspace 〈S〉 (= S⊥) and we can define h′(u) = v when 〈S〉 \ S = {v}.

This is well-defined: if R′ is a maximal t.i. subspace with U ∩ R′ = {u} and R, R′

meet in codimension 1, and h maps R′ \ {u} to S′, then 〈S ∩ S′〉 = (S ∩ S′) ∪ {v}.
Since the graph on such subspaces R, adjacent when they meet in codimension 1, is
connected, v is well-defined.

This preserves orthogonality: if u ∈ x⊥, then there is a maximal t.i. subspace R
containing u, x with R∩U = {u}. Now h(u) = v lies in the t.i. subspace 〈h(R \ {u})〉
which also contains h(x). ./

Proposition 7.6 Let P be a nondegenerate polar space and U a maximal t.i. subspace.
Let ϕ and χ be permutations of H such that !ϕ is isomorphic to !χ . Then ϕ and χ

are in the same P!L(U )-double coset in Sym(H).

Proof If ϕ ∈ P!L(U ), then !ϕ is isomorphic to !0 and its group of automorphisms is
transitive on the set of maximal singular subspaces. If ϕ /∈ P!L(U ), then according to
Lemma 7.4 and Proposition 7.2 the maximal singular subspace U can be recognized
in !ϕ , and hence !ϕ is not isomorphic to !0. Since by assumption !ϕ and !χ are
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isomorphic, either both or neither are isomorphic to !0. In the former case both ϕ and
χ are in P!L(U ) and the claim holds. Assume in the following that ϕ and χ are not
in P!L(U ).

We have the set P , the point set of P, with three structures defined on it. The
polar space structure P, with relation ⊥, and the two graph structures !ϕ and !χ . We
translate what it means for !ϕ and !χ to be isomorphic in terms of the polar space.

Let g : !ϕ → !χ be an isomorphism. By Lemma 7.4, it sends U to itself.
The number of common neighbors of a triple of points inU equalsλ−1 for collinear

triples and is smaller for noncollinear triples. It follows that g preserves projective lines
in U , and hence induces a permutation ḡ of H that is in P!L(U ).

Let h denote the restriction of g to P \U . Then h preserves collinearity (since we
have {x, y, z}⊥ ∩ (P \U ) = {x, y}⊥ ∩ (P \U ) for a triple of pairwise adjacent points
x, y, z of P \U if and only if x, y, z are collinear). By Lemma 7.5, h can be uniquely
extended to an automorphism h′ of P.

Let h̄ be the permutation of H induced by h′. Then h̄ ∈ P!L(U ).
For x ∈ U and y /∈ U , if x and y are adjacent in !ϕ , then xg and yg are adjacent in

!χ . This says that x ∈ (y⊥ ∩ U )ϕ implies that xg ∈ (yg⊥ ∩ U )χ : g maps the points
of any hyperplane of U to the points of another hyperplane. Then (y⊥ ∩ U )ϕg =
(yg⊥ ∩U )χ = (yh⊥ ∩U )χ = (y⊥ ∩U )h̄χ , so that ϕḡ = h̄χ . ./

Theorem 7.7 Let d ≥ 3. There are at least qd−2! pairwise nonisomorphic strongly
regular graphs having the same parameters as the collinearity graph !0 of the polar
space P.

Proof Let q = pe, where p is prime. Then |P!L(U )| < eqd
2
. In view of Proposition

7.6, we have obtained at least md !/|P!L(U )|2 > qd−2! pairwise nonisomorphic
strongly regular graphs unless (d, q) = (3, 2). For (d, q) = (3, 2), we have four
P!L(U )-double cosets in Sym(H). ./

Similar estimates would follow if one generalized Lemma 7.4 to show that U
is uniquely determined in P for arbitrary designs D (that is, for ϕ that are not
permutations). The blocks of D are then found as {!ϕ(x) ∩ U | x ∈ P \ U }. In
[24, Corollary 3.2] it is shown that for d ≥ 4 there are at least qd−2! choices for D.
Hence, one would obtain the same estimate as in Theorem 7.7 for d ≥ 4.

7.3 Switched Symplectic Graphs with 4-Vertex Condition

We show that in the symplectic case the graphs !ϕ satisfy the 4-vertex condition. Let
P be Sp2d(q), and let V be a 2d-dimensional vector space over Fq , provided with a
nondegenerate symplectic form.

The parameters of !0 are v = (q2d − 1)/(q − 1), k = q(q2d−2 − 1)/(q − 1),
v − k − 1 = q2d−1, λ = q2(q2d−4 − 1)/(q − 1)+ q − 1, µ = (q2d−2 − 1)/(q − 1)
and

(λ
2

)
−α = 1

2q
2d−1(q2d−4−1)/(q−1), β = 1

2q(q
2d−2 −1)(q2d−4−1)/(q−1)2,

and those of !ϕ will turn out to be the same.

Proposition 7.8 The graph !ϕ satisfies the 4-vertex condition.
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Proof Let x, y be two vertices of !ϕ . We show that the number of edges in
!ϕ(x)∩ !ϕ(y) is independent of ϕ, and only depends on whether x, y are adjacent or
nonadjacent. Since !0 satisfies the 4-vertex condition, !ϕ does too.

Count edges ab in !ϕ(x) ∩ !ϕ(y). The vertices x, y, a, b are pairwise adjacent,
except that x and y need not be adjacent. We distinguish several cases depending on
which of x, y, a, b are in U . Each of the separate counts will be independent of ϕ. If
x /∈ U then let X = x⊥ ∩U . If y /∈ U then let Y = y⊥ ∩U .

Case x, y, a, b /∈ U . In this case adjacencies and counts do not involve ϕ.
Case a, b ∈ U . Here a, b must be chosen distinct from x, y in case x, y ∈ U , or

distinct from x and in Y ϕ in case x ∈ U , y /∈ U (and the count depends on whether
x ∼ y), or in Xϕ ∩ Y ϕ in case x, y /∈ U (and the count depends on whether X = Y ).
In all cases the count is independent of ϕ.

Case x, y, a ∈ U , b /∈ U . For each hyperplane H such that x, y ∈ Hϕ we count
the b ∈ H⊥ \U and the a ∈ Hϕ distinct from x, y.

Case x, y ∈ U , a, b /∈ U . For any two hyperplanes H , H ′ of U with x, y ∈
Hϕ ∩ H ′ϕ count adjacent a, b with a ∈ H⊥ \ U and b ∈ H ′⊥ \U . (The counts will
depend on whether H = H ′, but not on ϕ.)

Case x, a ∈ U , y, b /∈ U . For each hyperplane H with x ∈ Hϕ , count the
a ∈ Hϕ ∩ Y ϕ distinct from x , and b ∈ H⊥ \ U adjacent to y. (Here H = Y occurs
when x ∼ y. The counts for H 2= Y do not depend on H .)

Case x ∈ U , y, a, b /∈ U . For any two hyperplanes H , H ′ with x ∈ Hϕ ∩ H ′ϕ ,
count edges ab with a ∈ H⊥ and b ∈ H ′⊥ in y⊥ \ (U ∪ {y}). (Here H = Y or H ′ = Y
occur when x ∼ y. The counts for H , H ′ 2= Y do not depend on the hyperplanes
chosen but only on whether H = Y or H ′ = Y or H = H ′.)

Finally the least trivial case.
Case a ∈ U , x, y, b /∈ U . Count a, H , b with a ∈ Xϕ ∩ Y ϕ and H a hyperplane

of U on a and b ∈ 〈x, y, H〉⊥ \ (U ∪ {x, y}). The count for a depends on whether
X = Y , that for b depends on whether H = X or H = Y or H ⊇ X ∩ Y , but does
not otherwise depend on the choice of H .

Since all counts were independent of ϕ, this proves our proposition. ./

By Theorem 7.7, this shows that there are many strongly regular graphs which
satisfy the 4-vertex condition. But we still have to show the simplified version of this
statement given in the introduction as Theorem 1.1.

Proof of Theorem 1.1. Note that here v refers to a nonnegative integer as in Theorem
1.1 and no longer is the number of vertices in !ϕ .

Apply Theorem 7.7 for d = 3 to find at least q! strongly regular graphs satisfying
the 4-vertex condition on ṽ vertices, for ṽ = q6−1

q−1 . Given v, there is a prime q between
v1/6 and 2v1/6 by Bertrand’s postulate. Now ṽ < 2q5 < 64v5/6 < v for v > 236.
Checking the prime powers q for 7 ≤ q ≤ 64 one sees that there is a q with ṽ ≤ v ≤ q6

for v ≥ 19608. One easily verifies the assertion for v < 19608 using rank 3 graphs.
./

Further graphs with the same parameters satisfy the 4-vertex condition. Additional
examples can be obtained by repeated WQH-switching, see §7.4 and [20], and there
are more examples among the graphs constructed in [18]. We have not tried (much) to
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determine precisely which graphs in [18] do satisfy the 4-vertex condition. Similarly,
we do not know when WQH-switching preserves the 4-vertex condition.

7.4 Small Examples

7.4.1 Examples on 63 Vertices

In [19] a large number of strongly regular graphs are found by applying GM-switching
to the Sp6(2) polar graph. Among these are 280 non-rank-3 strongly regular graphs
with (v, k, λ, µ) = (63, 30, 13, 15) satisfying the 4-vertex condition. All have α = 30
and β = 45. Three of these are among the !ϕ constructed above.

We list for each occurring group size the number of examples found.

|G| 4 8 16 32 48 64 96 128 192 256 384 512 768 1344 1536 4608

# 3 16 76 62 1 60 2 30 5 12 3 3 2 1 3 1

None of these examples has a transitive group. We list the orbit lengths in the seven
cases with fewer than six orbits.

|G| 768 768 1344 1536 1536 (twice) 4608

orbits 3+12+48 1+6+24+32 7+56 1+6+24+32 3+4+8+48 3+12+48

7.4.2 Permutations of Hyperplanes

Let P be Sp2d(q), and let ϕ be a permutation of the set H of hyperplanes of U . For
(d, q) = (3, 2), (3, 3), (4, 2), the number of double cosets of P!L(d, q) in Sym(H)

is 4, 252, and 3374, respectively, and these are the numbers of non-isomorphic graphs
!ϕ . In each case, exactly one has rank 3. None of the others has a transitive group
(since U can be recognized). The pointwise stabiliser of U in Aut(!0) has size N =
q(

d+1
2 )(q − 1) and is always contained in Aut(!ϕ). Hence, N divides |Aut(!ϕ)|.
Case (d, q) = (3, 3). Here N = 1458. We list the group sizes for the 251 graphs

!ϕ other than !0.

|G|/N 1 2 3 4 6 8 12 16 18 24 39 54 72 144

# 172 26 29 6 3 2 2 2 1 1 3 1 2 1

We list the orbit lengths in the five cases with fewer than six orbits.

|G|/N 39 (thrice) 72 144

orbits 13+351 1+12+108+243 1+12+108+243

Case (d, q) = (4, 2). Here N = 1024. We list the group sizes for the 3373 graphs
!ϕ other than !0.
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|G|/N 1 2 3 4 5 6 7 8 12 16

# 3148 85 40 24 4 10 6 26 1 4

|G|/N 18 21 24 32 56 60 96 192 288 1344

# 1 2 11 2 2 1 2 2 1 1

We list the orbit lengths in the eight cases with fewer than six orbits.

|G|/N 12 18 24 56 (twice)

orbits 3+12+48+192 6+9+96+144 3+12+48+192 1+14+112+128

|G|/N 60 288 1344

orbits 15+240 3+12+48+192 7+8+16+224

7.4.3 Other Polar Spaces

Wemade the same exhaustive investigation of all permutations ϕ for the other choices
of P in the cases (d, q) ∈ {(3, 2), (3, 3), (4, 2)}. The only non-rank-3 examples
satisfying the 4-vertex condition occur for O7(3). Here we obtain 252 graphs in total,
of which one is rank 3, and three more satisfy the 4-vertex condition. They all have
two orbits (of sizes 13+351) and an automorphism group of size 56862. All other
graphs !ϕ obtained from O7(3) have more than two orbits.

One might wonder whether a graph !ϕ from O2d+1(q) satisfies the 4-vertex
condition if and only if it has at most two orbits. And whether a non-rank-3 graph
!ϕ can only satisfy the 4-vertex condition if P is Sp2d(q) or O2d+1(q).

7.4.4 Other Designs

There are four 2-(15, 7, 3) designs D other than that of the hyperplanes of PG(3, 2).
We investigated the case where (d, q) = (4, 2) and P is Sp2(8), so that the resulting
examples satisfy the 4-vertex condition. We generated several hundred thousand
graphs !ϕ for each of these designs. None of these graphs occurs for two different
designs. We believe our enumeration to be complete.

|Aut(D)| Point orbits Block orbits # !ϕ

576 3+12 3+12 113519
168 7+8 1+14 340730
168 1+14 7+8 328078
96 1+6+8 1+6+8 677460
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Appendix: Details on Ivanov’s Graphs

In Sect. 3.3 we discussed the graphs !(m) from [6] and '(m) from [22]. Here we give
some more detail on the latter.

For m ≥ 2, consider V = F2m
2 provided with the elliptic quadratic form q(x) =

x 2
1 +x 2

2 +x1x2+x3x4+...+x2m−1x2m . Identify the set of projective points (1-spaces)
in V with V ∗ = V \ {0}. Let Q = {x ∈ V ∗ | q(x) = 0} and let S be the maximal
t.s. subspace given by S = {x ∈ V ∗ | x1 = x2 = 0 and x2i−1 = 0 (2 ≤ i ≤ m)}.
Then S⊥ = {x ∈ V ∗ | x2i−1 = 0 (2 ≤ i ≤ m)}. The graph '(m) has V as vertex set,
where two distinct vertices v,w are adjacent when v − w ∈ (Q ∪ S⊥) \ S. Let T(m)

and ϒ (m) be the induced subgraphs on the neighbors (nonneighbors) of the vertex 0.
Put R = V ∗ \ (Q ∪ S⊥).

Proposition (i) For m ≤ 4, the graphs '(m) are rank 3, and are isomorphic to the
complement of V O−

2m(2).
(ii) For m ≥ 5, the automorphism group of T(m) has two vertex orbits S⊥ \ S and

Q \ S, of sizes 3 · 2m−1 and 22m−1 − 2m, respectively. For 2 ≤ m ≤ 4, the group
is rank 3, and the graph is the complement of NO−

2m(2).
(iii) For m ≥ 5, the automorphism group of ϒ (m) has two vertex orbits S and R of

sizes 2m−1 − 1 and 22m−1 − 2m, respectively. For 3 ≤ m ≤ 4, the group is rank
3, and the graph is the complement of O−

2m(2).
(iv) The λ- and µ-graphs in ϒ (m) and the µ-graphs in T(m) are all regular of valency

2m−2(2m−2 + 1). In particular, ϒ (m) satisfies the 4-vertex condition.
(v) The λ-graphs inT(m) have vertices of valencies in 0, 22m−4−2m, 22m−4, 22m−3−

2m. Edges not in a line contained in Q have λ-graphs with a single isolated vertex
andλ−1 vertices of valency 22m−4. For edges in a line contained in Q theλ-graphs
have a single vertex with valency 22m−3 −2m, and 2m−3 −1 vertices with valency
22m−4 − 2m, and the remaining 22m−3 + 2m−3 vertices have valency 22m−4. In
particular,T(m) satisfies the 4-vertex condition,withα = 22m−5(22m−3+2m−2−1)
and β = 1

2µµ
′ = 22m−4(2m−2 + 1)2.

(vi) The local graph of ϒ (m) at a vertex s ∈ S is isomorphic to '(m−1).

Proof (i)–(iii) This is clear, and can also be found in [22]. (iv)–(v) (the part about
T(m)):

Let (v,w) = q(v+w)−q(v)−q(w) be the symmetric bilinear formbelonging to q.
Let X = (Q ∪ S⊥) \ S. Then T(m) is the graph with vertex set X , where two vertices
x, y are adjacent when the projective line {x, y, x + y} they span is contained in X .
If at least one of x, y is in S⊥ \ S, then this is equivalent to (x, y) = 1. If both are
in Q \ S, then this is equivalent to ((x, y) = 0 and x + y /∈ S) or ((x, y) = 1 and
x + y ∈ S⊥ \ S).

Let x, y, z be pairwise adjacent vertices. The valency c of z in the λ-graph λ(x, y)
is the number of common neighbors of x, y, z. Distinguish several cases.
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If z = x+ y, then if x, y, z ∈ Q we find c = |{x, y}⊥ ∩(Q \ S)|−3 = 22m−3−2m .
If z = x + y and at least one of x, y, z lies in S⊥, then c = 0.

Now let z 2= x + y. The claims are true for m ≤ 4. Let m ≥ 5 and use induction
on m. Choose coordinates so that x, y, z have final coordinates 00 and let x ′, y′, z′

be these points without the final two coordinates. If they have c′ common neighbors
w′ in T(m−1), then we find 2c′ common neighbors w = (w′, 0, ∗). Moreover (since
x, y, z are linearly independent), we find 22m−5 common neighbors (w′, 1, q ′(w′)) in
Q, where w′ runs through all vectors with the desired inner products with x ′, y′, z′.
Altogether c = 2c′ + 22m−5, as claimed.

For theµ-graphs the argument is similar and simpler: by the definition of adjacency
three dependent vertices are pairwise adjacent, so that the case z = x + y does not
occur here.

(iv) (the part about ϒ (m)): Let Y = V ∗ \ X . Then ϒ (m) is the graph with vertex
set Y , where two vertices x, y are adjacent when the projective line {x, y, x + y} they
span is not contained in Y . The same argument as before yields the valencies of the
λ- and µ-graphs.

(vi) Consider the graph '(m). The nonneighbors z of 0 that are neighbors of s are
the vertices of the form z = s+b with z ∈ S∪ R and b ∈ (Q∪ S⊥)\ S. It follows that
s+ z ∈ Q \ s⊥. Let s = (0 . . . 01), then Q \ s⊥ can be identified withW = F2m−2

2 via
w → i(w) = (w, 1, q̄(w)) forw ∈ F2m−2

2 and q̄(w) determined by q(i(w)) = 0. The
local graph of ϒ at s can be identified with the graph with verticesw, wherew,w′ are
adjacentwhen the line joining i(w), i(w′) has third point (w+w′, 0, ∗) ∈ (Q∪S⊥)\S,
that is, the line joining w,w′ has third point w′′ = w + w′ satisfying w′′ /∈ T and
(q̄(w′′) = 0 or w′′ ∈ T⊥) where T = {w ∈ W | w1 = w2 = w3 = w5 = ... =
w2m−3 = 0}. But this is '(m−1). ./
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