2-Transitive Collineation Groups of Finite Projective and Affine Spaces, by W. Kantor (U. of Wisconsin)

A <u>symmetric design</u> is a finite incidence structure of v points and blocks, $k \le v + 2$ points on each block and dually, and λ points common to every pair of blocks and dually. Here $\lambda(v-1) = k(k-1)$, so that k|(v-1) iff $(k,\lambda) = 1$. We shall consider the following

<u>Problem.</u> Let Γ be a 2-transitive automorphism group of a symmetric design \mathcal{D} . (2-transitivity on points and on blocks are equivalent.)

- (I) What is \mathcal{D} ?
- (II) Given Z, what is Γ ?

We shall present some results related to (I) and (II), together with some results of a less specific nature. In [4] we have proved several results concerning (I), under additional hypotheses on Γ and the parameters v, k and λ . The following is a typical example.

Theorem 1. Let Γ be a 2-transitive automorphism group of a symmetric design \mathcal{D} such that, for each block B, Γ_B is 2-transitive on both B and $\mathcal{C}B$. If $k \mid (v-1)$, and either $k - \lambda$ is a prime power or $(k - \lambda, 2\frac{(v-1)}{k} - 1) = 1$, then \mathcal{D} is a projective space on the unique design with v = 11, k = 5, $\lambda = 2$.

Even with these strong transitivity assumptions it seems difficult to prove that, in addition, Γ contains the little projective group or is A_7 . This is a special case of (II). Wagner [5] has studied 2-transitive collineation groups of finite projective spaces, and was able to completely take care of the cases of dimensions 3 and 4. In the general case he was, however, able to show that such a collineation group has a simple, normal 2-transitive subgroup. This can be generalized in 2 directions.

Theorem 2. Let Z be a symmetric design with k | (v-1).

- i) A 2-transitive automorphism group of Z has a simple, normal 2-transitive subgroup.
- ii) An automorphism group of \mathcal{D} fixing a block B, faithful on B, 2-transitive on B, and transitive on the blocks \neq B has a simple, normal subgroup with these same properties.

The following result, concerning affine spaces, is required in the proof of Theorem 2.

Theorem 3. Let $\Gamma = \Delta \prod_{i} \Delta \cap \prod_{i=1}^{n} 1$, be a 2-transitive collineation group of a finite affine space or translation plane. It containing the full translation group $\prod_{i=1}^{n} 1$ of $\bigcap_{i=1}^{n} 1$, $\prod_{i=1}^{n} 1 = 1$, be a 2-transitive collineation group of a finite affine space or translation plane. It containing the full translation group $\prod_{i=1}^{n} 1 = 1$, be a 2-transitive collineation group of a finite affine space or translation plane. It containing the full translation group $\prod_{i=1}^{n} 1 = 1$, be a 2-transitive collineation group of a finite affine space or translation plane. It containing the full translation group $\prod_{i=1}^{n} 1 = 1$, be a 2-transitive collineation group of a finite affine space or translation plane. It containing the full translation group $\prod_{i=1}^{n} 1 = 1$, be a 2-transitive collineation group $\prod_{i=1}^{n} 1 = 1$, be a 2-transitive collineation group $\prod_{i=1}^{n} 1 = 1$, be a 2-transitive collineation group $\prod_{i=1}^{n} 1 = 1$, be a 2-transitive collineation group $\prod_{i=1}^{n} 1 = 1$, be a 2-transitive collineation group $\prod_{i=1}^{n} 1 = 1$, be a 2-transitive collineation group $\prod_{i=1}^{n} 1 = 1$, be a 2-transitive collineation group $\prod_{i=1}^{n} 1 = 1$, be a 2-transitive collineation group $\prod_{i=1}^{n} 1 = 1$, be a 2-transitive collineation group $\prod_{i=1}^{n} 1 = 1$, be a 2-transitive collineation group $\prod_{i=1}^{n} 1 = 1$, be a 2-transitive collineation group $\prod_{i=1}^{n} 1 = 1$, be a 2-transitive collineation group $\prod_{i=1}^{n} 1 = 1$, containing the full translation group $\prod_{i=1}^{n} 1 = 1$ for some $n \geq 2$.

The proof of Theorem 1 is rather long and involved, depending upon a lot of computation together with some deep results on 4-transitive groups. The proofs of Theorems 2 and 3 are, however, of an elementary and geometric nature and will now be sketched.

<u>Proof of Theorem 2.</u> If \prod is a minimal normal subgroup of Γ then either \prod is non-regular and simple or regular and elementary abelian.

- (1) $\Gamma_{\rm B}$ is transitive on B and \mathcal{L} B
- (2) $\Gamma_{\rm B}$ is flag-transitive on the design $\mathcal{L}_{\rm B}$ of points off of B and blocks \neq B
- (3) $\Gamma_{\rm B}$ is a primitive on $\mathcal{C}\mathcal{B}$

Here (1) follows from the Dembowski-Hughes-Parker Theorem, and (2) follows from (1) and (k,v-k)=1. (3) is proved from (2) and $(k,\lambda)=1$ using an argument of Higman and McLaughlin [2]

Case 1. \prod is simple and non-regular. Since $1 \neq \prod_{B} \leq \Gamma_{B}$, \prod_{B} is transitive on $\mathcal{C}B$ by (3) and splits B into orbits all of the same length $k_{1}|k$. Then $(k_{1},v-k)=1$ implies that Γ_{pB} is transitive on $\mathcal{C}B$ for every p on B, from which it follows that Γ_{p} is transitive on points \neq p.

<u>Case 2.</u> If is regular and elementary abelian. Then Γ may be regarded as a 2-transitive collineation group of an affine space over the prime field, and Theorem 3 with $\Delta = \Gamma_B$ yields a contradiction to k!(v-1). (It is easy to see that $|\prod|$ is not prime.)

Before proving Theorem 3 we note a consequence of (3). If Γ_B is not faithful on B then (3) implies that the pointwise stablizer of B is transitive on $\mathcal{C}B$. It is then easy to apply the dual of the Dembowski-Wagner Theorem [1] to deduce that \mathcal{D} is a projective space (in which case Γ contains the little projective group). The same result has been obtained independently by Ito [3] without, however, the numerical restriction k (v-1).

Theorem 3 depends on 3 lemmas.

Lemma 1 (Mann). If λ is a symmetric design with ν and $k-\lambda$ powers of the same prime, then

$$v = 2^{2e}$$
 and $k = 2^{2e-1} \pm 2^{e-1}$

for some e.

Lemma 2. If Γ is a 2-transitive collineation group of a finite affine space, then Γ is hyperplane transitive and, for each hyperplane H, $\Gamma_{\rm H}$ is transitive on both H and \mathcal{L} H.

This follows from a simple application of the Dembowski-Hughes-Parker Theorem.

 is uniquely determined by the triple $(C(,\Gamma,\Sigma))$ up to conjugacy in Γ .

Proof of Theorem 3. We may assume that $\mathcal{K} = \mathrm{AG}(\mathrm{d}, \mathrm{p})$, p prime. Let B be the orbit of Δ of length k. Let \mathcal{L} be the incidence structure whose points are the points of \mathcal{K} and whose blocks are the distinct sets B^{γ} , $\gamma \in \Gamma$. Then \mathcal{L} is a symmetric design, and Γ is a 2-transitive automorphism group of \mathcal{L} . Since Π is transitive and regular on blocks, and Π is a normal elementary abelian subgroup of Γ , Γ may be regarded as a collineation group of an affine space $\mathcal{C}^{\#} \approx \mathcal{C}_{\Gamma}$ whose "points" are the blocks of \mathcal{L} . We now have 3 interrelated geometries to work with, \mathcal{K} , $\mathcal{C}^{\#}$ and \mathcal{L} .

By Lemmas 2 and 3, if H is a hyperplane of ${\mathcal X}$ there is a hyperplane ${\tt H}^\#$ of ${\mathcal Q}^\#$ such that

$$\Gamma_{\rm H} = \Gamma_{\rm H}^{\#},$$

and Γ has two orbits of pairs (B,H) with B a block of $\mathcal D$ and H a hyperplane of $\mathcal D$. It follows that $\Gamma_{\rm B}$ has an orbit B^b of hyperplanes of $\mathcal D$ with the property

$$B \in H^{\#} \longleftrightarrow H \in B^{b}$$
.

It is now possible to apply standard numerical methods to the orbits of $\Gamma_H = \Gamma_H^\#$ on \swarrow and those of Γ_B on \swarrow in order to obtain the hypotheses of Lemma 1 and thus prove Theorem 3.

Besides the designs listed in Theorem 1, there is a third family of 2-transitive symmetric designs which we shall now describe. These satisfy the hypotheses of Theorem 3.

Let \mathscr{Q} be an affine translation plane of order $q=2^e>2$ with line at infinity ℓ_∞ . Let \prod be the translation group of \mathscr{Q} . Suppose that \mathscr{C} is a line oval of the projective plane $\mathscr{C}_{\mathfrak{Q}}\cup\ell_\infty$ whose knot is ℓ_∞ . Let B be the set of points of \mathscr{Q} lying on some line of \mathscr{C} . Then B is a difference set in \prod having the parameters $v=|\prod|=q^2$ and k=q(q+1)/2. In particular, if \mathscr{C} is a line conic then $\Gamma=\Delta\prod$ is a 2-transitive automorphism group of the symmetric design determined by B; here Δ is any group such that $\mathrm{PSL}(2,q) \leq \Delta \leq \mathrm{P}\Gamma L(2,q)$.