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ABSTRACT. The permutation representations in the title are all determined,
and no surprises are found to occur.

1. Introduction. The permutation representations of the finite classical groups
have been a source of interest among group theorists from Galois and Jordan up to the
present time. Information about permutation representations has been used to classify
various types of groups, and to investigate subgroups of the known simple groups acting,
with some transitivity assumptions, in geometrical situations. Unusual or sporadic be-
havior of permutation representations of certain groups has led to the discovery of new
simple groups, and suggests looking for new permutation representations of the known
groups. In investigations of finite groups in connection with various classification
problems, Chevalley groups acting as permutation groups may occur in the course of
the discussion, and one can ask what are the possibilities in such a situation. (Through-
out this paper, a Chevalley group will always have a trivial center and be generated by
its root subgroups.)

These are some types of questions which serve as motivation for a systematic
study of 2-transitive permutation representations of finite Chevalley groups, of normal
or twisted types. The conclusion we have reached is that there are no surprises: the
only such permutation representations are the known ones. A more precise statement
of the main result is as follows.

MAIN THEOREM. Let G be a Chevalley group of normal or twisted type, and
let G < G* < Aut G. Suppose that G* has a faithful 2-transitive permutation repre-
sentation. Then one of the following holds.

(i) PSL(l, q) < G* < PT'L(l, q), | > 3, and G* acts in one of its usual 2-tran-
sitive representations of degree (¢* — 1)/(q — 1).

(ii) G = PSL(2, q), PSU(3, q), Sz(q), or sz(q), and the stabilizer of a point is
a Borel subgroup.

(i) G* is PSL(2, 4) =~ PSL(2, 5) ~ A5 or PTL(2, 4) ~ PGL(2, 5) ~ Ss.

(iv) G* is PSL(2, 9) ~ A4 or PSL(2, 9) - Aut GF(9) = S¢.

(v) G* is PSL(2, 11) in one of its 2-transitive representations of degree 11.

(vi) G* is PT'L(2, 8) ~ %G,(3).
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(vii) G* is PSL(3, 2) =~ PSL(2, 7) or Aut PSL(3, 2) =~ PGL(2, 7).
(viii) G* is PSL(4, 2) ~ Ag or Aut PSL(4, 2) ~ S;.
(ix) G* is Sp(2n, 2) in one of its 2-transitive representations of degree
2"71(2" £ 1), with the stabilizer of a point being GO*(2n, 2).
(x) G* is G,(2) ~ PSU(3, 3) - Aut GF(9) or Aut G,(2) ~ PT'U(3, 3).

It should be noted that (vi) is the only case where G*, but not G, is 2-transitive.

Several special cases of this theorem have already appeared: Parker [27] for
G* = PSp(4, 3), Clarke [11] for G = PSp(2n, q) for certain n and ¢, Bannai [2], [3],
[4] for G* = PSL(l, q), PSp(2n, 2) or PSp(l, q) with I > 14, and Seitz [32] for G =
PSp(4, q), PSU(4, q), PSU(S, q), G,(q) with ¢ > 3, and 3D4(q). Moreover, Seitz [32]
showed that, for a given Weyl group of rank >3, there are at most a finite number of
exceptions G to the main theorem having that Weyl group, where G* > G is assumed
to be contained in the subgroup of Aut G generated by G and the diagonal and
field automorphisms.

The method of proof is basically as follows. Assume for simplicity that G* = G
and that the Weyl group W of G has rank >3. Furthermore, assume that G is of
normal type; while the proof for groups of twisted type is the same, it is more awkward
to state. Let & = 1 + x be the character of the given permutation representation,
where x is irreducible, and let B be a Borel subgroup of G. Using the main theorem
in [32], it is easy to show that our main theorem holds if either (9, lg) =1,x(1)is
divisible by the characteristic p of G, or 8(1) is a power of p. Thus, if G is a counter-
example, then x is a constituent of lg and p 1 x(1). According to an extension of a
result of Green [19] and D. G. Higman, this is only possible if G is defined over F,
and p| [W|. A major part of the proof is aimed at showing that, with few exceptions,
a suitably chosen parabolic subgroup P of G is transitive, that is, (9, 153) = 1; this is
proved by checking that p divides the degree of each nonprincipal constituent of 1,?.
From this we deduce the semiregularity of certain root groups U,. It then follows that
x(DIIG: C(U,)|. On the other hand, using structural properties of some parabolic
subgroups, we show that p*|6(1) for a suitably large k. Elementary number theory
is then used to show that these two divisibility conditions are incompatible, thereby
proving the theorem. We remark that it is surprising how few properties of 2-transitive
groups are needed.

Some parts of our proof use ideas similar to those used by Bannai [2], [3], [4].
However, he uses a detailed knowledge of all the characters of GL(n, q), whereas the
character-theoretic information we use is much more elementary.

The organization of the paper is as follows. Part I is concerned with general
properties of Chevalley groups. These include the structure of certain parabolic sub-
groups, normalizers of root groups, and characters of both Weyl groups and Chevalley
groups. Some of the proofs are computational, and are not given in complete detail.
More information is given concerning the structure of certain parabolic subgroups than
is actually needed in the proof of the Main Theorem.

In Part II the Main Theorem is proved. Given the information in Part I, together
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with the main result of Seitz [32], the proof turns out to be surprisingly short. In
fact, the only involved part centers around the exceptional situations F,(2) and
Sp(2n, 2).

For the sake of completeness, we have handled cases already essentially done by
Bannai. This includes Sp(2n, 2), and also PSL(I, q). We note that Bannai’s treatment
[2] of PSL(L q) is incomplete, as it uses a result of F. Piper [29] which turns out to
be almost, but not quite, correct. Also for the sake of completeness, we verify that
the Tits group 2F, 4(2)" has no 2-transitive representation.

The study of 2-transitive representations of Chevalley groups contained in [32]
and the present paper were initiated by a simple proof in the case PSL(J, qQ)<G*<
Pr'L(l, q), based on the first lemma and the main theorem of Perin [28].

We are indebted to Professor T. Beyer for his invaluable assistance with the
proof of (6.8).

PART I. PROPERTIES OF CHEVALLEY GROUPS

2. Notation and preliminary results. Let A be a root system in Euclidean space
E,, and let k be a finite field of characteristic p, such that |k| = q. A Chevalley group
G associated with A, and defined over k, is a finite group generated by certain p-groups
U,, @« € A, called root subgroups, defined as in [36] for a Chevalley group of normal
type, and in [34], [36] and [9] for a Chevalley group of twisted type. If A, is a
root system generated by some subset of a fundamental system of roots in A, then
Gy =(Uy)aeca o is a Chevalley group associated with the root system A,.

The groups under consideration in the main theorem are assumed to have inde-
composable root systems. We shall have to consider subgroups, however, for which
this is not necessarily the case.

Unless otherwise stated, G will denote throughout the paper a Chevalley group,
with an indecomposable root system A, such that Z(G) = 1. Let B be a Borel sub-
group of G, U the Sylow p-subgroup of B, and H a p-complement of B. Then U<
B, B = UH, and H is abelian. There exists a subgroup N> H such that W = N/H can
be identified with a group generated by the reflections s,, . . . , s,, corresponding to a
fundamental set of roots @, , . . ., @, in the root system A. LettingR = {s,,...,s,},
the pair (W, R) is an indecomposable Coxeter system [8], and the subgroups B, N
define a Tits system (or (B, N)-pair) in G, with Weyl group W. We shall view the
elements of W as belonging to G when this causes no confusion.

We shall use the notations Ua; = U; and U—a,- =U_,1<i<n We may
assume that 5, €(U,, U_p) for 1 <i<n.

Throughout the paper, the Dynkin diagram of an indecomposable root system
will be labeled as in Table 1.

The correspondence we shall use between classical group notation and BV-notation
is given in Table 2.

The primes in the first column of Table 2 indicate, as usual, the derived groups.
The identifications between different parts of the table were given in [30] and [34].
(See [9] for a summary.)



C. W. CURTIS, W. M. KANTOR AND G. M. SEITZ

TABLE 1
A, n=1 .t v 00—
" ?_8 n-1 n
B, n >2 o o a—
1 2 n-1 n
Cn' n=?2 O————0 0@
1 2 n-1 n
D", n=4 O—0 .
1 2 S— -
n-2 0: 1
E,
1 3 4 5 6
2
E,
1 3 4 5 6 7
2
EB
1 3 4 5 6 7 8
2
F, o——ac—>0—o0
1 2 3 4
TABLE 2
Classical Group Notation (B, N)-Notation Type of A
PSO(2n + 1, q)’ B,(q) B,
PSp(2n, q) C,(@) Cu
PSO™*(2n, q)' D,(q) D,
PSO™(2n, q)' D, (@) B, ,
PSU(2n, q) 2A2n—1(‘7) C,
PSU(2n + 1, ¢q) 2A2n(¢1) BC,

All the root systems are given explicitly at the end of [8]. The root system BC,
is not reduced and consists of the union of the vectors on pp. 252 and 254 of [8]. In
this system, roots have lengths 1,+/2, or 2. A root a € A has length 2 if and only if
@/2 is a root, and in this case, U, =U, /2 in the corresponding Chevalley group.

For each subset I C {1, ..., n}, set

W= {(sli €Dy

G, =(B, U_lj¢ D= (B, W)= BW;B;
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L, =<, U_ilj¢1>; and

0; = (U,la> 0 and a = Zm;o; with m; > 0 for some j € ).
(Of course, W; = 1,G,=B,L;=1,and @, =Uincase I = {1,...,n})

We have already used, and will continue to use, abbreviations, such as G; = G{,.},
Lii =1L {i.j} ete

(2.1) LEMMA. Let a, § be independent roots. Then

U Ugl € IT Uia +jg-
i,j>0sia+jBEA
Proor. [36, pp. 24, 181].
We remark that i, j € Z in (2.1) unless A has type BC,, in which case 2i, 2j € Z.

On several occasions we shall need more precise versions of these commutator relations
(cf. (4.8)).

(22) LemMa. LetIC {1,...,n}
) Q; <G, Q)L <Gy and G, = Q,L,H.
(i) Qy is the largest normal p-subgroup of G,.
(iii) L, is a product of pairwise commuting covering groups of Chevalley groups,
and its structure can be found by deleting the vertices in I from the Dynkin diagram
of G.

Proor. The commutator relations imply (i). Since Q; < U, Q, is a p-group.
Since H is a p"-group, to prove (ii) it will suffice to show that L, has no proper normal
p-subgroup. Let w, be the element of maximal length in W;. Since UN L, is a
Sylow p-subgroup of L;, and (UN L) NUN L)"0 =1, it is clear that L, has no
proper normal p-subgroup, so that (ii) is proved. Statement (iii) follows from the fact
that the structure of a Chevalley group of rank > 1 is determined by the root subgroups
and the commutator relations, which are in turn all determined from what remains of
the Dynkin diagram after deleting the vertices in 1.

(2.3) Lemma (Tits). If L is a proper subgroup of G such that U< L
then L < G; for some i.

Proor. See [32, (1.6)].

(2.4) LEMMA (BoREL AND TiTs). Let V, be a subspace of E, such that the
root system A, = A NV, contains a basis of V, and let W, be the Weyl group of
A,. Let a,B € A— A, be such that « = (mod V) and |&| = |B| (where |-| denotes
a length function invariant by the Weyl group). Then a € fW,.

PROOF. [7]. (This will only be needed for very special cases in (4.2), where it
is easy to check by direct calculation.)

(2.5) LEMMA. Let T = {U,la € A}. If a € Aand w E W, then (U,)" = U gy s
so that, in particular, T = {Uf,",.ll <i<n,w€&W}. Wacts on T by conjugation.
The permutation groups (W, A) and (W, Z) are isomorphic, with the isomorphism
induced by the correspondence o <—> U,,.
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ProoF. This result holds for arbitrary groups having split (B, N)-pairs ([31]).

(2.6) ProPoSITION. View G as a subgroup of Aut G, and let G be the sub-
group of Aut G generated by G together with all the diagonal and field automorphisms
of G. Then G? < Aut G, and the index divides 6. Aut G is generated by G ¥ and the
graph automorphisms of G. If G < G* < Aut G, then G* has a normal subgroup G*
= G* N G* containing G of index dividing 6 such that G* has a Tits system given by
subgroups B, N* satisfying B =G N B* and N=G NN+, Moreover, Gt = B*G.

Proor. See [36].

(2.7) LemMmA. Let L, M be subgroups of a group T. Then (17, 17) is the
number of (L, M)double cosets in T.

The proof is omitted.

(2.8) LEMMA. LetI,J C {1,...,n}. Then (101, =0, 13, is the
number of (W;, W;)double cosets in W.

ProoF. The statement follows easily from the axioms of a Tits system and
the Bruhat decomposition (see Remarque 2, p. 28 of [8]), together with (2.7).

. 9) LEMMA. Let G be a Chevalley group, and let G < Aut G be as in (2.6).
Then lG+ IG =1 g» and each irreducible constituent of lG.,. remains irreducible when
restricted to G.

ProOF. The equality follows from the fact that B*G = G+ and Mackey’s
Subgroup Theorem. (2.7) and (2.8) imply that
(g, 19 =y, =Sy, 18D,
proving the second statement.
We remark in passing that (2.9) proves that if G+ has a 2-transitive permutation
representation with character § = 1 + x, and if x € 1G
permutation representation.

B+ , then G has a 2-transitive

(2 10) PROPOSITION Let G be a Chevalley group and G* be as in (2. 6) Let
G<G<G"Y and let B be a Borel subgroup of G Suppose that n > 2, and G has a
subgroup L such that LB = G. Then either G < L or one of the following holds:

(i) G=PSL(3,2)and IL| =3 - 7.

(i) G = PrL(3, 8) and |L| = 3% - 73.

(ii) G = PSL(4, 2) ~ Ag,and L ~A4,.

(iv) G =PSp(4,2) =~ S, and L ~Ag.

™) G=G,(2),and L =G'.

(vi) G =2F,(2),and L = G'.

(vii) G = PSp(4, 3) ~ PSU(4, 2), and L N G is a maximal parabolic subgroup of
PSU(4, 2) of order 26 - 3 - 5,

Proor. This result is Theorem A of [32].
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3. Properties of the classical groups. In this section we shall discuss some general
properties of the classical groups PSp(2n, q), PSO*(l, q)', and PSU(l, q). We define
SO*(l, q) as follows. Let ¥ be an l-dimensional vector space having a nondegenerate
quadratic form, and let G be the group of isometries of V. If ¥ has maximal index,
then G = GO™ (I, q); otherwise, G = GO(I, g). Then SO*(l, q) is the set of elements
of GO*(l, q) with determinant 1 or Arf invariant 0, depending on whether g is odd or
even. Recall that, as in [15], an orthogonal space V is nondegenerate if rad(¥) con-
tains no nonzero singular vectors.

We are primarily interested in the structure of the parabolic subgroups of the
classical groups (see (2.2)). Further discussion of these groups will be found in §§6
and 8. Basic information on the classical groups can be found in the books of Artin
[1] and Dieudonné [15]. Some of the arguments given here are in outline form, with
details left to the reader. Some information of a numerical nature is tabulated in
Table 3 at the end of this section; there, p is the reflection character (see (5.4)), while
o=1¢ , ~1g —p. We first state the main results; the proofs will be given later in
this section.

(3.1) ProrposITION. Let G = PSO*(l, q), 1=>1.

() Q, is elementary abelian of order q"~%.

(i) L, = SO*(I -2, q)', and acts on Q as a group of F -lincar transformations,
preserving a nondegenerate quadratic form. If q is even and l is odd, then the radical
of the form is U, where s is the short root of maximal height.

(iii) Let r be the positive root in A of maximal height. Then G, = N(U,) =
C(U)H, where |U,| = q.

(iv) If q is odd, then U, is an isotropic 1-space in Q, while if q is even, U, is a
singular 1-space.

(3.2) ProrosITION. Let G = PSp(2n, q),n > 2.

(@) 10,1 =¢q*""Y. Ifq is odd, then Q, is special with center of order q. If q
is even, Q, is elementary abelian. ’

(ii) Let r be the root of maximal height. Then Z(Q,L,) = U, has order q, and
G, =N(U,) = QU)H. If q is odd, then U, = Z(Q,). All elements of each nontrivial
coset of U, in Q, are conjugate in QL.

(iii) L, ~ Sp(2n - 2, q), and acts on Q,/U, as a group of F -transformations
preserving a nondegenerate alternating form. If q is odd, such a form is induced by
the commutator function. If q is even, L acts indecomposably on Q, .

(iv) There exists a positive root s such that UU,/U, is central in U/U, and is an
isotropic 1-space of Q,/U,. Here, |UJ| = q.

() @12 =0,V 0,965 0L, 96, OyLy, S AU, and Gy, =
(Q,L,,)UH = Cg ,(UJU, H.

(3.3) ProrosiTiON. Let G = PSU(l, q), 1 > 4.
(i) Q, is special of order q*'~1, with center of order q.
(ii) There exists a uniquely determined root r such that Z(Q,) = Z(U,) has order
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q. Iflis odd, U, is special of order q3, while if 1 is even, U, is elementary abelian.
All elements of each nontrivial coset of Z(Q,) in Q, are conjugate in Q,. Moreover,
G, = MZ(Q,)) = CZ(Q,))H.

(iii) L, ~SU(l -2, q),and acts on Q,/Z(Q, ) as a group of qu-linear transforma-
tions preserving a nondegenerate hermitian form. The commutator function induces a
nondegenerate alternating form on the F,-space Q, /Z(Q,) preserved by L,. (The
Jorms are related by (3.7).)

(iv) There is a positive root s such that UZ(Q,)/Z(Q,) is central in U/Z(Q,) and
is an isotropic 1-space of the unitary space Q/Z(Q,). Here, Uyl = q°.

() Q15 = QU5 829G 13, 0,11, 4Gy, QL < AU), and Gy, =
(Q2L 1)U H = Cg ,(U)U,H.

These properties will be proved, for the most part, together. The case of
PSO(2n + 1, 2"’ is left to the reader. We can replace G by the corresponding linear
group G = SO*(l, q)', Sp(2n, q), or SU(,, q), acting as usual on a vector space V and
preserving a nondegenerate quadratic form, a nonsingular alternating scalar product, or
a nonsingular hermitian scalar product, respectively. In each case we let (, ) denote the
underlying scalar product, and let dim ¥V = . We are assuming that rad(¥) = 0.

We can write V=V, L--- 1LV, LV, ,,with V|,..., V, hyperbolic planes,
and V, ., either O or anisotropic of dimension 1 or 2. We select an ordered basis
Vy5 ... > Y for Vin such a way that v;, v,_;,.; is a hyperbolic pairin V; (1 <i<k)
and V, ., is either O or has a basis {v; 4.} or {v; > Vp4,}. Matrices will be written
with respect to the ordered basis v;, . . ., v, of V.

We first show that the subgroup B of G fixes a unique 1-space in ¥V, which is
generated by an isotropic vector (or singular vector if G is an orthogonal group and q
is even). Consider B acting on V. Since U<I B and U is a p-group, U fixes every vector
in a nontrivial subspace of V fixed by B. As B = UH and H is diagonalizable on V, B
fixes a 1-space ¥, of V. Suppose G is not orthogonal with q even. If V, is not
isotropic, then ¥V = ¥, L Vg and U acts faithfully on V. However this implies that
U is contained in a classical group of smaller dimension, which is impossible in view
of |Ul. So in this case V,, is isotropic. Now suppose G is orthogonal and q is even.

If ¥, is not singular then Vé is a nondegenerate orthogonal space of dimension less
than dim V. Also, U acts faithfully on Vi, as otherwise G would contain a transvection,
which is not the case. As before, order considerations yield a contradiction. Thus,

Vo is singular. We only need the uniqueness of ¥,,. Suppose that B fixed the 1-space
Vo- Then Vj is isotropic (or singular) and so Vg = V§ for some g € G. Thus B <
Ng(Vy) and B Ng(Vy) = Ng(V, ). The theory of parabolic subgroups implies that
g € stab(V,y) and ¥, = V. Since B fixes a unique 1-space and since H is diagonaliz-
able on ¥, it follows that dim(C(V)) = 1.

We may assume that B < N;((v,)) = Y, so that Y is a parabolic subgroup of G.
Since ¥ = (v, ) L {v;, v,)", ¥ contains a subgroup Y, such that Y, is trivial on
{vy,v;)and induces on (v, v} the derived group of the group of isometries of (v, v,)l.
Let 0 = OP(Y). Then since Y acts irreducibly on the space (v, )l/(vl ), Q is trivial on
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this space. Also, V/ v, Y is 1-dimensional and v, is 1-dimensional, so that (Y/Q) is
trivial on these spaces and, hence, faithful on (v, )1/(0l ). It follows that (Y/Q)' = Y.
Thus, by (2.2) we have Y = G,.

We now claim that g € G belongs to Q = Q, if and only if g has one of the
following matrix forms. This fact is verified by checking that the matrices described
in each case form a normal p-subgroup of G, with the property that no larger p-sub-
group of G, acts trivially on (v, >/(v,).

1
%1
-2, i
0
(34 G symplectic. @y 0
: 1
a4
a4 4 a 1
1
—a_2 1~
- .0
3.5) G unitary. . .
. o -
~a- 1

-, a4, "' a4 1

Here g, + @, = (a,_yv, + " +av,_,,4_y0, +- -+ +a,v,_;),anda = a%.

1
—a, 1,
. *. . 0
(3.6) G orthogonal. : ..
—a,_l 0 *. 1

+a, a4, " 4 1

Here ¢, = —t(a,_,v, + * - + a,v,_,), where #() is the quadratic form on V.
If g € @, has one of the above forms, set Ve = a1, + -+ +ayv,,. Then
Ve satisfies the condition:

(v)g = ap, +v, +v, (symplectic case),
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(v)g = —ap, +y, + Vg (unitary case),

(v)g = ap; +v; +v, (orthogonal case).

In all cases, v, is a vector belonging to ¥, L -+ -1V, and for g € Q; and

VEV, L1V,
(g =v =, Y.

Using these facts we obtain, for all g, h € Q,,

1. 0
0 . 0
3.7) .h]=| ‘ N
0 . 0
Wrv,) O -+ 0°1

where (v, U,)" = (v, V) ~ (Vg Up)-

Consequently, 0, is elementary abelian if V is orthogonal, or if V is symplectic
and q is even. In the remaining cases, Q, is special and has as center the group X of
transvections in G with direction (v,). By (3.7), if g € @, — Z(Q,), then all elements
of the coset gZ(Q,) are conjugate in Q,.

Clearly C(V,) induces a group containing the derived group of the isometry
gioupof Vi =V, Ll---1V,,,. fg€Q, andy € C4(V,), theng” €Q,. We
have

W)y~ 'ey = cv; + )y +,

where c¢ is the coefficient of v, in (v)g. In particular, Vy1gy = (vg)y. The properties
of the set of vectors {v,lg € Q,} show that the action of C;(V;) on Q, (if G is
orthogonal) or on Q, /X (if G is symplectic or unitary) is determined by the mappings
Ve F U3, 8€0,, Y€ Cg(V1). Therefore, L, acts on Q, (in the orthogonal case)
or on Q,/X (in the symplectic or unitary cases) as a group of linear transformations

on a vector space over Fq, preserving a nondegenerate quadratic form, or a nonsingular
alternating or Hermitian scalar product. Also L; < Cg(X).

Suppose that V' is symplectic with ¢ odd or that V is unitary. Then X = Q,
and (3.7) shows that the commutator function induces a nondegenerate alternating
form on Q,/X. The action of C;(V,) on Q, shows that this form is preserved by L.

Suppose that V' is symplectic and q is even. Then Q, is abelian, and we will
show that L, acts indecompesably on Q,. Let X, be an L, -invariant subgroup of Q,,
not contained in X. Let 1 #g € X, be as in (3.4). As L, is transitive on the nonzero
vectors of @, /X = V, L+ L V,, every nonzero vector of ¥, L -+ -1 V, appears as
vy, for some 7 in X,. This construction produces q'~2 — 1 elements of X, all having
the same entry q;,. These elements, together with 1, do not form a group. It follows
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that, if 0, is decomposable, then @, = X x X, with |X,|= ¢"2, and the preceding
argument gives a contradiction.

The rest of the proof involves the (B, N) structure of G. We begin with some
remarks concerning the root systems. (Further discussion of these root systems can
be found in (6.1)—(6.4).) The root of maximal height is as follows [8, pp. 252, 254,
256]:

Bya, +23 o
1<i

(3.8) Cpp2Y o +a,
i<n

D,:a; +2 > ota, | ta,
1<i<n-1
For type B, and D,,, this root is fixed by W, = (s, 53, ..., s5,), while for type C,
it is fixed by W,. We now divide the discussion into three cases.

(1) G = S0O*(l, q)', where q is odd if  is. Here A has type B, or D,,. Define r
by (3.8). By the commutator relations (2.1), C(U,) = (U"|w € W,) = Q,L,, so
NU,) = Q,L,H = G, by (2.2). Then MU,) = G, by the maximality of G,, and
clearly C(U)H = G,.

Since U N L, is Sylow in L, from the action of L, on Q, it follows that the
space of elements fixed by U N L, is an isotropic 1-space (singular, if ¢"is even).

Since U, < Q,, it follows that U, is in this 1-space, so since |U,| = g, it follows that
U, is isotropic (or singular).

(2) G = Sp(2n, q) or SU(2n, q). Here A has type C,, and U, is elementary
abelian of order q, where r is given in (3.8). Since W, fixesr, the commutator relations
(2.1) imply that C(U,) = (U”|w € W,) > Q,L,. Then, as in (1), G, = N(U,) =
C(U)H. The irreducibility of L, on Q,/X shows that X = U,.

Since each root # *a; which involves «, also involves a,, @, = (U,la> 0, a #
@,, and a involves &, or o, ). Thus, @,, = @,U,. Moreover, @, < Q,,L;,.

The root s = r — a, is the highest short root, and is fixed by W,,. The com-
mutator relations (2.1) imply C(Uy) = (Uy’la > 0, a # a;, w € W ,) = Q,L,;,. Then
G2 = QLU H = Cg ,(U)U,H. Also, L, = L,,(U;, U_;) with [Ly,, U;] =
[Ly5, U_;] =1. Since G, = Q,L,H, and since H normalizes L, ,, we have Q,L,,
<G,.

The group U U,/U, < Z(U/U,). Also, s is short, so |U,| = |U, | = q for Sp(2n, q)
and g% for SU(2n, q). As in (1), U,U,/U, is an isotropic 1-space of Q,/U,.

(3) G=8U(2n + 1, q). This time A has type BC,. With respect to the basis
@, ...,q, of B, the root r = 2(a; + -+ - + @,) is the root of maximal height in
C,,, where r/2 is a root. The root s = o, + 2(ey +* * + o,) =r — «, is highest in
B,,. Here Uy and U, are conjugate under W, as are U, = U, , and U,. This implies
that U, is elementary abelian of order q* and U, is special of order q*® with center of
order q.

The only roots a not of length +/2 for which U, < Q, are r and r/2 [8, pp. 252,



12 C. W. CURTIS, W. M. KANTOR AND G. M. SEITZ

254]. Since Z(Q,) = @} = X has order g, we must have Z(U,) = Z(Q,).

As in (1), the space of fixed elements for U N L, in its action on Q,/X is an
isotropic 1-space. Since s = r —a,, the commutator relations (2.1) yield [UN L,, U]
= 1. So again we find that U X/X is an isotropic 1-space. The remainder of (3.3)(v)
can now be proved as in (2). This completes the proof of (3.1)—(3.3).

(3.9) LEMMA. Let G and s be as in (3.2) or (3.3). Let x be an irreducible
constituent of both lg and lg(x), where 1 # x € U,. Then X is a constituent of lg”.

Proor. Set T=Q,L,,. By (3.2) and (3.3), we know that T< ((x), T < G,,
and G,, = TU,H. In particular, x € 15. Write

1§ =190 = (g, +0, + -+ 0%,
where the 8,’s are irreducible characters of G, having T in their kernels. We may
assume that x & 1§ , and, hence, that x € 9€ for some i. Since x € 15, the Mackey
Subgroup Theorem yields

0<@®%15H=3 @

GynB’
GzWB

where the sum is taken over the distinct (G,, B)-double cosets.

There is a double coset G,wB for which (t9;"_l , 1 c¥nn > 0. We can consider
w to be in W. Since s; € W,, we may assume that every minimal expression for w as
a word in the s;’s has the form w =s;, - - - 5;, with s;; #5,. Then (a;)w is a positive
root, so G)” N B > U"H.- Consequently,

w1 < v ! = (pw~1
0<(0, s I)GynB \(61 ’ I)UYH (61 > 1)(U1H)W’

0 (0;, Dy, >0. Thatis, 1y, 5 €(0)y,n- But Tis in the kemnel of 8,50 1y, yr
€0)u,nr, where G,, = U,HT. Thus, §; € 1812, as required.

4. Properties of the exceptional groups. We next consider some general properties
of the groups G = F,(q), 2E(,(q), E(q), E,(q), and E4(q), having, respectively, Weyl
groups of types F,, F,, Eg, E,, and Eg.

Let r be the positive root of maximal height. The commutator relations (2.1)
imply that U, < Z(U). By [8, pp. 260, 265, 269, and 272], r is as follows.

Fair=2a; +3a, +40; + 2q4,
@.0) Eg:r=a; +20, +203 + 3a, + 205 + g,
Ej:ir=2a; +2a, + 303 +4a, + 305 + 204 +ag,
Eg:r=2a; +3a, +4a; + 60, + Sog + dag + 3a,; + 204.
(4.2) ProrosITION. (i) The stabilizer of r in W is W,, where i is given in Table
4. Also, G; = Ng(U,).
(i) (1§, 18) = (ly, 1) = 5.
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(1 -0+ b) (1= D)1 + D) (-2 = D) 1- ¢ Dol 4 UTNSd

A— - NI&N@NVAﬁ + ~+=NWVNU A— + ~|=NGVA~ - ENWVMW A— - NltNWVA— + —Irﬂvxﬁ - =NWVA~ + —+=N@v A— - :uWVA— + —+=N~vv
(1= D)1 + D) (1= D1 + D) (1= ,0)(1 - ;D) N I— b & sy

A— - NIRNN&A— + -l=~bvm~u A— + nl:nwx— - RNWVNNV A— + mI:N¢VA— - NI:NGVA— + —I:NWVA— - ENGV A— + —ltNWVA— - Eva
— - NG — - N& Aﬁ - N@VA— - Uv — —_ @ “ AW .:NVIQMMN

(1 - =)0 + 2P| (0 + )T = (_uP)P (1= =D+ _u®)( = D+ WD) (I - D1+ D)
1— b 1-¢b (1 -1 -5 1-b b 7). 084

A— + -I=WVA— - —I:WVNv A— + NIRWVAﬁ - SWVW A~ + NI:WVA~ - ﬂl=vx~ + —IS@VA— - :&v A— + Tn-\dﬁ— - :@v +

(1-bx (1-bx (-1 -5 A=b gy

A— - NDSUVAﬁ + :@v& A— + —I:EVA— - Ebvb Aﬁ - NIENWVA— - =N~wv I - ENG
(-5 (1-bx (-D0-5 L=2 ko 1+ wiosa

(1= D)1 + )P (I + D - ub)b (1= 4wz = ub) - uzb

(o ()¢ 1*0: 0 I'o: 0l )

€ 41av]



14 C. W. CURTIS, W. M. KANTOR AND G. M. SEITZ

(iii) lwi is multiplicity-free, and the degrees of its irreducible constituents are
given in Table 4. The reflection character of W is a constituent of l%i.

TABLE 4
G i IG: G}l Degrees in lwi Degree p(1) of reflection character
12 -1
F@ | 1] @+t 1,2,9,48 | %@ + 1" +1)
9 +1 q12 -1 qs
2 4epnd = 1,2,9,4,8 2a* + 1) + 1
E@)| 1| (@ )q3+l q-1 a*@@ ) G} )q+
4 q9_lq12_l s q9_l
E@ | 2| @+ D)y Py 1,15,20,6,30 | q@" +1) 7
14 12 18 6 14 _
¢ -1q°-1q°-1 9@’ +1)q 1
E 1 1,27, 35,7, 56 —_—
2@ a-1 g%-1 ¢ -1 ¢ +1 g2-1
10 -1 ‘730 -1 10 -1
Eg(q) { 8] (" + l) T w1 1,35,84,8,112 | q(¢"° + l) 3

ProoF. It is easy to check that r is fixed by W;, so G; = (U, Hw.€ W;) <
Ng(U,). Thus, G, = Ng(U,) by the maximality of G;. Moreover, if (f)w = r, then
(U)” = U,, so w € G, and, hence, w € W; by the uniqueness of the Bruhat decom-
position. This proves (i).

To prove (ii), we must calculate the number of orbits of W, on ()W (see (2.7)
and (2.8)). By (2.4) (or using [8, pp. 260, 264, 268, and 272], for each integer
m, 0,, = {a € (HWla has m as coefficient of o;} is either empty or an orbit of W;.
Again by [8], 0y, 0,, 0_;, 0,, and (_, are the orbits of W,. This proves (i). In
particular, lwi is multiplicity-free.

To prove (iii), let w, be the element of W of greatest length. Again using [8],
we find that Wo normalizes W;; in fact, w, € Z(W) for W of type F,, E,, or Eg. We
will consider W Wiwg).

Since w, sends positive roots to negative roots and (o)wy = —¢;, w, fixes 0,
and interchanges both 0, and 0_,, and (0, and (_,. Consequently, W acts as a rank
3 permutatlon group on {{a, —a}|a € (r)W}, the stabilizer of {r, —r} being W
Slnce v l = lw + A, with A a linear character, we have lw = lw, + A", Here,
1,7, - lw is the sum of 2 irreducible characters, so by (ii), A¥ is also the sum of 2
1rredu01ble characters.

Let V be the natural module for the reflection representation of W, and let 7 be
the corresponding reflection character. Then a, . .., @, can be regarded as a basis
for V. Set V; = ("‘il j # i). Then W, stabilizes V; and is trivial on V/ V;; that is, lw,.
appears as a constituent of the character of W; on V. Thus,  appears in l%’. with
positive multiplicity (and, hence, multiplicity 1).
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Ifre 1%‘., then 1) € 7wy However, if W is not of type E¢, then wy, is
—1on V. Thus, Wis of type E,, in which case w stabilizes V; = V, and is —1 on
ViV, [8, p. 261] In any case, V; is the natural module for the reflection representa
tion of W;, so W is irreducible on V;. In particular, W fixes no vector of ¥, so 7 ¢ lw

1t follows that 7 € Y, so the degrees of the irreducible constituents of 7\"' are
7(1)and |W: W,-l —7(1). The degrees of the three irreducible constituents of lw,~ can
be found by using the results of Frame [39, Chapter 5] or Higman [21], or by
guessing and elimination. The results are given in Table 4.

In Table 4 we have also listed the index |G : G;| and degree of the reflection
character p of G (see (5.4)), which will be needed later. We will also need to use
another parabolic subgroup later, when G is F,(q), E4(q), or E;(q).

(4.3) ProrosiTiON. (i) Let W have type F,. Then lw decomposes into five
irreducible characters of degrees 1,2,9, 4, and 8. Of these, the ones also in lw 1
have degrees 1, 4, and 9.

(i) Let G = E4(q). Then lw is the sum of three irreducible characters of
degrees 1, 6, and 20, all of which occur in lw Also, |G : Ggl = @-Dg-nt-
@ -net -t

(iii) Let G = E7(q) Then lw decomposes into four irreducible characters, of
degrees 1,217, 7, and 21, of which only the first three appear in lw Also, |G :G,|
=@ +1)¢° + D" - -17

Proor. In (i), (i), and (iii), set j = 4, 6, and 7, respectively. Then (lwi, 1%}.)
=5, 3, and 4, respectively. For (ii) and (iii) this is proved in [23]. For (i) it can be
deduced by applying the graph automorphism of W to W, ; alternatively, we could
proceed as in (4.2), replacing r by s = @, + 2a, + 3ay + 2a,. The indices |G : Gl
are easy to compute.

We next claim that (1} Wi lw]) 3. To prove this, we must find the number of
orbits of W; on (r)W. This is easy to do, using the roots given in [8] and the action
of the reflections on each root.

This proves (ii), since the reflection character of W appears in 1 6 TO find
the degrees in (iii), introduce W W{wg) as in the proof of (4.2). This time, lw is
the sum of just two characters, of degrees 1 and 27. Comparison with Table 4
completes the proof of (iii).

It remains only to show that for W of type F,, 1}, , and 1y , have in common
an irreducible character of degree 9; we already know by (4.2) that they have 1,, and
the reflection character in common. We will show that the third common character
¢ cannot have degree 2 or 8.

Suppose cp(l) 8. Set W4 W4(w0) The proof of (4.2) shows that (lwl, lw )
=1. Then W= W, W,. Since W, N W, contains W, 4(w,) of order 16, [W| d1v1des
(2% - 3)?/2%, which is not the case.

Finally, suppose ¢(1) = 2. Then ¢|lW; = 1y, and ¢|W, — 1y, are linear. Con-
sequently, the reflections s,, s,, 53, and s, commute mod ker ¢, which is absurd. This
proves (4.3).
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The remainder of this section will be devoted to the study of the structure of
parabolic subgroups of G.

(4.4) ProPoSITION. Let G = E¢(q), E,(q), or E4(q), and let r and i be as

before (see (4.1) and Table 4).
() Q; is a special group with center U,, and has order q**, ¢33, or q°7, re-

spectively.

(i) G; = N(U,) = QU,)H and L; < C(U,), where L,/Z(L)) =~ A4(q), Dg(q), or
E(q), respectively.

(iii) Q;/U, can be turned into an F-space such that the commutator function
induces a nondegenerate alternating form on Q,/U,. Moreover, L jactson Q,/U, as a
group of Fq-linear transformations preserving this form.

PROOF. Again let (0, consist of those roots with ith coefficient 1. Then Q;
(U,, Ufls € 0,) [8, pp. 260-270]. Lets, t € 0,. Then, since the Dynkin diagram
of G is simply-laced, the commutator relations (2.1) show that [U,, U] =1if and
only if s + ¢ is not a root. Moreover, if s + ¢ is a root, then s + ¢t =r.

Conversely, if s € 0,, we claim that r —s € 0,. For, by (4.1) and the deﬁmtlon
of i in Table 4, r —; = (r)s; € 0,. Since 0, is an orbit of W;, we can write s = (e)w
with w € W;. It follows thatr —s = (r —a)w € 0,.

Thus, Q; is the central product of the groups (U, U,_) = UU,U,_,, each of
which is special of order g3 with center U,. Hence, Q, is special. Its order is easily
found using (2.2), as is the structure of L. Also, L; centralizes U,, so ((U,) = Q/L;.
Then N(U,) > Q,L;H = G;, and, hence, G; = N(U,) = Q(U,)H by the maximality of G;.

It remains to prove (4.4)(iii). Let & consist of all the elements h(x), with x a
character of the additive group generated by the roots into F# Then H > H, and
L H and Q.L, H are groups. Let Hy = {h(x) GHlx(a) =1 for allj #i}. Then [Hy| =

— 1, and Hy, centralizes L; while acting on Q;. Moreover, if h(x) EH,,then U (a)h(")
= Us(x(a,-)a) forall s € ()1 and a €F,. Consequently, H), acts fixed-point-freely on
Qi/Ur‘

If0#a€ Fg, let h, € H be the unique element for which &, = h(x) € H,
and x(¢;) = a. Then Q,/U, becomes an F,-space as follows: for v € Q, /U, of the
form v = yU,, y € Q,, define av = y"aU,. Since L, centralizes H,,, it acts as a group
of F,-transformations on this vector space. Finally, U, can be regarded as a field via
the correspondence + — U,(¢). From the commutator relations (2.1), it follows that
the commutator function is a nondegenerate alternating form on the F g-Space, preserved
by L;. This completes the proof of (4.4).

I

(4.5) ProrosITION. Let G = F,(q).

() 10,1 = 4¢3, and L,/Z(L,) ~ PSp(6, q). If q is odd, then Q, is special with
center U, (cf. (4.1)) of order q; G, acts irreducibly on Q,/U,. If q is even, then Q, =
LSwith [L,S] =1,LNS= U, L special with center U,,and S an elementary abelian
normal subgroup of G, of order q"; moreover, G , acts irreducibly on U,, S/U,, and

Q,/8s.
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(ii) 10,1 = q'%, and L, =~ S0(7,q). G, has a normal elementary abelian sub-
group R, of order q7 such that U, < Ry < Q,, where s = a; + 2a, + 3a; + 2a,.
G, acts irreducibly on Qu4/R,.

(iii) If q is odd, then L, acts on R, as a group of Fq-transformations preserving
a nondegenerate symmetric form. The isotropic 1-spaces of R, are conjugates of root
groups U, with o a long root.

(iv) If q is even, then U, G,. L, acts on R, as a group of Fq-transformations
preserving a quadratic form for which the radical of R, is U. The singular 1-spaces of
R, are conjugates of groups U, with o a long root.

) G, =N(U,) = QU)H. If q is even, G, = N(U;) = C(U)H.

(4.6) ProrosITION. Let G = 2E(q).

(i) Q, is special of order q®! with center U, of order q. G, acts irreducibly on
0,/U,. Moreover, G, = N(U,) = C(U,)H.

(ii) 10,1 = ¢**, and L, ~ SO™(8, q)'. G, has a normal elementary abelian
subgroup R, of order q® such that Us <Ry < Qy, where s = a; + 2a, + 303 + 2a4.
G, acts irreducibly on Q,/R,.

(iii) L, acts on R 4 4s a group of Fq -transformations preserving a nondegenerate

quadratic form. The isotropic 1-spaces (or singular, if q is even) are conjugates of root
groups U, with o a long root.

Proors. Let G = F,(q) or 2Eﬁ(q), so W is of type F,. Then W has two orbits
on A: the long and short roots. Here a, and r are long while a3 and s are short. The
action of W is determined by the following equations.

(O‘i)si =-0 and (ai)sk =q for |j —klI>1,
@“.7) (@y)s; = a; +a,, (a3)55 = a3 +ay,
(@)s, = a; +a,, (a3)5, =a, +as,
()53 = ay +2a3, and (ay)s3 = a3 + a,.
From this information it is easy to determine all roots. In particular, let Lfn (and S ,’,,)
be the set of long (or short) roots for which m is the coefficient of ;. Then
L} = {og, 0, + 0,0, + 0, + 205, 0, + 20, + 203, 0, +a, + 205 + 2a,,

o, +2a, + 205 + 204, 0; + 20, +4a; + 20,, 0 + 30, + 40y + 20,1},

Sl={o +a, +oy,0; +ay +az+a,, 0 +a, +20; +a,
o, +2a, + 203 + a4, 0 + 20, +30; +a,,a + 20, +3a; +20,},

and Q, = (U, la € {r} U L} U S]). Moreover, W, = (s,, s,, 55) is transitive on both
L} and S! by (2.4). It follows that root groups U, Uz < @, are conjugate under
W, if and only if « and § are roots of the same length.

Before proceeding further, we note the following facts.
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(4.8) LEMMA. Let o and § be positive roots in A.

(i) If a + B is not a root, then [U,, Ug] = 1.

(i) If o and B are long, and o + f is a root, then a + B is long. Suppose a, B,
and o + (3 are all long or all short. Then [U,, Uﬁ] = Uy (U, Up) is special with
center Uy, g, and [g, Ug] = Uy, g whenever 1 #g € U,.

(iif) Suppose a is short, B is long, and o + B is a root. Then o + B is short, 20 +
B is long, [Uy, Ugl S U, 45U, o4 p, and [Uy, Ugl £ U, 5. Moreover, [U,, g] # 1
whenever 1 ¥ g € Uﬁ.

(iv) Suppose o and B are short and o + B is a long root. If G = F,(q) with q
even, then [U,, Ugl = 1. In all other cases, [Uy, Ug] = Uy g, (U, Up) is special
with center U, , 5, and (g, Ug] = Uy Whenever 1 # g € U,.

ProoF. This can be proved as follows. By [10], we can write a = a'l and 8 =
my oy + m,a;,, where o and o are roots generating a root system of rank 2 and
m; € Z. Now (4.8) can be checked from the structure of the rank 2 subgroup
(Usays Usaly) = T, where T/Z(T) = PSp(3, q), PSp(4, q), or PSU(4, q).

We now return to the proof of (4.5) and (4.6). By [8, p. 272], r is the only
root for which a; has coefficient 2. Thus, for a, € 0, = L} U S}, a + § is a root
ifandonly ifa+f8=r. Also,r—a, € L] andr—(a; +a, +a;) € S}. Consequently,
the transitivity of W, on L} and S} implies that r ~a € [} ifa € [} andr —a €
S} if « € S}. Now (4.8) implies that, except when G = F, 4(q) with g even, Q, is
the central product of the special groups (U,, U,_,) = U,U,U,_,,a € L} U 8}, each
having center U,, so Q, is special and Z(Q,) = U,. Set L = (U, la € [} U {r}) and
S =(U,la € S} U {r)). When G = F,(q) with q even, (4.8) implies that 0, = LS
with [L, S] =1, L NS = U,, S elementary abelian, and L special with center U,. In
any case, |Q, | is determined by (2.2).

When G = F,(q) with g even, S<IG,. For W, permutes the groups U,, a €
Si. Also, H normalizes S. Thus, we need only check that U normalizes S. Consider
U, <S and U; with § € A™. If B is short then [U,, Ugl < S by (4.8)(ii) and (iv).

If B involves «,, we have already seen that [U,, Ugl = 1. Suppose f is long and does
not involve ;. By (4.8)(iii), « + B € S}, while 2a + 8 is a root with first coefficient
2. Then 2« + 8=, and hence [U,,, Ugl K U, gUsq45<S. Thus, SIG, in this
case.

Since 7 is the root of maximal height, U, < Z(U). Moreover, W, fixes r and H
normalizes U,, so C(U,) = (U, W)= Q,L, and N(U,)> Q,L,H = G,. By the maximal-
ity of G, we have G; = N(U,) = Q(U,)H. If G = F,(q) with q even, then the graph
automorphism of G interchanges the roots 7 and s and the parabolic subgroups G, and
G,. Thus, in this case we have G, = N(U,) = C(U,)H. This proves (4.5)(v) and the
last part of (4.6)(i).

The rest of (4.5)(i) and (4.6)(i) is either contained in the following lemma or is
obtained by very similar methods.

(4.9) LeMMA. If q is odd or G is not F,(q), then G, acts irreducibly on Q,/U,.
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PROOF. Suppose that M is a proper G,-submodule of ¥ = Q,/U,. Let bars
denote images in V. Choose a € L} U S1, and suppose that U, " M # 1. Since H
acts irreducibly on Ua, Ua <M. Thus, Ua <Mforalla€ !, orforalla € S,
but not both as M # V. Suppose « € S}. Then a + € L} for some short root g,
where Ug < Gy, and then M > [U,, Uyl = U, by (4.8)(iv). We must thus have
a€ L}. Then there is a short root 8 such that o + § € S}. By (4.8)(iii), « + 28 =r.
Also, Uy < Gy, so by (4.8)(iii) we have [T, Ugl SM N Ty 5Usyop=MN Uy
and [U,, Ug] # 1. Thus, M N U,z # 1 for a short root & + B, and this is impos-
sible.

Thus, T, "M =1 for all «€ L} U S!. The rest of the proof depends on the
following “‘separation” properties, each of which is easily proved by inspection using
the transitivity of W, on L'l, S}, and L‘l) = {fa,, ¥ (0 + 203), £(0y + 205 + 204)}:
(a) if a # B and a, B € L1, there is a long root A € L(l, such that « + X € L] and
B + A is not a root; (b) if A € L(l), there is a unique root \* € S! such that A + \* €
S!, and A — A* is bijective; and (¢) if « € L} and B € S}, there is a long root A €
L} such that & + X € L! and  + X is not a root.

These are used as follows. Note that Uy <G, forall A € L},. Take v#1in
M, and let Z(v) be minimal among those subsets Z of L} U Si such that v €
Mex (70. Then choose v with |Z(v)| minimal; we know this number is > 1. Let
a, B € Z(v) with a # 8. Then, interchanging « and § if necessary, (a), (b), and (c)
imply the existence of a long root A € L(I) such that a + A is a root in L} U] S} having
the same length as «, while § + A is not a root. By (4.8), we can find g € U, such
that 1 # [g, v] € M and |Z([g, v])| < |Z(v)l. This contradiction proves the lemmas

We now turn to G,. We will consider the following sets of roots.

L‘; = {a, + 203 + 20,4, a; + 0o, +2a3 +2a,, 0; + 20, +2a; + 204,
a, + 20, + 4oy + 204, @) + 3a, +4a3 + 204,71,

Al ={og, 0, tay, 0 oy +aj,0) +a, +2a;, 0, + 20, + 203}

Set R, = (U, la € L‘; U {s}), waere L; U {s} consists of all roots with a4-co-
efficient 2. The commutator relations (2.1) imply that R, is an elementary abelian
normal subgroup of G,. Then G, acts on Q4/R, and R,. Using the methods of (4.9)
it is not difficult to see that G, acts irreducibly on Q4/R,. Also, |U;| = |U,| =g,
while U, | = U/l = q if G = Fy(q) and |U,| = Ul = ¢* if G = 2E¢(q). Thus,

IRyl = q7 if G = F,(q) and IR,| = ¢® if G = 2E4(q).

It remains only to determine that the action of L, on R, is as in (4.5) or (4.6),
and that L, ~ SO(7, q)' or SO™(8, q)'. From the Dynkin diagram we know that L, is
a central extension of SO(7, q)' or SO™(8, q)’ (see (2.2) and Table 2). Thus, it suffices
to show that R, can be regarded as an F -space having a form of the appropriate type
preserved by L,.

First note that A, consists of all roots in a system of type B having first
coordinate 1. Let X =(U,|la € A,). We apply (3.1) to the group L,. The group X



20 C. W. CURTIS, W. M. KANTOR AND G. M. SEITZ

is elementary abelian and has the structure of an Fq-space. Moreover, this space has
a nondegenerate quadratic form preserved by L,,. The radical of X is O unless q is
even and dim(X) is odd; that is, when G = F,(q), with g even, in which case rad(X) =
U,, where @« = @; + o, + a;. Inany case, the isotropic (or singular, if g is even)
1-spaces of X are the conjugates of the root groups U, with « a long root.

Set w = 5,535,535,. Then

Apw = {o) +a, + 203 + 204, @, + 20, + 20, + 2q,,
(4.10) a; + 20, +4az + 2a,, o) + 3a, +4a; + 204, 5},

(Apws; = {ay + 203 + 204, @) + 20, + 205 + 204,
o, + 20, + 4ay + 2a,,r, s}

Also, (a,)w = a, and (a3)w = a3, so w centralizes L,,. Consequently, L, acts on
XY =(U,la € (A;)w) as it does on X.

By (4.10), (A )w U (A)ws,; = L3 U {s},s0 R, = X¥X"™1. In fact,R, =
X" x YwithY= Uay+2a3+2a4U,- Since @y +2a; + 2a, is the only member of
L3 U {s} not involving @, (4.8)(i) implies that [L,,, Y] = 1. Conjugating by s,, we
find that R, = X™*1Y°! with [L}}, Y*!] = 1. By definition, L,, =(U,, U, U_,,
U_3), 50 L1} = (Usy4agr Us, U—(a; +ag)s U—z)- Since [Uy, 4aq U_,] = Uy, it
follows that L, = (L, ,, L]}). We will determine the action of L, on R, by using
the known actions of L,, and L}, = L};!.

First we switch to additive notation: write V= R,, Vy=)w, and V, = Y, so
V="V, ®V,. Weknow that ¥, is an F-space, so each a € F, determines a scalar
multiplication v —> qv on V. There is also a scalar action on (V,)s,. We have V =
V))sy © (Vy)sy and (Vy)s, = V, ® V,, where V, = (V,)s; N V,. We thus have
two scalar actions on ¥, one determined by V, and the others by (V,)s,. Here,

V = U ® U ajt2a,+2a3+2a, ® Ual+2a2+4a3+2a4'
Also, the commutator relations imply that
[Uil’ Us] [U.tl’ +2a2+2m3+2a4] [U:tl’ a1+2a2+4a3+2a4] =1

Thus, (U;, U_,) centralizes V3, and consequently, s, centralizes ¥V = V; N (V,)s,.
It follows that the scalar action on (¥,)s, obtained from that on V; agrees on the
overlap of the two spaces, and consequently, V=V, + (V,)s, becomes an F,-space.
We know that L, 4 acts on ¥, while inducing the identity on V,, and a similar state-
ment holds for L}. Thus, L, = (L,,, L]}) acts on ¥ as a group of F,-linear
transformations.

Consider the action of L1} =~ SO(S, q)' or SO7(6, q)' on the space (V,)s, .
Clearly L,,4 = (U;, U_3) = L14,. Here L}}, is contained in a proper parabolic
subgroup of L1}, and since a, is long, it follows as in (3.1) that L]}, stabilizes an
isotropic (or singular) 1-space (v) & rad((V,)s,). (Actually, rad((¥,)s,) is O except
when G = F,(q) with q even, in which case it is a 1-space.) Moreover,L,,, induces
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SO(3, q)' or SO7(4, q)' on {v)/v) and acts irreducibly on this space, or G = F,(q)
with g even and L ,, acts irreducibly on @)/(w) + rad((¥,)s,), inducing Sp(2, q)
there. Now L, is trivial on ¥, s0 L,,, < L}4 is trivial on the subspace ¥, of
(V))sy. Thus, if rad((V,)s,;) = 0, then ¥, must be a hyperbolic plane. If rad((V,)s,)
# 0, then by (3.1) we have rad((V,)s,) = Ua;}ay+a3 = Uy % V,; once again it
follows that V,, is a hyperbolic plane. In either case, since L}, fixes ¥V, we have
Vs, =V, LV,

Similarly, ¥, is the usual module for L ,,, and we can write ¥, = V¥ L V, for a
hyperbolic plane ¥ = (V,)s;'. We can now induce a quadratic form on V as follows.
The decomposition V'= V5 & V; ® V, will be orthogonal. The subspaces V'} and
V, will be hyperbolic planes, on which the quadratic forms are determined by L,
and LY, respectively. The form on V restricts to ¥, and (¥,)s, in the obvious way.
This is well defined. Indeed, as before, s, is trivial on V; =¥, N (V)54 so the forms
on V, and (V,)s, agree on their intersection V.

Finally, L1}, is trivial on V, and L, is trivial on V. Thus, L, = (L4, L1}
preserves the form. Moreover, it is clear that the form is nondegenerate and the radical
is trivial unless G = F,(q) with g even. In the latter case rad(V) = rad((¥V)s,) = U,.
Since a vector in V| is isotropic (or singular) in ¥, if and only if it is in ¥, we can
apply (3.1) to complete the proof of the propositions.

(4.11) LemMA. Let G = Eg(q) and let x # 1 be an irreducible character of
G. Then x(1) > q*8(q - 1).

PrOOF. Let Q = Qg, and consider x|Q. By (4.4) Q is special of order q°%7,
|U,| = 12(Q)| = q, and if |1Z(Q) : T| = p, then Q/T is extraspecial of order ¢5%p. Let
¢ be a nonlinear irreducible constituent of x|Q, and set T = Z(Q) N ker ¢. Then
|Z(Q): T| = p and y is faithful on Q/T. Thus, ¢(1) = ¢*>8. Also, g is determined by
vlZ(Q). Since H is transitive on Uf = Z(0)* and ¢" € xIQ for each h € H, x(1) >
q*8(q - 1), as claimed.

5. The constituents of lg. The following terminology will be used throughout
§85-7.

(5.1) DerFINITION. Fix a type of Chevalley group, of normal or twisted type,
of rank n = 3, whose Dynkin diagram is in Table 1. Let S = {G(q)lq is a prime
power} be the set of all Chevalley groups of the given type; all have the same Coxeter
system (W, R), where R = {s,, ..., s,} is asin §2. Here, q is related to G(g) in
such a way that the following statements hold. (A more general situation is studied in
[51, [12], and [19].) Let B(q) be a Borel subgroup of G(¢g). Then there are positive
integers ¢y, . . ., ¢, such that

() ¢; = ¢; if s; and s; are conjugate in W;

(ii) 1B(9) : B(g) N B@)"!| = 4°;

(iii) |U;| = ¢°%; and

(iv) all ¢; are 1 for groups of normal type, the c;’s for the classical groups are
given in Table 5, and for 2E4(q),¢; = ¢, = 1,c3 =¢4 = 2.
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Groups of rank n < 2 will be handled separately.
TABLE 5

Type of Group ¢, =--"=¢,_; ¢,

24,,@)
4 2n-1@)
B,(@)
C.(@)
D,(q)
2Dn+ 1@)

— e s e NN
—_ W

[ T S

(5.2) ProrosiTioN [5], [12]. Let S be as in (5.1). Then, corresponding to
each irreducible character y of W, there is a polynomial d, (t) € Q[t], called the
generic degree associated with , having the following properties.

For each prime power q, there is a bijection y — §,, . between the irreducible
characters y of W and the irreducible constituents §y, q of 1§§g ;, such that

d\p (q) = g—\y,q(l)a dq, (1) = l;b(l)s

and
W 1)=&y ,q0 1883
for each subset J of {1,...,n}.

(53) LEMMA. Let h(t) = Z Y(1)d,, (#), where the sum is taken over the distinct
irreducible characters of W. Then for all prime powers q, h(q) = |G(q) : B(¢q)!.

PrOOF. By (5.2), 159 = Ty(1)¢, ,. Evaluating both sides at 1 yields the
u B(q) v.q
result.

(5.4) ProrosiTION [12]. Let S be as in (5.1) and (5.2). Let ¢ denote the
character of the usual reflection representation of W. Then §% q=P is called the
reflection character of G(q). The degree of p is given in Tables 3 and 4. Moreover,
(o, 1ggggj) = \J| foreachJ C {1,...,n}.

We remark that groups of rank 2 also have reflection characters p, whose
degrees are given in (7.26). We also note that the degrees p(1) for £4(q) and 3D4(q)
are stated incorrectly in [12].

<I>,-(t) will denote the jth cyclotomic polynomial.

(5.5) ProPoSITION. Let S be as in (5.1) and (5.2). Fix an irreducible
character Y # 1y, of W, and set f(t) = d, (). Then the following statements hold.
G) 7(0) = at*F#(1), where 0 < « € Q, 1 <k € Z, and f*(£) is a product of
cyclotomic polynomials other than t — 1; in particular, f#(0) = 1 and f#(¢) is monic.
(ii) Write |G(q) : B(q)| = g(q), so g(?) € Z[t] is a product of cyclotomic poly-
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nomials other than t — 1. Then
FAOlg00 TT 1€ - 10 - 571,
i=1

where 2(£f) = 1, except that z(t) = (t* = 1)/(t> — 1), when G = PSU2n + 1, q). In
particular, if G is of normal type, then f #(t)l g(0).

(iii) Write a = a/b, with 1 <a, b € Z and (a, b) = 1. Then (a/b) f¥(1) =
FOIIWL, al W), bIf#(1), and blg()z(1) L | ¢;. In particular, b\g(1) for groups of
normal type.

(iv) If p is a prime, then p** 4 b.

(v) Let q = p’, where p is a prime and j = 1. Then p X f(q) if and only if
a = p, p| W, and p*|p.

PROOF. By (5.2), we can write f(¢) = at*s#(£), with « € 0, k > 0, and £ #(0)
= 1. For each prime power g, f(q)! IG(q)|, where 1G(q)! 14" g(¢q)2(q) nL (@i -1),
for some positive integer N. Consequently, f*#(r)|g()z(¢) ML (" = 1). Then f #1)
is a product of cyclotomic polynomials. Since ¥(1) = af #(1) # 0, ¢ — 1 does not
appear in the factorization of f¥#(r). Since ®,(1)>0forallj>1,f #(1) > 0 and,
hence, a > 0.

In order to prove that k > 1, we first note that h(¢) = Zy(1)d,, (¥) is, by (5.3),
a polynomial such that #(0) = 1. Therefore h(f) — 1 = Z,, ., ¥(1)d,, (), and since
eachd, () = «, v ff (#), with &, >0, and ff (0) = 1, we have, by evaluating both
sides at ¢ = 0, the result that ky, > 0 for every ¢ # 1. This completes the proof of
(i) and (i), since all ¢; = 1 for groups of normal type.

Clearly (a/b)/*(1) = £(1) = W(1)IIWI, so al W], and B 7*(1). By (ii),
blg(1)z(1) M, ¢;. This proves (iii).

To prove (iv), suppose p**1|b. Here f(p) = (a/b)p*f *(p). Since f(p) and £ *(p)
are integers and f#(p) =1 (mod p) by (i), this is impossible.

Finally, suppose ¢ = p/ with p a prime, where p 4 £@@). Thenp 4 (a/b)g*f #(q),
so g*|b. By (iv), p =g, so p¥|b. Moreover, blg(1)z(DI  ¢; = IWlz()IT ; ¢;. Thus,
either p| [W|, plc; for some ¢; <2, or p|2. But 2| [W|, so p|iW| in any case. Conversely, if
q =p, pl IW|, and p*|b, then £ (p) = (a/b)p*f *(p) is not divisible by p.

REMARK. The fact that £ > 1 in (i) is Corollary B’ of Green [19]; the proof
we have given is slightly different from his. Theorem (5.5) also provides the following
additional information.

(5.6) THEOREM. Let G be a Chevalley group of rank n = 3. Associate a power
q of a prime p with G as in (5.1). Let B be a Borel subgroup of G. Then every
irreducible constituent of lg — 1 has degree divisible by p, except possibly when
q = p is a prime dividing |W|.

Proor. (5.5)(v).

More precise information can be proved in some special cases:

(5.7) THEOREM. Let G be a Chevalley group of rank n 3 1 defined over a field
of characteristic p.
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() If n <2 and G is not Sp(4, 2), G,(2), G,(3), or 213‘4(2), then each nonprin-
cipal irreducible constituent of lg has degree divisible by p.

(i) Suppose n = 3 and G is neither Sp(2n, 2), PSO(2n + 1, 2)', nor F,(2). Define
ias follows: i = 1 or 2 if G is a classical group;i = 10r 4if Gis Fy(q);i=1ifG is
2E(q)i=1,20r6if GisEg(@);i=10r Tif Gis E;(q); i =8 if G is Eg(q). Then
each nonprincipal constituent of lgi has degree divisible by p.

This theorem and the next one will be basic to the proof of the Main Theorem.
The proof is long, and will be given in §§6, 7. We remark that a straightforward
modification of the proof yields the conclusion of (ii) if i = 4 and G = %E 6(q). For
n = 2, the degrees of all the irreducible constituents of lg are listed in (7.26).

We also remark that, by (2.9), once (5.7) is known for a Chevalley group G, it is
known for any group Gt satisfying G <G < G¥, where G is defined in (2.6).

(5.8) THEOREM. Let G # Sp(2n, 2) be a classical group of (B, N)-rank n > 3,
defined over a field of characteristic p. Then each nonprincipal constituent of lg
has degree divisible by p.

Here, G, , is defined as in §2. The proof of (5.8) is postponed until §8.
In one case of (5.6), a complete result is already known:

(5.9) LemMA. If G has type A,(q), then each constituent X of lg —1g has
degree divisible by q.

PrOOF. According to [33], x can be written x = Ea,l Gy with a; € Z, where
the sum is over all J C {1, ..., n}. Then also x = ZaJ(IG 1), where g divides
the degree of IG = 1g. Thus, qlx(1).

The followmg technical lemma will be needed in §7.

(5.10) LEMMA. Let Sbeasin(5.1). FixJC {l,...,n}, and consider the
parabolic subgroup P(q) = G(q); of G(q). Let fo() = 1,£,(1), . . ., f,(t) be the
(not necessarily distinct) polynomials determined, via (5.2), by l,G,((g)). Thus

C@:P@I=1+ 3. 1@

For j = 1, write f(t) = a tklfi#(t) as in (5.5)(0), d; = deg f}, and d = max;;, d;.
Assume that d; = d, and write k = kg. Then

d+kd —k;

s—1
IG(): P@I@* - 1) = @** -1+ ¥ £ T-1).
=1

ProOOF. |G(q): (@)l = h(q), where h(¢) € Z[t]. Then h and the f,# are products
of cyclotomic polynomials other than ¢ — 1. Since f; (¢) has highest term o; x% with
a; > 0, we have deg h = d. Thus, h(1/f) = h(t)/®. Also, f;*(1/t) = f,#(z)/t"z ki so
5 (l/t) 1 (O/°1**i. Consequently,
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r(O* = (158t = (1 + i f,-(l/t)>t‘”"

j=1

s
_ dtk d+k—dj—k;
=9 +i§l £ .

Since d + k —d; — k= 0, subtraction of 4(¢) from this last relation yields the desired
result.

We remark that is is conceivable that d + k — di = k; <0 for some subscripts j.
We also note that further information is obtained by replacing ¢ by ¢ in the conclusion
of (5.10), and then differentiating at ¢ = 1; this will be done in §7.

6. The degrees of certain characters of the classical groups. In this section we
shall prove Theorem (5.7)(ii) for the classical groups having Coxeter systems (W, R) of
types B,,, C,, BC,,, and D, for n > 4. For groups of type 4,,, the result is already
known because of (5.9). The groups of types B,, C,, and BC, for n =2 and 3 will
be treated in §7.

Let E,, be Euclidean space of dimension n, and let €45 ... ,€, be an orthonormal
basis. By [8], fundamental systems of roots of types B,,, C,, and D,, are given as
follows.

B, oy =€ —€,0 =€ —€3,...,0, 1 T€,_; —€,,0, =€
(6.1) Cpt @y =€ —€,0, =€ €3, .05 0 = €yy T €y, 0 = 26,3

D, a;=€;—€,0, =€ =€,...,0_;=€_1~€,0 =€, +¢€,.
Letting R = {s;, ..., s,} denote a distinguished set of generators of a Coxeter system

of type B, C,, or D,, we can identify s,, . . ., 5, with the following linear transfor-
mations of E,,.

B,, C,, and BC,: If j <n, (€)s; = €115 (€4 1)5; = €,

(€)sj =€, i#j, 7+ 15(e,)s, =€,
(€)s, =€, <n.

(6.2) D,:Ifj<n, (ei)si = €y1s (ei + l)sj =€,
()s; =€, i #7,7+ 15(€,)5, = —€p_1>
(€q—1)5, = —€p, (€5, = €] Fn—1,n.

The group W can be viewed as a transitive permutation group on the set
{te;, ..., t¢,}, which we shall denote by {£1,..., £n}.

(6.3) LEmMMA. Let (W, R) be a Coxeter system of type B,, C,, BC,, or D,,
forn=4,withR= {s;,...,s,}asin (62).

(@) Wy =<5y, ..., s,) is the stabilizer of {1}, when W is viewed as a permutation
group on the set {x1,...,tn}. The double coset space W\ W/W, has 3 double
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cosets, corresponding to the orbits of W, on the set {*1, ..., tn}.

(b) W, =<5y, 83, ..., 8,) is the stabilizer of the pair {1, 2}, when W is viewed
as a transitive permutation group on the set of 2n(n — 1) unordered pairs {xi, *j},
i #]. The double coset space W\ W/W, contains 6 double cosets, corresponding to the
orbits of W, on the set of unordered pairs {i, £j}, i #]j.

ProoFr. The proof of (a) is immediate, and is omitted. For (b), one first checks
that W, is exactly the stabilizer of {1, 2} because |W: W,| = 2n(n — 1). It is then
easy to verify that there are exactly 6 orbits, with representatives {1, 2}, {1, 3},
{-1,2}, {3,4}, {-1,3},and {-1,-2}.

(64) LEMMA. Let G be a classical group having a Coxeter system of type B,,,
C,, BC, or D, with n = 4. Then IG is multiplicity-free and contains IG More-
over, (lclslol)_3"”d (1 ) 6.

PROOF. By 238), 1§, 1G )= a$ ) for all i and /. By (6.3), (1}, 1)
= 3 and (lw 2, ) = 6. Fmally, since the unordered pairs {*i, *j} correspond to
the right cosets sz, the orbits of W, on this set correspond to the double cosets
W,wW,. Since there are 3 orbits, we have (lwl, 1%2) = 3. All the statements in the
lemma follow from these remarks.

(6.5) PROPOSITION. If G has a Coxeter system (W, R) of type B,, with n > 4
then (5.7)(ii) holds.

ProoF. We begin with a closer examination of the double coset space W,\ W/W,.
By (6.3), this space can be identified with the W,-orbits on the set of unordered pairs
{4, £j}. The following table lists a representative of each orbit, the size of the orbit,
and an element of W of minimal length which carries {1, 2} to an element of the
orbit. The latter elements are the unique elements of minimal length belonging to the
various double cosets, and we shall index the double cosets by these representatives.

Doubl t
Orbit Representative  Size of Orbit ouble Cose

Representation
{19 3} 4(n - 2) w‘l" =5,
-1,2 2 W¥=g5 +--§5 ---g
6.6) t ! 27 % n 2
3, 4} 2(’1 - 2)(n - 3) wg‘ = 5,535,5,
{—193} 4(n-2) W:=S2"'s §18,85,_1 """ 5,
{—1’_2} 1 W’;:sz"'sn---szslsz...sn...sz

Let &, .. ., & be the standard basis elements of the Hecke algebra H(G, G,),
in the sense of [13]. Then

1

= x, 0<i<S5.
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Note that &, is the identity element of H(G, G,). Let LEi denote the left multiplica-
tion by &; on the space H(G, G,). We note that H(G, G,) is commutative since lg
is multiplicity-free (by (6.4)). We shall compute the matrix of the left multiplication
Ly, with respect to the basis £, . . . , &5, and determine the characteristic roots of
this matrix (which will all occur with multiplicity one). This will lead to a proof of
(6.5).

(6.7) LEMMA. The matrix M of the left multiplication L g, With respect to the
basis £y, £,, . . . , &5 is given by

0 x(x+ 1)y 0 0 0 0
1 A+ xw  oux3 vx? 0
0 n x-Dn o0 2 0
M= ,
0 (x+1)? 0 0 v+ 1)? 0
0 1 x we £ vx?
0 0 0 0 nx+1) nx2-1)
where x = q°1 = q°2 =+ - - = ¢°"~1 and y = ¢°", and
A=t dxe, £= 15 (@ - G0 ~ D)+ ),
_OMona ") @2 -1+ x")
k= x-1 ’ - x—1 ’
p = x2n=6y, o= (x + D328y —x""2y + x"1 - )
x-1 ’
(The index parameters c; are given in Table 5, §5.)
ProoF. We have, by [13],
5
g5 = 2 bk
k=0
where
b = IG,1 71 G,wiG, N WG, WG,
= |G,|T WG, wiG, N G,w}G, |
= |G, |7V G, wiG,wE N G,wiG,l,
using the fact that w is an involution forj =0, 1, ..., 5. Thus, b, is just the

number of left cosets of G, that are contained in both G,w}G,w§ and G,w}G,.
Also, M is just the matrix (b, ;). We begin the computation of b, ;. by finding a set
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of G,-coset representatives in G,w¥G,. We have

2(n-2) 2(n-2) ,
Wys,W, = Ul Wawy;) U ‘U Wowyils
i=

j=1
where
— ’ —
Wi = S2 Wi = 55,
_ and v
Wiz T 5253, W12 T 525153
. .
h 4 —. e o o TR
Wi2m-2) =52 " " Sp—15, §35 Wi2m-2) = 525 Sn—15n S3-

Moreover, the above unions are all disjoint and the elements w, ; and w} IREY)
< 2(n - 2), are easily seen to be the unique elements of minimal length in the cosets
containing them. Then by standard arguments for groups with BN-pairs (see [8]),

2(n—-2) 2(n-2) ,
iyl BW,w, ;B| U igl BW,w) ;B

2(n—-2) 2(n-2) ,
U Gw  U)U\ U GwUJ,
i=1

=1

G,5,G,

where the unions are all disjoint. Moreover, using the root structure in G (see [30]),
we have

G,5,U=G,s,U,
G,5,53U = G,s,5,U53 U,

.
.
.

3 Sns3 3
G,s, Sn—15n s3U = Gys, Sn—152 33(}; U; U;

and
G,5,5,U = G,s5,5, U3 U,

e s U= . Coe s U3 SRS 83
Gy5pS1 " " Sy 83U = Gysysy vt sy g8, e 8305 U;Us.

Since |U;| =+ -+ = |U,_,| = x and |U,| = y, we conclude from the uniqueness of
expression in the Bruhat decomposition that

G,s,U contains x left G, cosets,

G,5,53U contains x* left G, cosets,

G,8y * " 8,15, * * - 53U contains x2" 7Sy left G, cosets,

G,5,5, U contains x? left G, cosets,

G,858y " 8,18, * * * S5 contains x2" %y left G, cosets.

In particular, G,w}G, contains
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x+x2+ XTIy 4 4 x2Sy
2 4 ... n-3 -3 2n—4_ N —
+ (x* + + X"+ X0y + +x") =x(x + 1)y

left G,-cosets, when 7 is given in the statement of (6.7).

We shall now give, in tabular form, the distribution of the G,-cosets in
G,wiG,wi. (Zeros are omitted in the tables, except in the totals.) Determination of
the double coset containing a given w € W is made by applying w to {e,, €,} and
finding the orbit to which {(e;)w, (¢;)w} belongs. Determination of whether I(ws,)
= I(w), for example, is made by computing (o:,.)w’l , using the fact that

Iws;) > I(w) if and only if (a)w™! >0.
This information is used in combination with
wBs; CBwB U Bws;B, and wBs; CBws;B

if I(ws;) = I(w). In computations with root systems we shall use the notation S,
for the linear map x — x —2(x, a)o/(, ), where « € E,,. After each case some
remarks will be made on some of the less obvious parts of the calculations.

* * %K * *
w wi w3 wl  wl  wi
G,wiG,w§ 0 |x(x+ Dn 0 0 0 0
* %* * & * * * *
G,wiG,w} w wi w3 wy | wi |wi
* -
G,w, ,Uw} 1] x-1
* 2
Gywy o Uwi x
: .
. * 2n-6
GyWy,2n-sBWY X0y
G w Bw* x2n—5y
2W1,2n-4PW]
! % 2
Gyw1,1Bwi x
' * 3
szmbl x
° * 2n-5
G,¥1 ,2n-sBWY X
' * 2n—4
G,Wy 2n—aBWi x2ny
Totals 1 A+w? | xv w3 v |0

REMARKS. G,w, Bw} = G,5,U,s, C G, U G,s, Uf, since s5,U,s, = {1} U
s, Ufs, and 5,Ufs, C Gy5,U,.
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G,wiG,w} ws  wt wj wi  wi  ow?

Gywy, Uw3 1 x—1

G,w,, Uw} x x(x -1

szl,;n-4UW§ ; 2';_6y xz”“’};(x -1

sz'l’l Uw3} I | ,22

GZW'I,;n—4UW; xz';—4}’
Totals ol n x=1m '0| xn |0

* —
REMARKS. wj =S,.

H#soaw3
* — * — *) — * * 2W2
Gyw 1 W3 = G5, Uy w3 = G,5,U,5,(53w3) = G,s,wh U G,wiU, )

and (a,)w3 = () Se, <0, giving 1 coset in G,w}G, and x — 1 cosets in G,w3G,.

* — 3 * — W33
GywyUws = st2s3l}; Uswi = (G5, UpwHU;3 273,

and the first computation can be applied to all Gyw,;Uw%, 1 <i<2n-4. Alo,

’
G,w,;Uw} C G,w}G,,

1<i<2n-4.

* * * * * * * *
Gowilwy  w§  wf  wi w} wi wi
* -
G,w, U3 1 x=1
* -
Gyw,, Uw} x x(x - 1)
* 3
GyWi3UW3 *
: * 2n—7
GaW1,2n-6UW3 x0Ty
G,w Uw? x3n—6
2W1,2n-5UW3 g
* 2n-5
GaW1,20-4UWS Xy
’ * —_
Gyw;, Uw} x x(x-1)
' * 2 2(y —
G,w, ,Uw} x x“(x—-1)
’ * 4
Gyowy 30w} X
vl * 2n—6
GaW1,2n-6UW3 X
' * 2n—5
GaW1,2n-sUW3 X
' * 2n—4
GaW1,2n-aUWS x>
Totals 0 |[x+13 o 0 x4+ D% 0
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* ¥ % gk % * * *
G,wilwy  wh wi wi  w} wi wi
* -
Gywy 1 Uwg 1 x-1
G,w, ,Uw} x x(x 1)
‘ 2n=7,| .2n=7 . _
GoW1,2n-sUW] Xyl xf Ty - 1)
* 2n-5
GaW1,2n-aUW5 x0Ty
G,w),Uw¥ x x(x—1)
' * 3
Gywy Uwg X
v " * 2n-5
GoWi 2n-sUWS X" "y
' * 2n—4
Gawy 2n-aUW} x“"y
Totals 0j 1| x xXu ¢ x*v

REMARKS. Wj, =8¢ _¢3S¢,°
For G,w,, Uw}, (a,)w} <O0.
For G,w,, Uw}, (a3)wi > 0, (ay)s3wi <O0.

For Gyw, 3Uw%, (a)wi > 0, (a3)sawi > 0, (a,)535,w5 < 0.

For G,w; 5,—sUW}, (a)wi > 0, (a5)s,w3 >0, . . .,

(@3)84 * * 8, * - s,wi >0,
(0)s3 * * + 8, =+ 5355 <O0.
For G,w; 5,—aUW}, (@3)sy «** s, ** = s3w§ > 0.
G,wilwt  w§ wf wi wi  wj wi
Gow,, Uw¥ 1 x=1
Gyw1 2n-a U X276y | X3 Cy(x - 1)
G,w;, Uwé x x(x-1)
GoW) 2n-aUWE x2Sy | XS p(x - 1)
Totals olololol(x+Dn *-Dn

31
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REMARKS. W¥ =S¢, 4¢,-
This completes the proof of (6.7).

(6.8) LEMMA. The characteristic roots of M are:
0y = x(x + 1)1 + x"3)x""2 - Dx - )7L,
0, ="y + 00" - -7,
0, =" =1 +x")x - 171,
3 =—@+ DA +x""y),
a=G+ D" -0,
0s =—(+1+x"3(y -x).

The proof of (6.8) was done by machine computation. The program was
written by Professor T. Beyer of the University of Oregon Computer Science Depart-
ment.

Since LE1 has 6 distinct characteristic roots, it follows that the Hecke algebra
H(G, G,) is generated by &,. Recall that &, = IG2 Zreg, X is the identity in
H(G, G,), V = CG, is a (CG, H(G, G,)) bimodule, and V regarded as a left CG-
module affords the permutation representation 1’5’ 2 The next result is known [21],
but is presented here in a slightly different form.

(6.9) LEMMA. Let A be the matrix of right multiplication by &, on V.
(i) The minimal polynomials of A and M are the same, and coincide with the

characteristic polynomial p(t) of M.

(ii) lg ) = lggg; ) has exactly 6 irreducible constituents S0, S1,g0 -2 S50
which are afforded by the subspaces of V belonging to the characteristic roots 0,

» 05 of A. The degree of §; q is the multiplicity of 0, as a characteristic root of A.

(m) For 0 <i<S5,let p(t) = p(t)/(t —8,). Then the degree of $1,q is given by
Giq(1) = P0) (trace p4)).

PrOOF. Since the 6 x 6 matrix M has 6 different characteristic roots, we know
that the characteristic and minimal polynomials of M coincide. Since § — Lgisa
faithful representation of the algebra H(G, G,), we have p(¢,) = 0 in H(G, G,). Also,
£, — A induces a matrix representation of H(G, G,), therefore p(4) = 0. On the
other hand, H(G, G,) is a subspace of ¥, and is invariant under right multiplication by
&,. Therefore, if, for some polynomial f(¢), f(4) = 0, we have f(R¢,) = 0, where Rg,
is the right multiplication by &, in H(G, G,), then f(§,) = 0. Therefore p(¢)|f(?), and
we have shown that p(¢) is also the minimal polynomial of 4.

Since H(G, G,) is isomorphic to the centralizer ring Homg(V, V), V has 6
irreducible CG-submodules, each appearing with multiplicity one. On the other hand,
V is the direct sum of the six subspaces belonging to the characteristic roots of A4, and
these are CG-submodules of V. It follows that the irreducible CG-components of 1< 2
are afforded by the subspaces belonging to the characteristic roots of 4, and that the
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dimensions of these subspaces are the multiplicities of the characteristic roots of A.
Part (iii) follows from part (ii) and a result of Feit and Higman [16, Lemma
(34)], since p(t) has simple roots. This completes the proof of the lemma.
The next lemma is also known [21, Theorem (5.2)]. We include a proof since
our situation is slightly different.

(6.10) LeMMA. Let A be the matrix of the right multiplication by &, on V
and let s > 0 be an integer. Then trace A° = |G : G,Ingo, Where g, is defined by
£ = oMk

ProoF. If £ is an element of H(G, G,), write (§), for the right multiplication
by £ on V. We then have

5
trace(4®) = trace(t5)p = 2. ny; trace(¥)z-
i=0

Moreover, trace(fy)g = dim ¥V = |G:G,|. It suffices to show that trace(f;)r = 0 for
i20. Let G,wfG, = Ugi,.w;."G2 (disjoint), for i =0, ..., 5. Then the elements
{g;wfto};,; form a basis for V. Fort=0,...,5 we have

(6.11) giwikot: = %a;l,lkglkw:EO’

. # 0, then

with nonnegative rational coefficients af; ;. If for some ¢ # 0, aj; ;

multiplying (6.11) on the left by (g;;w¥)™" yields
& = djijiko + hZ;bmngﬁEo’

with b, = 0. This is impossible, so the lemma is proved.

We are now ready to finish the proof of Proposition (6.5). Let M be the matrix
in (6.7), with x and y viewed as indeterminates. Letc,, ..., ¢,_,, ¢, be a system
of index parameters associated with a system of groups with BN-pairs of type B, (see
(5.1)). The possibilities for the ¢;’s are given in Table S.

(6.12) LEMMA. Let

Ax, y) =" - DE"T - DEY + D2y + D/ - 1)k + 1),
forn=4. ForG=G(q) € S,and ¢°1 = - - - = ¢°n~1 =x, ¢° = y, we have
IG:G,l = Fg®!, ¢°M).

ProoF. Table 3.

By (6.7) there exist polynomials n(x, ) € Z[x, ] such that & =
T30 M@ L, ¢°M)E;, as in (6.10). Define Ty(x, ) = F(x, y)no(x, »), for s > 0.
Then T(x, y) € Z[x, y], and T(q°!, ¢°") = trace 4°, s > 0.

Let ¢ be an indeterminate, and fix i € {0, . .., 5}. Write p,(x, y, ) =
(O - 0,)‘l , where p(?) is the characteristic polynomial of M. We then have

a
Py, =Tl -0)= T b »)*,
j#i k=0

with &, (x, y) € Z[x, y].
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(6.13) LEMMA. Let

4
K(x, y) = Fx, )’)< 2 I (x 2)mg ox, )’)>-

k=0
Then

Kt ¢") = trace pi(qc‘, g, A).

Proor. The result is immediate from (6.10) and (6.12).

(6.14) PRoPOSITION. Let t be an indeterminate, and let
80y =TT O, £y = 0t £y,

j#i
and

d{r) = K@Y, £)/8,(1).
Then df(q) = §; q(l) for all q.

Proor. Immediate from (6.9)(iii) and (6.13).

Thus, d(¢) is the generic degree of the characters {i,q, 0<i<S(cf. (5.2).

Now suppose q is a power of the prime p. We have to show that p divides
§i,q(1) except possibly when ¢; = ¢, and g = 2.

Using (6.8), direct computation (which is omitted) shows that s)E Z[t], and
that 6 (¢) is monic except in the following cases:

(a) 8,(r) = £25 (1), with 5 (¢) monic, i = 1,2,if ¢; = ¢,;

(b) 8,(2) = 285(2), 85(1) = 285(r), with 8(r) monic, if ¢, = 1,¢, = 2

Using the fact that d,(r) € Q[¢], and that K(¢°1, £°2) € Z[t], it follows that
d{t) € Z[t] if §(2) is monic, and d(r) = %d (1), with d(f) € Z[t] in case §,(t) =
25;(t) with 6,'(1) monic. Now we apply (5.3) to conclude that ¢ (and, hence, p) divides
d(1) if d{t) € Z[t], and that p divides d(7) in all cases except possibly when g = p =
2 and one of the situations (a) or (b) above prevails. Case (a) is a genuine exception,
and is provided for in the statement of the theorem.

It remains to show wheng=p=2,and¢, =---= ¢y = 1,¢, =2, that
d4(9) and d4(¢) are both even. In this case, G = PSO~(2n + 2, h) Assume one or
both of d4(2) ds(2) is odd. The odd degrees must be associated with characters in
lG - lc because of the formulas of the degrees in IG given in Table 3. The sum
of the generic degrees of the characters in lG lGl is, by Table 3,

f@ ="+ DE - DE - e - )7 -
_(tn+l + lxtn - l)(t — 1)—1.

Since f(¢) has leading term equal to 12, it follows from (5.5) that 2 divides the generic
degrees of the characters in 162 - lG If d(#) is a generic degree for which d(2) is
odd, we have £2|d(r), and 2d(f) € Z[t] These imply that d(2) is even, a contradiction,
and Proposition (6.5) is proved.
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(6.15) ProrosiTION. If G has a Coxeter system (W, R) of type C, or BC,
with n = 4, then (5.7)(ii) holds.

PROOF. We begin by considering a system (W', R") of type B,,. Then, as in
(6.1), we can choose an orthonormal basis €, . . . , €, of E,, so that the roots in A’
are t€, 1 <i<n, and (gt ¢), for 1 <i<j<n For afundamental system we
take 0] = €; — €3, ...,0,_; = €, —€,,and a), = €,.

Now let A be the set of roots consisting of +2¢;, 1 <i<n, and *(¢; £ ei), for
1 <i<j<n. Then A is a system of type C,, and as a base we may take a; = €, —
€35+ >0,_; =€, —€, and a, = 2¢,. There is an obvious bijection from A’ to
A sending @] to o; for each i. Also, fori =1, ..., n, the fundamental reflection s} is
actually identical to s;. Thus, (W', R") = (W, R). In particular, W' = W and W, = W,.

It follows that all calculations and results used in the proof of (6.2) continue to
hold if G = G(g) has Coxeter system (W, R) of type C,,. We find that p divides the
degree of each nonprincipal irreducible constituent of lg except whenc¢, =+ - =
¢,_1 =¢, =1and q =2, where G = C,(2) = Sp(2n, 2). Thus, (5.7)(ii) holds for
type C,,.

If G has Coxeter system (W, R) of type BC,, then the above remarks show once
again that (5.7)(ii) holds for G.

(6.16) ProrosITION. Let G have a Coxeter system (W, R) of type D,,, with
n=4. Then (5.7)(ii) holds.

ProoF. We proceed as in the proof of (6.5). Let {a;,...,c,} be a fundamen-
tal system of roots of type D,,, expressed in terms of an orthonormal basis €,, . . . , €,
of E, according to (6.1). The fundamental reflections s,, . . . , s, are given in (6.2).
The notation is chosen so that the first n — 1 generators are the same as the first n — 1
generators of the Coxeter system of type B, considered in the proof of (6.5). The
group W acts as a permutation group on {1, ..., £n} asin (6.3), and is a subgroup
of index 2 in a Coxeter group of type B,,.

By (6.3), W acts as a permutation group on the set of unordered pairs {ti, +j},
i # j, in such a way that W, is the stabilizer of {1, 2}, and the orbits of the set of
pairs relative to the action of W, correspond to the (W,, W,)-double cosets in W. By
(6.3) there are 6 orbits. The following table is the analogue of (6.6).

Orbit Size of Double Coset
Representative Orbit Representatives
{1,3} 4n-2) |wi=s,
6.17)
1,2} 2 wi = Sp " Sp—25p—15aSp—2 °°

{3, 5} 2(n —2)(n —3) | w¥ =5,5;55,

{-1,3} 4(n-2) Wi =58, " Sy 2815y 1SnSp—2 """

{-1,-2} 1 w3 = w3s, w3
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Proceeding as in the case of B,, we let &, £, . . ., £ denote the standard
basis elements of the Hecke algebra H(G, G,), and proceed to calculate the matrix of
the left multiplication Ly, .

(6.18) LEMMA. The matrix M' of the left multiplication Ly, with respect to
the basis £y, &, ..., &5 s

0 x(x+ )y 0 0 0 0
1 A+ ux? xv' u'x3 v'x? 0
0 7 x-Dn o n'x? 0
M =
0 (x+1) 0 6" V(x+1)? 0
0 1 x u'x £ V'x?
0 0 0 0 7'G+1) 7x2-1)
where .
x=gq, §= 7@ -DEP - ) + M - 1),
n—2 _ n—3
A=x? +x-1, = DA+ x77),
x—1
PP DA T e DEETTE X 4 oy
# X = 1 ’ X - l 9
v =x2n-6,

PrROOF. As in the case of B,,, we begin by finding a set of shortest W,-coset
representatives in W,w{W,. Using the same notation as in the case of B,,, we have

2n-4 2n—-4
Wys,W, = iU1 Wow, ;] U U1 Wowy; | (disjoint),
= j=

where
Wi = Sz

Win-2 =5 """ Sy
wl,n—l =8 sn—zsn’
wl n = s2 e sn—zsn—lsn’

wl,n+1 = s2 Tt snsn—2’

Wi2n-4 =53 """ SpSp—g """ 83,
and
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wi; = 8,8,8,wy; for 1<j<2n-4.
As in the case of B,,, this is verified by checking that the elements of {w,,;} and {w};},
when applied to {1, 2}, give all the elements in the W,-orbit of {1, 3}. Note that
W) p—p and w; ,_, have the same length as words in {s;, . .., 5,}.

Following the procedure we used in the case of B,, we find the entries in M " by
calculating the distribution of left G,-cosets in G,w¥G,w} in the different (G,, G,)-
double cosets. The first step is to find G,-coset representatives in G,wfG,. This is
done using the root structure in G,, and the formulas G,w, ;G,s5,U = G,s,U,,

Gywy G, = Gys,53U = st2s3U3U§3, etc. The following tables give the required in-
formation.

* * %* * % %* % *
G,wiG,wg Wo Wi W3 W3 Wi Wg

%k
G,w,  Uwg

x
.
. .
* -2
GaWy n—2 UWg x"
* n—2
GaWy -1 UWg x
: .
.
*
GyW1,2n-aUWG x

! %k
szx,x Uw§ X

o e 0

' *
Gaw1 2n-aUW5 x

Totals 0 |x(x+1n'{0|0]|0 |0

* * * * * * * *
GywiGywy  w§  wi w3 wi  wi  wi

G,w, Uw} 1] x-1

*
G,w;, Uw} x

.
.

G,Wy 2n—sUWY x
G,Wy an—aUWT xS
G,wy, Uw? x? x3
. .
. .
szl;,zn—s Uwi x2S

! * 2n—4
GoWy 2n-aUW] x

Totals L IA+uxd x' | W% x%' | 0
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* * * * % %
GywiGws  wg  wi w3 wi wi  wi
G,w,  Uw} 1 x-1
: . .
* 2n—6| .2n—6,, _
GaWy 2n-aUW3 x x“"0(x = 1)
] * 2
G,w;Uw} x
: .
: .
4 * 2n—4
GaW1,2n-aUW3 X
Totals ol = -Dn' [0o]|x*q | O

REMARK. In checking these results, it is useful to know that w} has the
following expression as a product of two commuting reflections:

* = =
w2 S("n)sn—z"'sns("‘n—l)sn—z"'ﬂ s€2+5nse2"en'
*, % % * * * %* %*
G,wiG,w§ wg  wi  w} w3 wa w3
G,w, , Uk 1 x-1
G,w,, Uw} x x(x —1)
* 3
G,ow, ;Uw} x
: .
* 2n-17
G,Wy 2n—UW3 x
* 2n—-6
GyWy 2n-sUW3 x
* 2n-5
GyW1 2n-a W3 x
4 * -
G,w; Uw} x x(x-1)
' * 2 2 -
Gywi, Uw} x x“(x - 1)
' % 4
Gywy 3 Uwd x
. .
: .
] * 2n—6
GyWi 2n-6UW3 x
[
szl,zn_sUwg‘ x2n—5
! * 2n—4
GaW1,2n-aUW3 x
Totals 0] x+1)| 0 o' |V(x+1)?| 0
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* % % * * * * %
GywiG,wi  w§ wi wi  w} wi wi
* -
Gywy Uwg 1 x -1
G,w,, Uw} x x(x—-1)
. . .
. . L]
* 2n-7| 2n-7,,. _
GW1,2n-5s U3 x - 1)
* 2n—-5
GaW1,2n-4 W3 X
Gyw, Uw} x x(x-1)
3
Gyw, Uw} x
. .
: .
' * 2n-5§
GaW1,2n-5sUW] x
! * 2n-4
GaWy 2n-aUWS X
Totals 0|1 |x]| ux £ x4

REMARK. In this case, it is helpful to express w} as a product of three com-
muting reflections:

wi = S52 +€nS€2-enSel’€3'

G,wiG,w¥ w§ wi wi wi wi wt
G,w,, Uwt 1 x-1
GyW1 2n-aUWS X276 | x216(x - 1)
G,w; Uw? x x(x - 1)
GoW 2n-a UWE S E S CRg))

Totals 000 O0|(x+Dn| &*-Dn

REMARK. As in the case of B,, this time w§ = Se, +e¢,-
These computations prove Lemma (6.18).

(6.19) LEMMA. IG:G,l = ("% - 1)(¢" - 1)@" 2 + 1)/(@® - 1)@ + 1).

Proor. Table 3.
We are now in a position to complete the proof of (6.16). We proceed as in the
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case of B,. We note that the matrix M’ is obtained from the matrix M by setting
»y = 1. Consequently, setting y = 1 in (6.8) gives the roots of M’. Thus, using (6.19),
we have a formula for the degrees of the irreducible constituents in lg ,> a8 in (6.14).
Let5,(t, 1) =11, (6,(¢, 1) - 6,(t, 1)). A direct computation, which we omit,
shows that §,(¢, 1) € Z[t], and that £ (¢) is monic except in the following cases:
8,(t, 1) = £25(z), with 8(r) monic, in case i = 3 and i = 5. As in the B,, case, we
conclude that the generic degrees d(f) are in Z[¢] if 5,(¢, 1) is monic, and d(f) =
%dy(r), with d(f) EZ[t] in case i=3 ori=15. Apply (5.3) to conclude that g, and
hence p, divides d,(q) in case d,(t) € Z[t], and that p divides d(q) in all cases except
possibly wheng =p=2andi=3orS5.
It remains to prove that when q = p = 2, neither of the degrees d(2) nor ds(2)
can be odd. This follows in exactly the same way as at the corresponding point at
the end of the proof of (6.5). This completes the proof of Proposition (6.16).

7. Proof of Theorem (5.7): Conclusion. The remaining cases of (5.7) will be
handled separately. Except for the treatment of 2F‘,(q) in (7.26), we will not use the
intersection matrix approach of §6. Instead, we will primarily use an ad hoc method
based on the algebraic properties of the polynomials discussed in §5. If A(¢) € Q[¢]
and h(f) = at* + oy o 51 + - + ot where k <1 and o; € Q, we will say that
h(?) leads with aktk and has highest term oz,t' .

(7.1) ProrosiTioN. If G = E¢(q), then Theorem (5.7) holds.

Proor. By (54), lg , contains the reflection character p. By (4.3)(ii) and
Table 4, 121 — 1 is the sum of p and an irreducible character, both of which have
degrees divisible by gq. In view of the symmetry between G, and G4, we now need
only consider 132~ By (4.3)(ii), lgz D lgl.

Suppose some irreducible constituent of lg .~ 1 has degree not divisible by p.
Then, by (5.6),q = 2, 3, or 5. Also, by (4.3)(ii), Table 4, and (5.2), one of the two
irreducible constituents of lg .~ lg . has degree not divisible by p, and we can write

O +H0 ="+ 1) - D@ - 1) 2 -1 - !
@ -ne-07E? - net -0,
where f(f) € Q[t], f,(1) = 15 and f,(1) = 30. Since some f{?) is not monic, and
since the right side of (7.2) leads with #3, we can write = (a/c)t3fl# (#) and
£, = /)3 (1), as in (5.5), where (a/c) + (b/d) = 1 and (a, ¢) = (b, d) = 1.
Thenc=danda + b =c Also, |W| = 273%5 and 2l imply that ¢ = 2 or 3 (see
(5-5)(v)).

The right side of (7.2) is divisible by ®(z), where ®5(1) = 5. Also, 5/f;(1) and
5|f,(1), while 5 cannot divide both @ and b. As f,#(t) is a product of cyclotomic poly-
nomials by (5.5)(1), ®5(¢) divides one and, hence, both f(#)’s. As 524 (D, 5 ta b
Also, 521 W], so ®5(1)* + f#(¢). Since SIf(1), it follows that 51 c.

We now have: a +b=c;(a, b)) =1;54 a, b, c; q3lc; and g, b, c||W|. Since
these conditions cannot be satisfied, this is a contradiction.

(7.2)
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In each of the cases 2E(,,(q), E.(q), Eg(q), and F,(q), we shall use the following
notation. The representation lgi is the sum of 1, §, . (the reflection character; see
(5.4)) and three other characters of G. Accordingly, we apply (5.5) and write

(7.3) [ +HH@) + () =K —1-4d,0),

where I(r) € Z[t] is the polynomial such that Xq) = [G(q) : G(q)], and f;(£) € Q[]
for j =1, 2, 3 are the generic degrees of the three other characters of G in lgi. Let
¥1, ¥4, P35 be the irreducible characters of W such that fl-(t) = d¢j(t), ji=1,2,3.
Write f(r) = aitk!fl-#(t) as in (5.5), and let d; = deg f(#),j = 1,2, 3. Arrange the
indexing so that d = dy = max{d,, d,, d;}, and set k = k3.

(74) LemMA. Let G = 2E(q), E;(q), E5(q), or F4(q), and let h(r) =
ZyY(1)d, (¢) as in (5.3). The leading term of h(t) = 1 = (1)d (t), where ¢ is the
reflection character, is, respectively, 2t, 27t*,35t* and t. In each case this term is
¢j(l)tkf for some j=1,2 or 3. If G is 2E¢(q), E,(q) or Eg(q), then £®) is monic.
If G = F4(q), then o; = 4.

ProOF. We use the formula for |G(q)| and Table 4 to check the first statement.
Next apply Table 4, and note that the right side of (7.3) leads with ¢, £2, £2, %¢,
respectively. Consequently, this term has the form ajtki sy + a,)tki or (g +oy + azs)tk1 ,
respectively. Therefore 1 = a;, ap + oy ora; +a, +o3if G= 2E(,(q), E.(q), or
Eg(q),and =0, s +oyoray +a, +o3if G= F4(9).

The set of numbers {p,(1), ,(1), v5(1)} is, respectively, {2, 8, 9}, {27, 35, 56},
{35, 84, 112} or {2, 8, 9} (see Table 4). The coefficient of the leading term of
h(t) = 1 = (1)d (¢) is at least wi(l)ai, ¢i(De; + ¢(1ay, or o, (e + v,(Nay +
¢5(1)a, depending on the form of the leading term of (7.3). The only possibilities
are as follows: a; = 1 and y;(1) = 2, 27, or 35, respectively, if G = 2E¢(q), E4(q) or
Eg4(q); and o; = % and ¢(1) = 2 if G = F,(q). This completes the proof of (7.4).

Next apply (5.10) to (7.3) to obtain

FEETFTR 4 (0¢° 1)
= [E(* ~ 1) = (@FF = D) —d ()@ TR0 - 1)

where a = deg(d,(#)) and t is the highest power of ¢ dividing d,(#). Differentiating
(7.5) and setting ¢ = 1 yields

QXA +k=d; k) + (1) +k—dy —ky)
=)k - (d + k) —o(1)d + k —a - b).

+k—dy—ky _

(1.5)

(7.6)

(7.7) ProvosiTION. If G = 2E(q), then Theorem (5.7) holds.

PROOF. Assume the result is false. By Table 4, qlp(1), and so p 1 f{(q) for
some i = 1, 2, 3. Forj chosen as in (7.4), we have i #j.

In this case the right side of (7.3) leads with ¢ and has highest term 2!, Then
d = 21. From Table 4 we have @ = 16, b = 2. Then (7.6) becomes

(7.8)  £,()Q1 +k—-d, —k)) +f,(1)21 +k —d, —k;) = 19k - 33,
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By Table 4, {f,(1), f,(1), f3(1)} = {2, 8, 9}, and by (74), f(1) = 2 and f(?) is
monic. We claim that for s = 1, 2 or 3, f(1) = 9 implies k; > 3. By (4.3)(i) and
(5.2) the constituent of 13‘ - 15 — p with generic degree f((¢) also appears in lg o
Writing down the analogue of (7.3) for lg 4 e obtain an equation in which the
right-hand side leads with #>. By (5.5)(i), £*| f(0), and kg > 3, as required.

If k =1, then f,(2) + f,(1) = ) = 1 —d (¢) = f5(), and the right side is in
Z[t] since I(£) - 1 d(t) leads with t. Thusk, =k, >3 andd, =d, <21. By
(7.4) we have f5(1) = 2. Then (7.8) reads (21 + 1 —d, —k)(17) = 19 - 33,
which is impossible.

Therefore k > 1, and we may assume k; = 1, f,() is monic, and f;(1) = 2.
Then k, = k3 > 3. Write £,(£) = (alc)t*f; (¢) and f3(£) = (b/d)t*f5 (£), according to
(5.5). As the highest term on the right side of (7.3) is £2!, we have d,; <21 and
(afc) + b/d)=1. Thusc=d anda + b = ¢. By (5.5), ¢*Ic; a and b divide |W|; and
clIWI2%. Since (g, b) = 1 and k > 3, these conditions are impossible, and the proof
of Proposition (7.7) is completed.

(7.9) ProrosiTioN. If G = E,(q), then Theorem (5.7) holds.

PrOOF. Assume the result is false. We proceed as in the case of 2E(,(q). By
Table 4, qlo(1), so p f{q) fori—1,2or 3. Withj asin (7'4)’fi(1) = 27 and
f{(#) is monic.

In this case, the right side of (7.3) leads with 2 and has highest term £33, Thus
d =dy = 33 and by Table 4,a =17 and b = 1. Then (7.6) reads

(T.10)  f(1N33 + k —d, —k;) + f,(1)33 + k —d, —k,) = 118k - 138,

If k is 2, then f3() is monic, and as in the case of 2E(,(q), we have k; = k, and
d, = d,. Then (7.10) reads (35 + 56)(38 —d, — k) = 236 — 138, which is impos-
sible.

Consequently, ¥ > 2, and we may assume that k&, = 2, and that f, () is monic.
Thend, <33,k, =k; 2 3,and d, = d;. Write f,(¢) = (a/c)tkfz#(r) and f5(1) =
(b/d)tkff(t) as in (5.5). Then since the highest term on the right side of (7.3) is 36,
we have (a/c) + (b/d) = 1,50 ¢ =d and a + b = ¢. Moreover ¢*|c by (5.5), a and b
divide [WI|, and c||W|. We may assume that f,(1) = 35 and f5(1) = 56.

(7.11) LeEMMA. Fach nonprincipal irreducible constituent of 137 has degree
divisible by q. Moreover, 1%7 =149+ ¢, + 7. where ¢ is the reflection character
and d (1) is monic.

Proor. By (4.3)(iii). Iw_l decomposes as in the statement of (7.11), and 7(1) =
21. It suffices to show that d_(¢) is monic. From (5.2) and (4.3) we obtain
d()+(= + D+ D -De-1) "' -1

(7.12)
i+ et e+ Y- L

Since f,(t) is monic, d (t) € Z[t]. The right side of (7.12) is monic of degree 27, so
if d_(t) is not monic, deg(d (1)) <27 and d; -27. Apply (5.10) to (7.12) to obtain
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" -D=+ )+ D -DE-D)E - -2 - 1)

=1 + D) - DE + )T - )T -,
where u = deg(d(¢)) and ¥ is the highest power of ¢ dividing d,(¢). Differentiate
(7.13), and evaluate at ¢ = 1, to obtain

(7.14) 2129 —u —v) = 6,

(7.13)

which is impossible. This completes the proof of (7.11).

We now complete the proof of (7.9) by obtaining properties of @, b and ¢ that
lead to a contradiction. Since alp,(1) and bly;(1), we have 3 Yab:2ta and 51 0.
The possibilities for g are 2, 3, 5, 7, and we have qklc, and clfz#(l), and fz#(l)l Wi,
by (5.5). Since 524 W] and 7% + W), it follows that q = 2 or 3. Finally, neither
5 nor 7 divide ¢, otherwise 5% or 72 divide f3#(l) or fz#(l). respectively, which is
impossible.

By (7.11), d(¢) is monic. Since d_ (1) has to be a multiple of 7, a check of the
cyclotomic polynomials in the formula for the order of /;(¢) shows that &.(£)ld, ().
Subtracting (7.12) and (7.3), we find that &,()|f,(¢) + f5(r). Since 7 cannot divide
both of @ and b (since @ + b = ¢) we conclude that &, (¢) divides onc and hence both
of f,(1) and f5(1). Since 72 4 ||, this shows that 7 ¥ ¢ and 7 ¥ b. It is now easy
to check that there are no possible solutions for a, b, or ¢. This completes the proof
of (7.9).

(7.15) ProrositioN. If G = E¢(q), then Theorem (5.7) holds.

Proor. Assume once more that the result is false. By Table 4. ¢lo(1). so
p A f{q) for some i = 1,2, 3. With j as in (7.4), /(1) = 35, and f;(¢) is monic.

The right side of (7.3) has highest term 37, so that d = d3 = 57. By Table 4,
a=29and b = 1. Thus (7.5) reads

(7.16)  f,(1)(57 + k —d, —k,) + [,(1)5T + k —dy —ky) = 21(11k - 13).

The right side of (7.3) leads with 2. Then each k; 2 2. and some k; = 2. We assert
that £ > 2. If not, then k = 2,f}(t) = f4(#) is monic, and f4(1) = 35. Moreover d, <
57 and d, <57. Asin the previous cases, two k,'s and two d,’s must be equal. It
follows that kK, = k, and d; = d,. Now (7.16) reads

(7.17) 84+ 112)(57 +2-d, - k)= (21)9,

which is impossible. Thus kK > 2.

We may now order the f()’s so that k; = 2; then f,(¢) is monic and k, and
k3> 2. 1f f3(r) € Z|[t]. then f,(z) also belongs to Z[¢], which is not the case. There-
fore f3(r) & Z[t]. and this time d, = d5. and k, = kj.

Put a, = a/c, a; = b/c’ asin (5.5). Then (a/c) + (b/cYy=1soa+b=c=".
By (5.5). ¢¥|c, where k > 3. Also (a, b) = 1, and we may assume that f,(1) = 84
and f3(1) = 112, Thus 51 ¢, 54 5,32t 4.3 4 b, 2° 4 4, and 254 .

We claim that 7 * a, b. Since f,(1) is monic, the argument used in the proof of
(7.9) shows that &, (1)|/,(¢). so by (7.3) and Table 4, we have d,(1)|f,(1) + f5(1). As
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71f(1) and 7 1 f(1) fori=1,2, 3, it follows that &, (¢) divides one, and, hence, both
of f,(¢) and f;(¢). Thus,7 1 a, b.

As q3lc, g =2 or 3. Suppose ¢ = 3. Then 3%, whilec=a+b<1+16
which is impossible. Thus ¢ = 2, and both @ and b are odd. But this leads to an
impossible diophantine equation. This completes the proof of (7.15).

(7.18) ProrosITION. Let G = F,(q). Then the fi(t)’s can be numbered so
that the following statements hold.

(i) deg f5() = 15.

(i) 9 < deg £,(r) <15, 8 < deg f,(f) < 15.

(i) £, = (@, 1) € ZI[11, £{(0) = 1, £,(1) = 2. In particular, £,(2)
is odd, and 3\f,(3).

() £211,(0), £30).

() 21£,(2), £3(2), and 31£,(3), £5(3).

(vi) Theorem (5.7) holds for F,(q), q > 2.

PROOF. By (74), if f(1) = 2, then f(#) = (%)tfl-#(t). Since the right side of
(7.3) leads with (%4)¢, if i # j, then k; > 2.

Reorder the f(#)’s so that j = 1. Then (iii) holds. The highest term on the
right side of (7.3) is t'5, so for some i > 1, d; = 15. We may assume i = 3. Then
(@), (iii), (iv) hold.

Suppose that f,(2) or f3(2) is odd. Using (7.3), with # = 2, and noting that £, (2)
is odd, it follows that both £,(2) and f5(2) are odd. Write ay = (a/b), a3 = c¢/d, with
(@ b) = (c, d) = 1. Then by (5.5), 2*1b, c and & > 2. If d, <15, then from (7.3),
it follows that a3 = 1 or %, a contradiction. Thusd, =d; =15,and o, + @3 =1
or %. This implies that k = 2, and k, = 2. Now (7.6) reads f;(1)(15 +2 —d, — 1)
= 11, which is impossible as f;(1) = 8 or 9.

Similarly, if £,(3) or f5(3) is not divisible by 3, then the corresponding denomi-
nator of ; is divisible by 9. From (7.3) it follows that 3 divides neither f,(3) nor
f3(3). Asabove, k, =k, d, =d; = 15. Since 271 |W|, k = 2. This leads to the
same contradiction as before.

This proves (v) and, hence, also (5.7) for lg . We must also prove (5.7) for
lg T Let g be even. Then G has an outer automorphism interchanging G, and G,.
Thus, the degrees of the irreducible constituents of lg X and 13 4 agree for all even q.
By (5.2), the corresponding generic degrees agree. Hence, for all g, the degrees of the
irreducible constituents of lgl and lg 4 agree. Since (5.7) is known for 13 ,» it must
hold for 13 4 This proves (vi).

It remains only to prove (ii). We will show that fi(q) > q"(q - 1) for each i and
all odd primes g. Once this is known, it follows that d; > 8 and also d; > 9 as @, =
%. We already know that d; <15 and d, < 15.

Consequently, consider G = F,(q) with q an odd prime. By (4.5), Q, is extra-
special of order ¢'% with center U,. Let x be a nonprincipal irreducible constituent of
12 of degree f{g). Then  is faithful, so there is an irreducible constituent 8 of
x|G, with U, & kerd. Applying Clifford’s theorem, we obtain 8]0, =
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a(, +-+-+¢,), where @ € Z and the {;’s are distinct conjugate irreducible characters
of Ql Then §;|U, = i‘i(l)«p, for a nonprincipal linear character ¢; of U,. Moreover,
one and, hence, all ; s are faithful, so since Q, is extraspecial we must have g,(l) q.
Since H is transitive on the ¢ — 1 nonprincipal characters of U,, each such character
appears as a ¢;. Thus, x(1) = (g - 1)q”, as required.

We remark that a much more detailed analysis similar to the above can be used
to show that, for all i = 1, 2, 3 and all ¢ = 2, f,(g) > q°(¢® - 1)(g — 1). From this
it follows that d; > 11 and d, > 10.

We next prove Theorem (5.7) in case G is a classical group having (B, N)-rank 3
(except for PSO*(6, q)' ~ PSL(4, q), which has already been handled in (5.9)).

(7.19) ProrosITION. If G is PSp(6, q) with ¢ > 2, PSO(7, q)' with q odd,
PSO~(8,q)', PSU(6, q), or PSU(1, q), then Theorem (5.7) holds.

PrOOF. Ig . l1¢ — p is irreducible, where p is the reflection character. Since
IG:G,|=1 (mod q), Table 3 shows that p and this character have degrees divisible
by p.

It is easy to check, as in §6, that 132 ) Igl and 132 - lgl is the sum of two
irreducible characters. Let f,(¢) and £, (¢) be the corresponding generic degrees (see
(5.2)). Then

(7.20) [i@ *+ £2,(@) =1G:G,| - |G: G, .

Thus, £,(?) + £,(?) leads with £? for PSp(6, q) and PSO(7, q)', 13 for PSU(6, q) and
PSO7(8, q)', and ¢35 for PSU(7, q). Since [W| = 48, by (5.5)(v) we may assume that
q=2,s0 G is PSU(6, q) or PSO™(8, q)'.

In these cases, if (7.19) is false we are led, as in (7.1), to an equation of the form
a + b = ¢ with 8|c and a, b odd divisors of 48. There is obviously no solution.

(7.21) LemMmA. If G is Sp(2n, 2), n = 3, then each irreducible constituent of
122 -1§ | has even degree.

ProoF. If n = 4, the lemma is proved exactly as at the very end of the proof
of (6.5).

Let n = 3, and deny (7.21). By (7.24), f,(¢) + f,(?) leads with £2, and we again
have an equation a + b = ¢ with 4|c, 8 te (a, ¢) = 1,and g, b, c||[W| = 48. We may
thus assume that 3| and 31 a. Asin §4, it is easy to check that f,(1) = f,(1) = 3,
so 4(0)|f,(?) by (5.5)(ii). But ®5(r) divides the right side of (7.20). Consequently,
D5(DIf,(9). Since 31, 3®5(1) = 9 divides f,(1), which is a contradiction.

We remark that the degrees of the constituents of lg , can be found in [3] when
G =S5p(2n, 2),n = 4.

(7.22) ProvrosITION. Theorem (5.7)(i) holds when n = 2. More precisely,
the degrees of the irreducible constituents of lg are as follows; moreover, in each list,
the second degree is that of the reﬂectz'on character, while the third and fourth char-
acters occur with multiplicity one in lG for precisely one i.

() For Sp(4, q): 1, %a(q + 1), %a(@® + 1), %a(g® + 1), ¢*.
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(i) For PSUA4, q): 1,4%(q* + 1),¢%(q* —q + 1), q(¢® = q + 1), ¢°.

(iii) For PSU(S, q): 1,4°(@q* + 1)(@* —q + 1),¢*(@* + Dl(g + 1),
a*@® + Dlg +1),4"°.

(V) For Gy(9): 1, (1/6)a(q + 1)*(@* +q + 1), (1/3)a(g* + ¢* + 1),
(13)a(q* +q* + 1), (1/12)q(q + D(@> + 1).4°.

() For °Dy(@): 1, %2> @ + 1)*.4%@* - ¢* + 1), q(q* - ¢> + 1),
%q’@q@ + 1D*(q* - q> + 1).q'2

(vi) For 2F4(q): 1

¢*(q + D@+ D@ +4q° +q* + D/Ag +V2q + D@ -2+ 1),
a(a® + 1@° + Dl@ + D@ + 1. %@ + 1)@® + Dig + D> + 1),

a*(q + D@ + 1)@ +q° +q° + 1D)/aq =27 + D@ + g7 + 1),
%at@® + 1)(@q® + 1), ¢

PROOF.  (i)—(v) are proved as in the proof of [32, Theorem D] using information
in [32]. (We note, however, that the value of p(1) for 3D4(q) is incorrectly stated on
[12, p. 111].) We will outline the proof for G = 2F},(q). Here W is dihedral of order
16, has 4 irreducible characters of degree 1, and 3 of degree 2. By (5.2), lg has 7
irreducible constituents, 4 appearing with multiplicity 1, and 3 with multiplicity 2.
The degrees of the former are found on p. 115 of [12]. while one of the latter is the
reflection character. This leaves two characters. Each of these appears in 1(, for
i =1 and 2; of the characters occurring in IC with multiplicity 1, each of t11e ones
discussed in [12, §10] appears in IG for precisely one i.

Thus, consider 1§ G, We may take the index parameters to be ¢, = 1, ¢, = 2.
If W= (s, s,)as in §2, let £, be the corresponding element of the Hecke algebra
H(G, G,). Then, with respect to the standard basis Er By Espsysa Esalsgsg)2
552(5132)3, right multiplication by 232 has the following matrix.

0 (12(q +1) 0 0 0

1 ¢2-1 q3 0 0
M=1|0 1 @?-1 ¢ 0

0 0 1 q* -1 7

0 0 0 g+1 (@-D@g+D

Here M has characteristic roots qz(q + 1), =(q + 1), q2 - 1.and ({2 /29 - 1. Now
the proof can be completed as in (6.1)(ii).

8. Proof of Theorem (5.8). Replace G by the corresponding linear group G =
Sp(2n, q). SO’ (1, q)', or SU(, ). and let V be the underlying vector space for the
usual representation of G. Then G, is the stabilizer of an isotropic 1-space (or singular
1-space, for orthogonal groups of characteristic 2). G, is the stabilizer of an isotropic
(or singular) 2-space, and G, is the stabilizer of an incident isotropic (or singular) 1-
and 2-space.
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For most of this section, we will assume the existence of isotropic (or singular)
4-spaces; the remaining cases will be discussed at the end of the section. The following
inner products are then readily computed.

G G y_ G G y_ .
(8.1) (Ig, 16 =3. (g, 1g,) =6, (lan’ 012) 17
G Gy _ G — G -
(101‘102)_3’ (101 GIZ) 5 (102 GIZ) 9.

Those inner products not involving G, , were already given in (6.4). The remaining inner
products are not difficult to check using the geometry. Let V| be an isotropic (or singu-
lar) 1-space of ¥ contained in an isotropic (or singular) 2-space V, of V. Suppose G,,
stabilizes V', and V,. Then to find (IGl2 IGl ) it suffices to find the number of orblts
of G,, on the pairs (4,, 4,), where A is an isotropic (or singular) i-space of V'and 4, <
A,. Given (4,, A,)and (4], 43), cons1der the subspaces V, + 4, and V, + 4. lfthese
are isometric by an isometry 7 such that V] — V', V] = V,, A7 = 4}, and A} = 4} then
Witt’s theorem guarantees that (4,, 4,)and (A'1 , A'2) are in the same orbit of G, ,. Using
these facts, one can list the 17 orbits of ;,. The other inner products are computed
similarly.

Write

Gl=1G+p+)<1 and 182=lc+p+xl+x2+x3+x4.

where p is the reflection character and x,, Xz’ X3. and X, are distinct and irreducible.
By (5.4). (p. lgIZ) 2, 50 by (8.1)7 (x;. 1612) = 2. Then (8.1) shows that we can
choose notation so that

lglz"'l(;+2p+2)(l + 2%, +x3tXxg t X5+ Xe-

where 15, p, X;+ X3+ X3 Xa+ X5+ and X, are distinct irreducible characters of G.
Clearly G, induces a classical group on Vll/Vl. with G, corresponding to the

stabilizer of an isotropic 1-space. Thus, lg :2 = IG1 + 0, + 0, with ¢, and o, dis-

tinct nonprincipal irreducible characters. Then

82 of+o§ —(1(,12 - IGI)G =0t x P20 X3 txe tXs T Xe

We will decompose the characters 0‘17 and og;.
By the Mackey subgroup theorem,

FooH= ¥ (o 1.02)

W
G wG, Gy 6,

where the sum ranges over the double cosets of (7, in . We can choose w € W with
Iy # Pyiw <V, 50 (‘“’ NG, <G,,. Since 0,1G,, and azl(n12 both contain lg .
it follows that (0l 02 ) = 1. Conscquently, by (8.2) both ol and 02 contain \,
The same calculations show that, for i = 1,2,
G G
(161.01)>(l a;) > 1

W N LW e
Gy G, Gy Gy

(where w is as above). We can thus number the o.'s so that p C o, and \, € 0,
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We next consider (15 2 0f). There are three (G,, G,)-double cosets: G,G,
G,xG,, and G, yG,, V; + (V,)x is an isotropic (or singular) 3-space and (V,, V,y) #
0. Then G5 N G, fixes V; and (V,)x. Since V; + (V,)x is an isotropic (or singular)
3-space, it follows that G3 N G, is conjugate in G, to a subgroup of G, ;. Note that
0, and o, are constituents of lg: ,just as x, and x, are constituents of IG2 Thus,
(lGx nG,’ o)Ganl =1fori=1,2. Also, Gy NG, fixes V, and (V,)y, and hence
also the isotropic (or singular) 2-space V| + (Vl N (Vz) »), so it is conjugate in G, to
a subgroup of G,,. As before, we find that, for i = 1, 2,

G Gy —
(1€, 07) = (1, 0)g,nc, +(1’°")o§nc +(1,0) 5300,

We can thus number the x,’s so that alG Dp+x, +x3and G2 X % +xa-

Finally, consider (1, ,, of). The (G,, G,,)-double cosets are G,,G,, G;,%G,
G,,YG, G WG, and G,2G,, where

O (V)x=V, and (V,)x # V,,

(i) ¥, € (V,)y and (V;, (V,)) = 0,

(i) v, & (V,)w and rad(V; + (V,)w) = (V,)w, and

(iv) ¥, % (V,)z and rad(V, + (V,)z) is a 1-space (of (V,)z) other than (V;)w.

Then G, N G, fixes the orthogonal 1-spaces ¥, and (V,)x, so G{, N G, is
conjugate in G, to a subgroup of G,,. Similarly, G}, N G, and G{, N G, are
conjugate in G, to subgroups of G,,. Since G{, N G, fixes the isotropic (or singular)
subspaces V;, V; + (V,)y, and V; + (V,)y, it is conjugate in G, to a subgroup of
Gia3. Con51dermg the group induced by G, on Vi/V,, we find that o; occurs with
multiplicity 2 in 101 ,3 just as x; and x2 occur with multiplicity 2 in lc 12° (In fact,
all that was needed for this was (IG 12° 1 ) 5, and this holds so long as isotropic
or singular 3-spaces exist.) Consequently,

(16”, o7) > 4(1,0)g,, + (1, 0)g,,, > 6.
We can thus number the x;’s so that
(8.3) S =p+x, +x3+xs and of =x, + X% + X5 + Xe-

By (5.7), p divides p(1), x,(1) for i = 1, 2, 3, 4, 0,(1) and 0,(1). Consequently,
by (8.3) we have plxs(1), x4(1), as required.

It remains to consider the cases where ¥ has no isotropic (or singular) 4-space.
In the case of (B, N)-rank = 2, (5.7) applies. Thus, we need only consider the case of
(B, N)tank 3, where G is Sp(6, q), SU(6, q), SU(7, q), or SO7(8, q)'. Here the
computations are very similar to the above, so we just sketch the proof.

The relevant inner products are as follows.

(10,,101)—3 1§,.18,)=5, (1§,,.18,)=16;
g 1§y =5 0§,,15,)=5 0Z,.1¢ =8

84
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This time
G _ G _
IGl =lg+p+x, 102 =lgtp+x +x +xs3

and
18

G2 =let20+ 2% +2x + X3 + x4 + X5,

with 1, p, and the x;’s distinct irreducible characters of G. Define o, and o, as before.
Then (0%, af) >1,50 x, €09, 0%. Also, (lgl, of;) =1 fori=1,2,s0 we may
assume that 0§ D p + x, and oY D x; + x,-

Since G, induces a group on Vf‘/ V', having a rank 2 (B, N)-pair, lg: 3 contains
just one of 0,, 0,, namely, the reflection character of G,. Let 0; € lg:3 and let
o; # 0;. As before, we find that (lgn, 0?) =3, (182, af) =2, (1312, o?) =6,
and (lglz’ oiG) >5. If 0, = 0, we can renumber so that 0¥ = p + x, + x5 + X4
and of =xX; + X, + Xs. If 0; = 0,, then we renumber so that af =p+x, +x3
and of =x; + X, + X3 + Xs. In either case we obtain the desired divisibility,
completing the proof of (5.8).

PART II. 2-TRANSITIVE REPRESENTATIONS

9. Counting lemmas. The proof of the Main Theorem depends on two
elementary counting lemmas.

Let G be a transitive permutation group on a finite set 2, with corresponding
permutation character 8. Let « € Q. Set m = |Q| = 6(1).

(9.1) LEMMA. Let P <G be transitive on 2, and let 1 + Q < P. Suppose Q
intersects | G-conjugacy classes Z,, . . . , Z, of nontrivial elements, let x,, . . ., x; be
a system of representatives for these sets, and let ¢; = |Z; N Q|. Then

1
m(IQ,| = 1) = 3" ¢;0(x)).
1

PrOOF. Each orbit of Q has size |0 : Q,,|, while Q has (610, 15) = lo? EerB(x)
orbits. Consequently,

m=10:0, " L (m + X G(x)).
ol 1£%€Q

Simplification yields the lemma.

(9.2) LEMMA. Suppose G is 2-transitive on Q. If x € G, then
m = 1[|G: Co(x)I(0(x) — 1). In particular, if 6(x) = 0 then m — 111G : Cgz ().

ProOF. Since 0 — 14 is irreducible, |G : Co(x)I(0(x) — 1)/(6(1) — 1) is an
algebraic integer.

(REMARK. In fact, if a # B, there are |G : C5(x)I(m — 0(x))/m(m — 1)
conjugates of x mapping « to f. This follows from an easy counting argument.)

10. Initial reductions. Let G be a Chevalley group and G < G* < Aut(G).
Suppose G * has a faithful 2-transitive permutation representation on a finite set £,
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and let o € §2. Set m = |Q2|. Let 6* be the permutation character of G* on £, so
0*(1) = m. Set 0 = 6*|G. Let W, R, n and p be as in §2.

If g € G*, let Q(g) denote its set of fixed points. Recall that a subgroup of G*
is semiregular if only the identity fixes a point.

Clearly, G is transitive on 2,50 [G:G, | = m.

(10.1) LemMA. G, is maximal in G.
Proor. [40, 104 or 12.3].
(10.2) LeMMA. If n = 1, the Main Theorem holds.

ProoF. First suppose that (6, lg) > 1. Since x = 0* — 15 is irreducible, by
Clifford’s theorem x|G is the sum of irreducible characters of the same degree. But
|G, 13) # 0, s0 plx(1). Thus,p+t m, so G} contains a Sylow p-subgroup of G*.
By (2.3) and (10.1), G* is a Borel subgroup of G*.

Suppose next that (6, lg) = 1,50 G = G B. From the lists of maximal sub-
groups in [6], [20], [26], [37], [38], [39], it is straightforward to check that the
only possibilities are those listed in the Main Theorem.

From now on we will assume n = 2.

(10.3) LemMA. Let G* and BY be asin (2.6). If BT is transitive on Q, then
G is as in cases (vii) or (viii) of the Main Theorem.

ProOF. If B is transitive then G* = B*(G*),. From (2.10) it then follows
that G is as in the Main Theorem.
From now on we will assume that B™ is intransitive.

(104) LeEMMA. m is not a power of p.

Proor. Otherwise, as G is transitive, G = G, U. Thus, U is transitive, whereas
we are assuming B* to be intransitive.

(10.5) LEMMA. 0 is a constituent of lg, 0, 9) divides 6, each irreducible
constituent of 0 is G T -invariant, and G* acts transitively on the nonprincipal irreducible
constituents of 0.

PROOF. By (2.6), IG*:G™|[6. Set x=0* -1, . and XIG* =¢, + -+ ¢
with the ; irreducible. Then k|6 and the {; are conjugate characters under the action
of G* = GtN(B™) (by the Frattini argument). Since B* is intransitive, some and,
hence, all {;’s are constituents of lg: . By (2.9), each §; remains irreducible when
restricted to G.

It remains to show that @ is multiplicity-free. Since each {;|G occurs with the
same multiplicity e, and since 6(g) = 0 for some g € G, we must have Z{(g) = —1/e.
Thus, e = 1.

(10.6) Lemma. Ifp+ m, then G = A,(q), G, is conjugate to G, or G,,, and
the Main Theorem holds.
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PROOF. Suppose p1 m. Then we may assume that U < G,. By (2.3) and
(10.1), G, is a maximal parabolic subgroup. Suppose 6 — 15 is irreducible. Then
there are just two (G, G,)-double cosets. Thus, G is 4,(¢) and G, = G, or G,,.

Suppose that G* > G*. By the Frattini argument, G* = GN(B), so there is an
element x € G* — G such that x normalizes B. However, since G is transitive, G* =
GG* = GM(G,), so we can find y € G with xy € N(G,). Since G, = G}” >B?,y €
G, and x € MG,). This is impossible as the graph automorphism of G interchanges
G, and G,,. Consequently G* = G ™ and we are in case (i) of the Main Theorem.

Now suppose 8 — 1, is reducible. By (10.5), G* > G* and there are 3,4 or 7
(G,, G,)-double cosets; here, 4 or 7 can occur only for G = D,(q). Moreover G*/G*
induces a group of graph automorphisms of the Dynkin diagram. As in the previous
paragraph we argue that G, is a maximal parabolic subgroup, fixed by a nontrivial
graph automorphism, for which there are 3, 4, or 7 double cosets. By (54),p € 6.
Since all irreducible constituents of § — 1, are conjugate in G*, by (5.4) each appears
in 1,‘,’ for each maximal parabolic subgroup P of G. Consequently, 6 C 1,? for each
such P. In particular, G # 4,(q).

If G = E,(q) or D,(q), we can choose P so that lg - 15 — p is irreducible.
Consequently, § = lf,; for such a P. But it is easy to check (using Tables 3 and 4)
that p(1) # 1,‘:’(1) — 1 = p(1). This completes the proof of (10.6).

From now on we will assume that p|m.

(10.7) LEMMA. p does not divide the degree of any irreducible constituent of
0 ~1g, where § — 15 C 15.

ProoF. This is clear since p|m.

(10.8) CoroLLARY. G # A4,(q).

Proor. (10.7) and (5.9).

(10.9) CoROLLARY. If n = 3, then q = p is prime, where q is related to G as
in (5.1). If n =2, then G = Sp(4, 2), G,(2), G,(3), or 2F,(2).

Proor. (5.6), (5.7)(i), and (10.7).

(10.10) LemMMA. Assume G is not Sp(2n, 2), F4(2), G,(2), G,(3), or 2F4(2).

() If G is a classical group, G,, is transitive on Q. In particular, G, and G,
are transitive.

(i) If G is an exceptional group, G, is transitive (where i is as in (4.2) and Table
4).

ProoF. (10.5), (10.7), (5.7), and (5.8) show that (8, 1212 = 1 for (i) and
©, 1) =1 for (D).

(10.11) LemMMA. Let G be as in (10.10). Let U, and U be as in (3.1)—(3.3)
or (4.4)—(4.6).

@) If G is PSp(2n, q) or PSU(, q), then Z(U,) and U, are semiregular on Q.

(i) If G is PSO*(l, q)', then U, is semiregular on Q2.
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(iii) If G is exceptional, then U, is semiregular on Q.

PrOOF. Let X be any of the groups claimed to be semiregular. For 1 # x € X,
we will show that C(x) is transitive on £. Once this is known, since C(x) acts on Q(x)
we will have Q(x) = & or £, so since G* is faithful on £ the desired semiregularity will
follow.

We must thus show that (8, lg(x)) = 1. Suppose G is exceptional. By (4.4)—
(4.6), N(U,) = G; and G; = C;(x)H. Forw € W, G,wB = Cg(x)HwB = CG(x)wB
so there are equally many (G;, B)- and (Cg(x), B)- double cosets. Then (IC GGy 1 B)
(IG,’ ) so (10.5) and (10.10)(ii) imply that (lc(x), 0)=1.

Next suppose that G = PSp(2n, q) (with g # 2), PSU(l, q), or PSO*(l, q)', and
that X = U,. In the first two cases, let i = 1, and in the last, let i = 2. Then, by
(3.1)«(3.3), G; = N(X) = C(x)H. Since G, is transitive by (10.10), as above, so is
).

Finally, suppose G = PSp(2n, q) (with ¢ # 2) or PSU(I q), and that X = U,.

By (3.9), each irreducible character common to 1§ and lc(x) is contained in IGl )
Thus, by (10.5) and (10.10), no irreducible constituent of 8 — 1, is a constituent of
1€ (xy» so that (8, 1) = 1 again.

(10.12) LeEMMA. Assume that the conclusions of (10.10) hold. Define i as
follows: if G is exceptional, i is as in (4.2); if G is orthogonal, let i = 2; and if G is
symplectic or unitary, let i = 1. Then m = 111G : G,l(q - 1).

PROOF. Set X = Z(U,). Then, by (3.1)—(3.3) and (4 4)—(4.6), |X| = q = p,
G; = N(X), and G; = C((X)H. Since H is an abelian group acting irreducibly on X, it
induces a fixed-point-free group of automorphisms of X. Thus, |G;: C(X)llg — 1, so
IG: AXIIG : G;l(g — 1). The result now follows from (9.2) and the conclusions of
(10.11).

(10.13) LeEMMA. Assume that the conclusion of (10.12) holds for G, and
that n=> 3. Then q* + m, where k is as follows.
(D) k=2n-1ifG=Sp(2n, q).
(i) k=2n-1if G=PSO(2n + 1, q)' with q odd.
(i) k = 21 - 2 if G = PSO*(2l, q)'.
(iv) k =21-3if G = PSU(, q).
) k=T1f G = Fyu(q).
(i) k=9 if G = 2E(q).
(vii) k = 11 if G = E¢(q).
(viii) k = 17 if G = E,(q).
(ix) k =29 if G = E4(q).

ReEMARK. The powers listed in (10.13) are not intended to be the best possible.
They merely provide a goal in the following sections: in §§11, 12 we show that g*|m.

ProOF. Since the proofs in the various cases all follow the same pattern, we
will only give samples of the method, including the hardest situations. Suppose g*|m,
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and write m = g¥x. By (10.12) we can write (n — 1)y = |G: Gil(g - 1) withy € Z.
Thus, (¢*x - 1)y = |G: G;l(@ — 1). Using the indices |G : G,| as given in Tables 3 and
4, together with elementary number theory, we will obtain a contradiction. We
illustrate with the three cases G = F,(q), E4(q), and PSO*(2], q)'.

1. G = F,(q). Here (¢’x - 1)y = (¢* + 1)(g*? - 1). Taking congruences
mod q7, we find that y = q7z + ¢* + 1 with 0 <z € Z. Then

@x-1D@"z+¢* +1)=(@" + 1" - ).

By (10.4), x is not a power of p; thus z # 0 and x # ¢>. Then x < g3, as otherwise
@@ + 1) - 1q” <(¢* + 1)q'?, which is impossible.

Since ¢7x - 1l(g* + 1)(g'? - 1)x implies that ¢"x — 1|(g* + 1)(g° - x), we
can write (g% + 1)(¢° —x) = (¢"x = 1)v with v € Z. Rewrite thisv + ¢° =
@ +Dx+q"(v-¢q?». Ifxv>q* thenv+g°>@* +Dx+4">q",s0v>
q® and (¢* + 1)(¢° - x) > (q"x — 1)¢°, which is impossible. Also, since x is not a
power of p, xv # g%. Thus, xv < q?, and hence

@+DP>@ +Dx=v+q°+4'@* -x)>q° +4°,

which is again impossible.
2. G = Eg4(q). Here

@°x = 1)y = (¢"° + 1)@** - 1Xq*° - D/g® - D).
Taking congruences mod ¢2°, we can rewrite this

(10.14) (2% - 1)(@*°z + @'° + D@** - D - *H = @"° + D@** - DE*° - 1),
where z € Z. We firs* show that z > 0. For otherwise, z = 0 and

¢** -¢"° - 1i@" + 1)@** - 1)@ - ).

However, 2% — g'° — 1 s relatively prime to ¢'° + 1 and qé‘l -1,01=4%=
q%(q'® + 1) (mod ¢** - ¢'° - 1), which is clearly false. Thus,z> 1, and (10.14)
yields x <q'°. Multiplying the right side of (10.14) by —¢°x? and taking congruences
mod ¢2%x — 1, we find that ¢2%x — 1(¢'® + 1)(-1 + g°x)(g - x). Thenx>gq
(since x # q by (10.4)), and hence q2%x — 1 < (¢'® + 1)¢°x? — 1. It follows that
q?° <(q'° + 1)g°x <(¢° + 1)¢*®, which is impossible.

3. G =PSO*(2l, q)'. Here

@2 x -y =@+ D@ FET EDE? FDIE - D.
Taking congruences mod ¢%'~2, we find that y(q> = 1) = ¢ 22 7 ¢’ £ ¢'~2 - 1 with

zE€Z Thenz=1 (mod g® - 1), so that z > 1. By (104), x > 1. Thus,
@7 -1 T £ - D<@ - @ £ DE F D,
which is impossible.

11. The classical groups. The proof of the Main Theorem will be completed in
§811-13. In this section we assume that G is a classical group and W has rank >3.
Frequent use will be made of §3. Recall that g is a prime by (10.9).
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(11.1) LemMmA. G # PSp(2n, q), q > 2.

PROOF. Suppose G = PSp(2n, q) with ¢ an odd prime. Then (3.2) implies that
Z(Q,) = U, has order q, and Q, is an extraspecial group of order "l L |
Sp(2n - 2, q) acts on Q, /U, as described in (3.2).

By (10.11), U, and U, are semiregular in 2. Again by (3.2), U,U,/U, corresponds
to an isotropic 1-space of Q,/U,, all elements of each nontrivial coset of U, in Q, are
conjugate in Q,, and L, is transitive on these cosets. Thus, all elements in Q, — U,
are conjugate, so Q, is semiregular on §. Then ¢*"~!|m, contradicting (10.13).

(11.2) LemMA. G # PSO*(l, q).

PrOOF. Suppose G is PSO*(l, q). By (11.1), g is odd if is odd. L, =
SO*(I -2, q)' acts on the elementary abelian group @, of order q"? in the natural
manner as a group of F,-transformations preserving a quadratic form, and U, cor-
responds to an isotropic (or singular, if ¢ is even) 1-space. Thus, by (10.11), isotropic
(or singular) 1-spaces of Q, are semiregular.

By (10.13), 4" 24 m, so Q, is not semiregular. Then (Q,), is a nontrivial sub-
space of Q,; moreover, it must be anisotropic (or nonsingular). Consequently, 1(@1).!
< ¢? for each a, so g"* divides the length of each orbit of Q,.

Let v # 1 be any element of Q, whose set §(v) of fixed points is nonempty.
Since Q, acts on Q(v), ¢'~*11Q()l. Since v € Q, is an anisotropic (or nonsingular)
vector, |L, : Cp, (v)l is divisible by qU=312 o =912 depending on whether / is
odd or even. Thus, in (9.1) (applied to P = G,, which is transitive by (10.10)), each
summand is divisible by g*~ 4q(' N2 o g %qU"/2 5o that one of these powers of
q divides m. Since we may assume that / > 7, it follows that q’_2 |Im. This contradicts
(10.13).

(11.3) LemMmA. G # PSU(, q).

ProOF. Suppose G is PSU(I, q). Here Q, is extraspecial of order ¥
Z2(Q,)=2(U,),and L, ~SU(I -2,q) acts on Q,/Z(Q,) as a group of F a2 transfonna-
tions preserving a nondegenerate hermitian form (see (3.3)). Also, UJ(U )Z(U,) is
an isotropic 1-space, and all elements of U Z(U,) — Z(U,) are conjugate in L 10;-

By (10.11), Z(U,) and U; are semiregular, but by (10.13), Q, is not semiregular.
Take 1 # g € 0, with a nonempty set (g) of fixed points. Then g & Z(Q,). There
is an extraspecial subgroup T of Cg, () of order g*'~%. Since Z(T) = 2(Q,) is semi-
regular, for each a € §2(g) we have T, N Z(T) = 1. Then T, is abelian, so |T,| < q3.
Consequently, 4"211Q(g)l. Also, £Z(Q,) is an anisotropic vector of the F g2 -Space

0,/Z(Q,), so the number of conjugates of 8Z(Q,) under L, is also d1v1s1ble by ¢"2.
Then ¢"'|IL, : Cp,0,®)I By (9.1) (applied to P = G,, which is transitive by
(10.10)), " '¢"%|m. This contradicts (10.13).

12. The exceptional groups. We again recall that g is prime.
(12.1) LemmA. G is not E¢(q), E,(q), or Eg(q)-

PROOF. Suppose G is E¢(q), E,(q), or Eg(q). All root subgroups are conjugate
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to U,, and hence are semiregular by (10.11). By (10.10), G, is transitive on , where
i=2,1,or 8, respectively. Consequently, for all & € Q, (Q,), contains no nontrivial
element of a root group.

By (4.4), Q, is extraspecial of order q*', ¢33, or ¢°7, respectively. Since
(@) N Z(Q) = 1, it follows that (Q,), is abelian, and hence (from the theory of
extraspecial groups) that I(Q,),| <V/IQ;l/g- Then 10;:(Q)),! is divisible by ¢!, ¢'7,
or q2°, respectively. Since o is arbitrary, g'*, ¢'7, or ¢*° divides m. This contradicts
(10.13).

(12.2) LemMA. G # F,(q),q9 > 2.

PROOF. Suppose G = F,(q), ¢ > 2. By (10.7) and (5.6),q = 3.

By (4.5), G, has a normal subgroup R, such that R, is elementary abelian of
order 37, and L, ~ 8O(7, 3)" acts on R, preserving a nondegenerate quadratic form.
Moreover, the isotropic 1-spaces in R, are all conjugates of U,, where r is the root of
maximal height. Since U, is semiregular on £ by (10.11), all nontrivial isotropic
vectors in R, are semiregular. R, is not semiregular, as otherwise 37 |m, contradicting
(10.13). We will apply the formula in (9.1) to P = G,.

Let v be a nonisotropic vector in R,. The centralizer in L, of v stabilizes (v) and
(v), so that C;, J) = 0*(6, 3), and consequently R, contains 33z conjugates of v
under the action of L,, where z € Z. Clearly, R, centralizes v and acts on Q). If
v fixes @, then (R,), contains no nonzero isotropic vector, so |(R,),| < 3%. Thus,
3%]1Q(v)l. Now (9.1) implies that 33 - 3%|m, contradicting (10.13).

(12.3) LEMMA. G # 2E4(q).

PROOF. Suppose G = 2E 6(q@). Since q is prime, by (4.6) Q, is extraspecial of
order ¢! with center U,. Also, by (10.11), U, is semiregular on . Thus, for each
a € Q,(Q,), is abelian, and consequently [(Q,),! <¢'°. Then q'!|m, contradicting
(10.13).

13. Completion of the proof. At this point, we have proved the Main Theorem,
except when n = 2 or G is G,(3), F,(2) or Sp(2n, 2). These cases will be completed
in this section. (At the end of this section we will also handle the Tits group 2F4(2)'.)

(13.1) LemMmA. If n =2, then G = Sp(4, 2) or G,(2), and the Main Theorem
holds for these cases.

ProoF. The case G = Sp(4, 2) ~ S is clear. Since G,(2)' = PSU(3, 3) the
case G = G,(2) has been handled in (10.2). Suppose n = 2 but G # Sp(4, 2), G,(2).
By (10.9), G = G,(3) or 2F,(2).

If G = G,(3), by (7.26) we know that the degrees of the 6 irreducible constituents
of lg are 1,3% 91,91, 104 and 168. Since 6 — 15 decomposes into 1 or 2 irreduc-
ible constituents of Ig of the same degree not divisible by ¢ = 3, we must have m — 1
=0(1)-1=91,104,0r 2 -91. Then m & |G,(3)I, which is a contradiction.

Similarly, if G = 2F,(2), (7.26) and (10.7) imply that m — 1 = 3% - 52 or 3% -
13, and again m t I2F4(2)|.
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(132) LemMmA. G # F,(2).

ProOF. Define f,(?) as in (7.19), so 9 < deg f; < 15. As usual, let p be the
reflection character of G. Then by Table 4, p(1) + 1 1 |F,(2)I. If 18a =1+¢ +
¢, with ¢, ¢, conjugate characters, them m = |G : G| is odd, whereas p|m by §10.
Thus, 0 — 1 is irreducible, and from (7.19) it follows that 6 = 15 + x where x(1) =
£,2). By (7.19), f,(t) = %uf (1), where 3 < deg f{¥ <15 and (by (5.5))

(13.3) O+ DY + 12 + 1)@ + e+ D2 -+ DX A+ ).

First consider the case f;(1) = 9. Then P+ + l)2|f1#(t). Also,fl#(t) is
divisible by precisely one of ¢ + 1, 2+1,4+1. Using this information, together
with (13.3) and the restriction on deg fl# , it is easy to write down all the possibilities
for f;(#). In each case, we find that x(1) + 1 4 |F,(2)I.

Thus, f,(1) # 9. By Table 4, f,(1) = 2 or 8. By (4.3)(i) and (5.2), x is not
contained in both Ig . and lg 4250 that G, or G, is transitive on Q. Since g = 2,
by (4.5) both G, and G, have central involutions. Thus, as in (10.11) we find that
fl#(2) = m - 1, which divides |G:G,| = |G:G,41=3%-5-7-13-17. As3 1 f,(1),
24+l 'ffl#(t), and hence 7 4 fl#(2). Also, f;(1) = 2 or 8 implies that fl#(t) is
divisible by at least two of ¢t + 1,2+ 1,72 + 1,2 + 1, #* + 1. In view of (13.3) and
deg ff > 8, it is now easy to write down the possibilities for fl# (2) and check that
LD +1=£F2) + 11 IF,(2)l except when ff(r) = (> — ¢t + 1)(#® + 1)(* + 1).
But in the latter case, m = f;(2) + 1 = 256, and this contradicts (10.4).

(134) LemMma. If G is Sp(2n, 2), then G, is GO*(2n, 2).

PrOOF. We may assume n > 3. By the proof of (11.1), 6(x) # 0 for 1 #x €
U,. By the proof of (10.11), G, is intransitive, so that as in (10.10) we must have
(8,1 )> 1. Since 6 — 15 is irreducible,  C 1§ .

Consequently, 6 is precisely the permutation character of G in its permutation
representation on the cosets of GO*(2n, 2). There are (22" — 1)8(x)/6(1) transvections
in G,: just count the pairs (x, a) with x a transvection in G,. Since this is also true
of the representation of G on the cosets of GO*(2n, 2), G, contains P D))
transvections.

Regard G as acting as usual on a 2n-dimensional vector space V. The subgroup
X of G, generated by its transvections is irreducible. For suppose M is an X-invariant
espace of Vwith 1 <e<2n-1. If 1 <e<2n—1, Mis fixed by at most 2° — 1 +
2277€ — | transvections. We may thus assume that e = 1 and G, fixes M. Then
IG,| < |G, |, which is not the case.

From [25] it follows that G, is contained in an orthogonal group, so the max-
imality of G, yields the lemma.

(REMARK. In fact, only Lemmas 2.3, 2.6, and 4.1 of [25] are needed in our
situation.)

This completes the proof of the Main Theorem.

(13.5) THEOREM. The Tits group 2F4(2)' has no faithful 2-transitive permuta-
tion representation.
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PrOOF. Let G = 2F‘,(Z) and suppose that G' has such a representation on a
set . Let a € Q. Then IG' is the permutation character, so that lG' =1lg+A+
xorlg+A+x+ x', where )\ is the nonprincipal linear character of G and x (and x') are
nonlinear irreducible characters of G having the same degree.

AsG=G'B=G'U, (\,15) =0, while (10&, 1$) > 1 by (2.10). We may assume
that x is a constituent of Ig. Clearly 22| = 2 + x(1) or 2 + 2x(1) must divide |G|.
By (7.26), x(1) = 2'%,2-52 -13,3%-5%2,3%.13,2-3-13,0r2°-3-13. It
follows that x(1) = 2 - 3 - 13, || = 40, and lg& =1g + N + x. Let Q* be the set
of right cosets of Gy, in G.

In the notation of [12], x = dy,(2). In particular, x appears with multiplicity 1
in one maximal parabolic subgroup of G and does not appear in the other (see the
proof of (7.26)). Thus, either G, or G, is transitive on . Choose the notation so
that G, is transitive. Then 5]IG,|.

The structure of G, is determined in [17, §10]. (Note that the correspondence
between our notation and that of [17] is: G, = P,, L, = R,.) According to [17,
(10.1)], L, is the holomorph of Z;. We know that G, = Q,L, is transitive on £,
where [Q*| = 80, so a Sylow 5-subgroup of G, must be semiregular on Q*. On the
other hand, |G : G| = 80 implies that 5||G,|, so some element of G’ of order 5 fixes
a. This will be a contradiction if we can show that all elements of G of order 5 are
conjugate.

From [17, (10.2)], it follows that [L,, L{1*2°!] = 1, where L, N L{1*?°1 = 1.
Set M = (L, x L{}*2°1) (s,s,5,). Then |M| =52 -25, and M has a normal self-central-
izing Sylow S-subgroup F. We will show that N;(F) acts transitively on the nontrivial
elements of F.

First consider Cg(F), and suppose it has even order. Then the subgroup Uj!¥2%!
of Ng(F) centralizes some involution v € C5(F). According to [17, (10.3)(iii)],
U;'2°! contains the central involution ¢ of G, so that G, = Cg(t) as G, is maximal
inG. Thus,vE€((f) =G,,s0vECg,(FNG,;)=Cg,(05(L,))- However, Cg,(05(L,))
= 04(L,) x U;'2°1 (this follows from [17, §10], in particular, from the paragraphs
following (10.3) and (10.10)). Then v € U;1°2°1, whereas U;!*2°! is fixed-point-free
on F N Lj1¥21,

Thus, |C5(F)| is odd. Since IGL(2, 5)| = 2% - 3.5, it follows that M contains
a Sylow 2-subgroup of N (F).

Since |G : Ng(F)| = 1 (mod 5), INg(F)l = 3IM| or 13|M|. Suppose [Ng(F)| =
13|M|. Since 131 IGL(2, 5)I, Cs(F) = F x X with |X| = 13. Here Ng(F) < Ng(X).
Applying Sylow’s theorem to both F and X, we find that |G : Ng(X)| =1 (mod 65).
An easy check shows this to be impossible.

Thus, INg(F)| = 3IM|. Let X < Ng(F) with |X| = 3. Suppose 3|IC;(F)|. Then
C;(F) = F x X. With the same notation as before, t € Uy12°1 < N;(X) and
|U31°2°1| = 4 imply that t € ((X). Then X < C4(7) = G,, whereas 3 1 1G,1.
Consequently, X is fixed-point-free on F. It is now easy to see that N;(F) = (M, X)
is transitive on the nontrivial elements of F. This completes the proof of (13.5).

ADDED IN PROOF. Since this research was completed, further results have been
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obtained which can simplify both the proof of the Main Theorem and much of §§6—
7. Howlett [44] proved that p divides the degree of each nonprincipal constituent of
1€, provided that G is an untwisted Chevalley group other than G,(2), G,(3), F4(2),
Sp(2n, 2), and PSO(2n + 1, 2)'. In his thesis [43], Hoefsmit obtained inductive for-
mulas for the degrees of the irreducible constituents of 1§ when W has type 4, B,, or
D, (cf. Benson and Gay [41] in the case of D,)). Presumably one can deduce precisely
when p divides the degrees in lg —1¢. Finally, Benson, Grove and Surowski [42]
have obtained all the degrees in lg for G = F,(q) and 2Eé,(q). It should be noted that
these results—and especially those of Hoefsmit—are far from easy.

Assuming that results imply that p divides each degree in lg - 14, except for
G = G,(2), G,(3), 2F4(2), F,(2), Sp(2n, 2), and PSO(2n + 1, 2)’, the proof of the
Main Theorem would proceed as follows. Begin with (10.1)—(10.7). Eliminate the
cases G = G,(3), ’F, 4(2) and F,(2) by checking that 1 + x(1) (and 1 + 2x(1) in the
case G,(3)) does not divide |G|, whenever x is an irreducible constituent of 15 -1,
such that p4 x(1). Finally, handle Sp(2n, 2) as in (13.4).
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