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Abstract

This note will survey some recently noticed relatlonshups between a certain
class of generalized quadrangles with parameters g2, g, and certain classes of
translation planes of order q While these relationships seem very mysteri-

ous, they provide new construct|ons for interesting types of geometries of
both of these sorts.
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This note will survey some recent work of Payne, Thas, Fisher,
Hiramine and myself. It is dedicated to the many hours spent in Dick
Bruck's office 20 years ago during which I was introduced to properties
of spreads of PG(3,9).

Generalized quadrangles and translation planes are both familiar
objects in finite geometry That they are related at all is somewhat
surprising. Relationships will be exhibited, but they are not at all
understood and presently seem mysterious. Consequently, a principal

theme of this note is the question: what is really going on here?

1. Generalized quadrangles

As usual, q will always denote a prime power > 1. Let F=GF(q) and let
Q=F2xFxF2 with multiplication given by
(U, V) (U,C V) = (U CHC+V=U V+Y) )
(uy v,V EFZ; ¢ c'€F), where v-u' is the usual dot product. Then Q is a
group of order g3, Z=Z(Q)=0XFX0, and Q/Z = F2@F2.
we will be concerned with families F of g+1 subgroups A of order g2
such that, for any distinct A,B,C € ¥,




Q= AZB

and
ABNC=1

These conditions can be viewed as “independence” restrictions on the
members of F. Each such family ¥ determines a generatized quadrangle
as follows:

points: symbo! F; cosets AZg; elements geQ;

lines: symbols [A]; cosets Ag;

incidence: [A] I ¥, [A] I AZg, and all other incidences are obtained

via inclusion.

The resulting generalized quadrangle has parameters q?,q. For thisanda
more general construction, see [9). (N.B. -- The use of this specific
group Q of order g3 is mativated by its having sufficiently many subgroups
of order q2.)

In order to find families ¥, we may assume that ¥ is parametrized
by FU{oo} as follows:

A(e) = OXOXF?

A(r) = {(u,uB ut,uM) | u€F?}

¥ = {A(r) | réFU{w}}

for 2X2 matrices M, and B, satisfying the conditions

Mr = Br + B,.t

r qr)
B, = g
(0 f(r) )
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for functions f,g:F —F for which

(#) the quadratic
%2 = (g(r)-g(s)x + (r-s)(f(r)-f(s))

is irreducible for all distinct r.s€F.

Examples.

1. qodd, g=0, f(r)=-nr (na nonsquare). This produces the classical
PSU(4,q) quadrangle. More generally, for even or odd q, when g(r)=ar and
q(r)=br with abé€F such that x2-ax+b is irreducible, the resulting
quadrangle is classical.

2. qodd, g=0, f(r)=—nr? with n a nonsquare and o €AutfF. For o=l
the quadrangle is not classical; and o,T€AutF produce nonisomorphic
quadrangles whenever tzg*1 (101

3. g(r)=-r2, f(r)=-r3/3, q=2 (mod 3). This is the generalized
quadrangle associated with the G,(q) generalized hexagon [9). It is not
classical if g>2.

4. g(r)=10r3, f(r)=20r3, q odd, q=12 (mod 5) [10].

g(r)=r3, f(r)=r3, q=22e*1 [131

These quadrangles are not isomorphic to any of the previous ones if
q>5, q=8 [10,13]

5 There is one further class of examples, the description of which
will be postponed until the last section.

we will not discuss properties of the preceding generalized
quadrangles. Instead, we will turn to translation planes —- in the guise of

spreads of FZ@FZ.




Assume that F is as before, and project it into Q/Z = F2@F2. This

produces a family F* of q+1 subspaces of FZFZ each pair of which span
F2@F2. Can F™ always be extended to a spread in a “natural™ manner?
Examples 1 and 2 extend to desarguesian (i. e, regular) spreads. The
examples in 3 extend to the spreads defining the Hering-Ott planes (S,12].
No answer is presently known for the remaining examples. However, this
question may be too wishy-washy. Therefore, we will now turn to more

definite sources of transiation planes.

2. Hallian planes
The first type of translation plane we will consider is most easily

defined using a quasifield ( F2,):

(BX,bX) if y=
(a,b)x(x,y) =
xy
(a,b) where yz0,
s t s = ~(x2/y)+g(1/yx+£(1/y),

t = —x+yg(1/y)

for functions f,g:F»F. As noted by Hiramine [6,7], this multipilication

defines a quasifield if and only if f and g satisfy (#). (This extends work

in {21) This translation plane admits a group of q F-linear
automorphisms fixing a Baer subplane pointwise.  (Hiramine [7]
conjectures that the converse is true, and presents evidence in this
direction.) Moreover, there is an F-linear group of g(q-1) automorphisms
with an orbit of length q(q-1) at infinity if, and only if, f(r)=ar-2k*1,
g(r)=br-k*1 for some a,b€F, k€2Z. (Compare §1, Examples 1,3 and 4.)
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We now have a strange correspondence between certain generalized
quadrangles with parameters g2,q and certain transiation pianes of order
q2. The classical quadrangles correspond to the case f(r)=ar, g(r)=br, and
then (F2,x) is just a familiar Hall quasifield [4, p. 364] -- hence the title
of this section. (Note that in the general case (F2,x) satisfies the
following genralization of a basic property of Hall quasifields: if u=(x,y),
y#0, then uZ-yg(1/ylu+yf(1/y=0.  Of course, the appearance of
awkward-looking functions such as yf(1/y) is designed to fit in with (#)
but would be irritating to compute with.)

If f and g satisfy (#) then so do f+c and g+d for any c,d€F. While f+c
and g+d produce the same quadrangie as f and g do, they yield new
translation planes -- e. g, if f(r)=ar~2k*1, g(r)=br~k*1. Nothing seems to
be known about isomorphisms among these planes.

The many-to-one correspondence between these planes and
quadrangles makes it seem especially difficult to find a direct geometric

relationship between them. We next turn to a more promising situation.

3. Flockian planes

The Klein correspondence behaves as follows:
W= FZBF? & Klein quadric in the 0*(6,q) space V=WAW
2-space (line) « gingular point
intersecting lines ¢ perpendicular points
spread & q2+1 singular points, no two perpendicular (ovoid)
requlus of

q+1 lines & g+1 points of a nongingular 3-space (conic).

In this section we will describe ovoids that are nice unions of conics.

Let (,) and Q be the bilinear and quadratic form associated with V.
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Fix a 4-space C with radical c=C* a singular point. The singular points of

C form a “cone” of 1+q(q+1) points. A flock of C is a set of q nonsingular

3-gpaces of C whose union contains all singular points of C-{c}. In other
words, there are q conics producing a partition of the singular points of
C-{c}.

One way to find flocks is to introduce coordinates. There is a basis
Vy, Va, V3, Vgq=C of C such that Q(v4)=0(v,)=0, Qlvg=-1, (v;,v5)=1 and
(vy,v3)=(vy v5)=0. Any 3-space of C not containing ¢ has an equation of
the form

Xy + 8%y + g3+ X4 =0
with respect to this basis. A flock consists of q such 3-spaces
rxy + f(rxy + g(r)xg + X4 =0,

one for each r €F, and q such 3-spaces define a flock if and only if fand g

satisfy (#). This observation of Thas [14) produces some tupe of
relationship between certain generalized quadrangles and flocks. This
time, slight modifications of f and g produce isomorphic quadrangles and
orthogonally equivalent flocks. (For other types of modifications, see
below.)

Translation planes arise as follows. If T is a flock then it is a
simple exercise to check that the set of singular points in U{T*[T€TT} is
an ovoid. Each such ovoid is a union of q conics, all having a common point
(namely, c). They all have two common points iff the resulting transiation
plane is desarguesian; and this occurs iff f and g are linear iff the
associated quadrangle is classical.

Example 3 in §1 produces the planes found by Betten [1] and Walker
(15]

Example 2 (with @=1) produces ovoids lying in S-spaces. Therefore,
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the corresponding spreads are symplectic. However, they are not new:
they are precisely the symplectic spreads found in [8, p. 1202] from a
different point of view; they are the only known nondesarguesian
symplectic spreads of vector spaces of characteristic >3; and the
resulting translation planes are among the semifield planes studied by
Knuth [11].

The ovoids arising from Example 4 do not seem to have any
interesting properties.

Example 5 (Fisher [3, (3.9))). These flocks are obtained by using a
different description of C. Let g be odd, and view C as GF(q2)®F?, with
quadratic form Qa x,y=ad-y% Let ¢ €GF(q?) have order g+1. Then the
singular points in C are c={(0,1,0)) and ((§' x,1)) with 0<i<q and x€F. The
flock TT consists of the 3-spaces

1 {(€2',1,0), (€21*1,1,0),(0,0,1)), 0£2i<q+1, and

(D {(a,x,y)lx=ty} where t€F is such that t2(5-E)2+4 is a nonsquare.

This is a more algebraic form of the construction in [3]. Note that
each singular point in ((§¢,1,0), (¢2i*1 1.0), (0,0,1)) has the form
((Lit1)) with §) = y(2*1-02) + t&Z for some y€EF. Then §172 =
y(5-1)+t. The necessary and sufficient condition on t in order that j and y
exist is that

1 = @2(E-1)E-1) + ty@+E-2) + 12,
or, equivalently, that t2(¢-E)2+4 is a square. This produces (q+1)/2
subspaces (1) and (q-1)/2 subspaces (ID). No two members of (II) contain
any commeon singular points; the same is true for a member of (I) and a
member of (D). If ((€1,t,1)) lies in both {(£2',1,0), (§2*%,1,0), (0,0,1)) and
((t2h 1,0, (£2h*1,1,0), (0,0,1)) then ¢i-2i={i-2h while 0£2i,2h<q+1, S0
that i=h.




This flock TT has associated functions f and g, but these seem to be

difficult to work with. If g>5 then TT is a new flock (note that all the
3-spaces (1) intersect in a point, while all the 3-spaces (II) intersect ina
line).

Further flocks. If T is a flock, the functions f and g determine a

generalized quadrangle as in §1. We coordinatized the corresponding
family ¥ by choosing a specific pair of its members and moving them
(using Aut Q) so that they had the form A(co) and A(0). Whenever (Aut Q)
is not 2-transitive on ¥ this choice should influence f, g and the
corresponding flocks and “flockian® ovoids and planes. It seems very
likely that this will produce large numbers of new planes. Consequently,
generalized quadrangles should provide a new type of replacement process
for transforming one spread into several new ones, thereby yielding many
new transiation planes.

Nevertheless, the principal question is: where are the planes “inside”

the quadrangles, or vice versa?
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