ISRAEL JOURNAL OF MATHEMATICS, Vol. 23, No. 1, 1976

GENERALIZED QUADRANGLES HAVING
A PRIME PARAMETER’

BY

WILLIAM M. KANTOR

ABSTRACT

Generalized quadrangles 2 are studied in which s or ¢ is prime and Aut 2 has
rank 3 on points.

1. Introduction

A generalized quadrangle 2 of order (s, t) consists of a set of points and lines,
with each line on s + 1 points and each point on ¢ +1 lines, such that two points
are on at most one line and a point not on a line is collinear with exactly one
point of the line. We will study the case where s or ¢ is prime and Aut 2 has

rank 3 on points.

TheoreM 1.1. Let 2 be a generalized quadrangle of order (p, 1) with p prime
and t > 1. Suppose G = Aut 2 has rank 3 on points. Then either t = p’-p-—1
and p*¥| G|, or G=PSp(4,p) or PTU(4,p) and 2 is one of the usual
quadrangles associated with these groups, or p =2, G = Ae and 2 is one of the
usual quadrangles associated with PS,(4,2).

A group G having a BN-pair whose Weyl group is Ds naturally acts as an
automorphism group of a generalized quadrangle of order (s, t) with s > 1 and
¢ > 1. Moreover, (1+ s)(1+t)(1+st)s’t* divides | G|. Thus, as an immediate

consequence of (1.1) we have:

CoROLLARY 1.2. Let G be a finite group having BN-pair and Weyl group Ds.
Suppose that |P: B | -1 is a prime p for some maximal parabolic subgroup P.
Then G has a normal subgroup H isomorphic to PSp (4, p) or PSU(4,p), with the
usual BN-pair induced on H.
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CoroLLARY 1.3. Let G be a rank 3 group having subdegrees 1, py, p* withpa
prime, p ¥ v8, (v, 8) =1, r a power of p, r > 1 and either (1+8)r=vyorp = 2 and
6 = 1. Then G can be regarded as acting on the singular points of a symplectic or
orthogonal geometry over GF(p), or on the singular lines of a 4-dimensional

symplectic or unitary geometry over GF(p).

Corollary 1.3 is a consequence of (1.1) and Kantor [4]. Further consequences
of the preceding sort also follow from the latter paper. The present work
originated in an attempt to push the rather elementary methods of [4] somewhat
further. The proof of (1.1) requires little more than elementary group theory,
combined with results of Higman [1],{2], [3]. The case t = p is especially simple;
for both this reason, and later convenience, it has been presented separately in
Section 4.

The basic idea is to take a Sylow p-subgroup P of G, and then see how both its
center and various point-and line-stabilizers in P must behave. The same
methods yield the following result; the details are left to the reader.

TueoreM 1.4. Let 2 be a generalized quadrangle of order (s, p) with p prime
and s>1. Suppose G = Aut2 has rank 3 on points, p’l |G|, and either
s#p’-p—1orp' |G| ThenG = PSp(4,p) or PTU(4,p), and 2 is one of the
usual quadrangles associated with these groups.

We remark that there is a well-known quadrangle of order (3, 5) for which
|| Aut 2 | (see, e.g., Higman [2], p. 287); Aut 2 has rank 3 on points and rank 5
on lines.

Finally, we note that the methods presented here apply to other situations,
such as rank 4 automorphism groups of generalized hexagons of order (p, p) with

p prime.

2. Preliminary results

Let 2 be a generalized quadrangle of order (s, t). If x is a point, I'(x) denotes
the set of points y such that a line xy exists, x* = {x} UT(x), and A(x) is the
complement of x*. We call x and y joined or adjacent if xy exists; and dually
lines L and M are adjacent if L N M is a point.

H(x) will denote the set of elements of H = Aut 2 fixing each line on x, while

H(L) is the pointwise stabilizer of L.

Lemma 2.1. Let 2 be a generalized quadrangle of order (s, 1).
(i) Suppose a subgroup H of Aut 2 fixes at least three points of some line and
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at least three lines through some point. If no fixed point H is joined to all others, and
no fixed line meets all others, then the set of fixed points and lines of H form a
sub-quadrangle of order (s',t') for some s'=s and t'=1t.

(ii) If 2 has a proper subquadrangle of order (s,t'), then t = st'.

(i) t*zsands*ztifs>1 and t > 1.

ProoF. (i) is straightforward. To prove (ii) (which is due to Payne [6] and
Thas [7]), take x outside of the subquadrangle 2,. Then each of the ¢ +1 lines
through x meets 2, at most once. Counting in two ways the pairs (y, L) with
yEL, x and y collinear, and y, L € 2,, we find that (t + )¢’ + ) =1+
(s + 1)t'+ st” (the latter being the number of lines of 2,). This implies that
t=st’.

Finally, (iii) is Higman’s inequality [2].

The second part of the following transitivity-boosting lemma is probably

well-known; the proof of the first part has the same flavor as the one in Kantor

[4].

Lemma 2.2, Suppose G = Aut 2 has rank 3 on points. Then
(1) G, is 2-transitive on the lines through x; and
(i) If (s,t+1)=1 and y €T(x), then G,, is transitive on y* — xy.

Proor. (i) Let x € L. Then G.. contains a Sylow p-subgroup P of G, for
each prime p |t It suffices to show that for each p and P, each orbit L'® of
lines # L on x has length divisible by t, (the p-part of t).

Suppose | L'"|<t, for some such orbit. There exist points y € L —{x} and
y'€ L'—{x} whose P, =P, orbits have lengths =s,. Thus, |Pr, |Z
| P..|/si>]|P|/s}t,, so | P*: P,,.|<sit, =|A(y)|, for a Sylow p-subgroup P* =
P,, of G,. Since y’ € A(y) and G, is transitive on A(y), this is impossible.

(ii) Since ([T'(x)|, |A(x)|) = (s(t + 1), s*t) = 5, each G,,-orbit on A(x) has length
divisible by s’t/s =|y*—xy|.

ReEMARK. Note that the hypotheses of (2.2) guarantee that G, is 2-transitive
on L. What (2.2) says is that a second 2-transitive group is also always available.

Lemma 2.3.  The pointwise stabilizer G(x*) of x* is semiregular on A(x), and
1G] e

Proor. The first statement is (6.17) of Higman [2], and follows immediately
from (2.1i). To prove the second one, let M be a line not on x, and set
{y}=x*N M. Then each u € x* — xy is joined to some w € M — {y}, and hence
GxIMmMEGHY). = 1.
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Tueorem 2.4. (Higman [1].) Assume G = Aut 2 has rank 3 on points, and
s=t=|G(x*)|. Then 2 is isomorphic to the usual quadrangle for Sp(4,s), and
G =PSp(4, s).

TueoreM 2.5. (Higman [3].) Assume G =Aut2 has rank 3 on points,
s=t* and |G(x*)|=1t Then 2 is isomorphic to the usual quadrangle for
PSU(, 1), and G = PSU(4,1).

LemMa 2.6. (Higman [2, (6.1)].) s*(1+st)/(s + t) is an integer.

COROLLARY 2.7. Suppose (s,t)=1,s>1and t >1.
() Ifs|tx1lthent=s>—s—1.

(i) Ifs|t—3 and 3|s—1 thent=2s+3.

(i) Ifs|t—2 thent=s+2

Proor. We will prove (ii); (i) and (iii) are similar. By (2.6), s +t|s*—1. We
can write s*—1=a(s +1) and t —3 = Bs for integers @ and B. Then —1=
3a (mods), so a = (s —1)/3(mod s). Write a =((s — 1)/3)+sy. Then s*—1=
(((s — 1)/3)+ sy)(s + t) implies that y =0 and 3(s +1)=s + ¢, as required.

3. Hyperbolic lines

Let ¢ be any strongly regular graph with parameters n, k, I, A, u. For each
point x, I'(x) will denote the set of points joined to x, and A(x) the set of
points # x not joined to x. Write x*={x}UT(x). The line xy, x # y, is defined by

3.1 xy=MN{w|x,y€Ew'l= N{w*wex* My
This line is called singular if y €'(x) and hyperbolic if y € A(x).
LEmMa 3.2. (Higman [2, p. 282].)
(i) Two adjacent points are on a unique singular line.

(i) Two non-adjacent points are on at most one hyperbolic line, and are on no
singular line, if  is the point-graph of a generalized quadrangle.

Consider the following hypothesis:

(H) Each hyperbolic line has h + 1 points, and two distinct lines meet at most
once.

This will be the case, for example, if (3.2ii) holds and Aut ¥ is transitive on
pairs of non-adjacent points.
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LemMma 3.3. Assume (H). Then the following hold.

(i)  x is on I/h hyperbolic lines.

(i) There are nl/h(h + 1) hyperbolic lines.

(i) h|k—A—1.

(iv) Ifw €A(x)thenwisonl/h —(k — u + 1) hyperbolic lines missing x*.
(v)  There are I[I/h — (k — w + 1)])/(h + 1) hyperbolic lines missing x™.

applies. Assume next that Z =
L fixes every line meeting L. Henc
; if G has rank 3 on lines. But by
| K?|=p’® for a line K on w. T|
l (2.1), the set of fixed points an
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E nonadjacent points. In particul:
| regular on A(x), so G has rank
has p + 1 subgroups of order p,
by the Frattini argument, N(P(>
f hence induces at least SL(2, p)

Proor. (i) and (ii) are easy. If y €I'(x) then y*NA(x) is a union of
hyperbolic lines with x removed; this implies (iii).
To prove (iv), note that w is joined to p points of I'(x). Let y be any of the
remaining k — u points of I'(x). If wy meets I'(x) at a second point y’ # y, then
by (H), y' € A(y) and wy = yy'. But now, y,y’ € x* implies that yy’C x*, and
hence that w € x*. ‘
Thus, w is on exactly k — p hyperbolic lines meeting x*. By (i), this proves
(iv).
Finally, count the pairs (w, L) with w € A(x)N L, L a hyperbolic line, and
L Nx*= ¢, in order to obtain (v).

E  Moreover, | Z| = p here, and
: permit (2.4) to be applied to the
2-transitive on the p +1 subgr
SL(2,p) on P(L).
. In view of the action of !
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CoroLLarY 3.4, If (H) holds, and Aut G is transitive on hyperbolic lines, then
each hyperbolic line misses exactly | —h(k —u +1) sets x™.

Proor. By (3.3), the desired number is
n-l[i/h—(k—pw+DJh+1)"-(nl/h(h +1))".

Lemma 3.5. If (H) and (3.2ii) hold, then
(i) x* contains s*t(t + 1)/ h(h + 1) hyperbolic lines; and
(i) |G(x")| divides h.

PROOF.
(i) Count the pairs (y, H) with y € HCx* and H a hyperbolic line.
(i) Higman [2, (6.17)].

. = d p’
4. The case s=t=p 5. The case s = p and p’|

Let 2 and G be as in Theore
P fixes some point x. Set Z =
It is easy to handle the case p
p >2. By Section 4, we may a
Throughout this section we w

Theorem 1.1 is particularly easy when s =t = p is prime. We may assume
p>2. Let P be a Sylow p-subgroup of G. Then P fixes some x and some
(singular) line L on x. Moreover, P is transitive on L —{x}, A(x) and x* — L (by
(2.2)). Set Z=Z(P)NP(x)NP(L). Since p>’=[A(x)||| G|, Z#1.

Let w € A(x), and suppose P, # 1. Then P, = P(wy) if y € L NI'(w). If now

Z is transitive on the lines # L on y, then P, = G(y*) and Higman’s result (2.4) LEmma 5.1. t>p.
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ving hold. pplies. Assume next that Z = G(y). Then the transitivity of P shows that Z
L fixes every line meeting L. Hence, Higman’s result (2.4) applies to the dual of 2
. v if G has rank 3 on lines. But by (2.2), if G does not have rank 3 on lines, then
K| =p?for a line K on w. This implies that | P« | = p?, so Px.# 1. Then, by
+1) hyperbolic lines missing x ™. ~ (2.1), the set of fixed points and lines of Px. form a subquadrangle of order
) hyperbolic lines missing x*.  (p,p), which is absurd.

¢) then y*NA(x) is a union of Thus, we may assume | P |= p>. Then no nontrivial p-element can fix two
es (iii). ; ' nonadjacent points. In particular, P(L)= P, is regular on x*— L. (Also, P is
soints of T(x). Let y be any of the regular on A(x), so G has rank 3 on lines.) Since | P(x)| = p?, we see that P(x)
I'(x) at a second point y' #y, then has p + 1 subgroups of order p, each fixing a unique line on x pointwise. Hence,
'y’ € x* implies that yy’C x*, and i by the Frattini argument, N(P(x)). is 2-transitive on these p + 1 subgroups, and

L hence induces at least SL(2, p) on P(x).

&

nes meeting x*. By (i), this proves W  Moreover, |Z|=p here, and Z = P(x)N P(L). Thus, Z= P(y) would again
b permit (2.4) to be applied to the dual of 2. It follows as above that N(P(L)). is
A(x)N L, L a hyperbolic line, and 2-transitive on the p + 1 subgroups of order p of P(L), and induces at least

SL(2,p) on P(L).
. I view of the action of N(P(x)). on P(x), there is a 2-element t €
i N(P(x)). N N(P(L)) which inverts P(x) and centralizes P(L)/Z. Then ¢ nor-
E malizes each of the p + 1 subgroups of P(x) corresponding to the lines on x, and
. hence t € G(x). Similarly, there is a 2-element t' € N(P(L)). N N(P(x)) which
f inverts P(L) and centralizes P(x)/Z. By Sylow’s theorem, we may assume that
L (1)Y= N(P(x))N N(P(L)) is a 2-group.
n Now tt’ centralizes Z and inverts P/Z and #’ fixes some line L, #L on x.
rbolic lines; and | Then also #t’ fixes one of the p points of L, —{x}, and the transitivity of Z on
4 L,—{x} shows that #t' € G(L,). Dually, tt'e G(y)forsomey € L —{x}. (Recall
that Z is transitive on the lines # L on y.) Thus, (2.1i) implies that the set of fixed
points and lines of ' is a subquadrangle of order (p, p). This is ridiculous, and

 the case s =t = p is completed.

2 is transitive on hyperbolic lines, then
- +1) sets x*.

Y (nl/R(h + 1)

cx* and H a hyperbolic line.

5. The case s=p and p’| |G|

Let 2 and G be as in Theorem 1.1. Let P be a Sylow p-subgroup of G. Then
L P fixes some point x. Set Z = Z(P).

It is easy to handle the case p = 2 (since t = p? by (2.1)). We may thus assume
i p>2. By Section 4, we may also assume p# t.

Throughout this section we will assume p’lIG|.

s =t =p is prime. We may assume
G. Then P fixes some x and some
tive on L —{x}, A(x) and x* — L (by
p’=1aWIIIGl, Z#1.

P, = P(wy)if y € L NT'(w). If now
>, < G(y*) and Higman’s result (2.4) B  Lemma 51. t>p.
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Proor. Suppose t <p. Then P = G(x). As |A(x)|=p°t, P.#1 for some
w € A(x). Certainly, P, = P(wy)for each y € x* N w*. By (2.1i), the set of fixed
points and lines of P, form a subquadrangle of order (p, t), which is absurd.

LEMMA 5.2. plt

PrROOF. Suppose p tt By (2.1) and (5.1), p<t<p? Also, for some
w EA(x), P.#1 and P, is Sylow in G,
Consider first the possibility p | ¢ + 1. Here no nontrivial subgroup of P can fix

elementwise a subquadrangle of 2. For, by (2.1) such a quadrangle would have |

order (p, t,) with pt, =t <p®and p|1,+1, so t,= p — 1. However, by (2.6) no
quadrangle of order (p,p — 1) can exist.
On the other hand, | P« | = p?® for one of the pt* lines K not on x. Then

P(K)# 1, and we may assume w € K. Now P(K) fixes at least p lines L' on x, |

and at least p on w. Since w is joined to some point of L' — {x}, this contradicts
(2.1) and the preceding paragraph.

From now on we may assume p /' t+ 1. Then p fixes some line L on x.
Moreover, the set 2, of fixed points and lines of P, from a subquadrangle,
necessarily of order (p, t,) for some t, = 1. Here t, =t (mod p), while pt, =t < p*
by (2.1). Also, since P, is Sylow in G,., N(P.,) is transitive on the ordered pairs
of non-adjacent points of 2,.

We claim that | P | = p°. For suppose | P|= p*. Then 1# P., <P, for some
line L' on x. The set of fixed points and lines of P... forms a subquadrangle
2.2 2, of 2 of order (p, 1) for some 1,. By (2.1), p°t, < pt. < t < p?, which is
impossible.

Thus, |P|=p® and |P.|=p. But the transitivity of N(P,) implies that
p’| IN(P.)|. Hence P, = Z(P).

Since |x* = L|=pt#0 (mod p?), | P, | = p* for some u € x*— L. Then P, is
not conjugate in G to any P,, so P, fixes no point of x* — xu. Thus, Z(P) fixes
xu. There are thus exactly ¢, + 1 lines xu with | P(xu)|Z p° If v is any point of
x* not on any of these lines, then | v” | < pt < p, so P,#1 and Z(P)= C(P(xv))
implies that P(xv) fixes a second line on x pointwise, and hence determines a
subquadrangle of order (p, t,), say. But this time, p =t,, and this contradicts
2.1).

By (5.2), we now know P fixes some line L on x. Let ¢, denote the p-part of 1.

Lemma 5.3. If p*t; divides | G|, then the conclusions of (1.1) hold.

Proor. By (5.2),p|t. Then|P|=p* and|P|zp®ift = p>. By (2.1),t = p~.
We have |A(x)| = p*t =0(modp?). Let w € A(x). Then p*= p*t =|w” | = p?,
so|w” |is p°t,. In particular, | P, | Z t,. Note that P, = P(yw)if{y}=L Nw™.

ol. 23, 1976 GENERALI
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Thus, | P: P. | = pt,. Clearly, P, has
. Thus, |P: Px|=| P:Pux | = Pt2, so

We claim that all fixed lines of F

the set 2, of fixed points and lines
Px = P(xu) fixes at least p + 1 lines
Thus, t = p® and t, = p. By (2.1),

E through x it moves, so | Px | = p. Tt

L adjacent to L. Moreover, Np(Px
b intersecting these lines with x ") alsc

i 2,, it follows that N(Px) has rank 3
. since Pz = 1. By Section 4, this is

Thus, Z = C(Px) must fix xu. .

it Z=P(x)NP(L).

Let G(L™) denote the set of ele

i Suppose that Z N G(L*)# 1. By (
Thus, G(L*) = Z. Clearly, G(L")
G(x) is elementary abelian, and
groups G(M*). In particular, | E |
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E (2.1) produces a contradiction. Th

 assume that G does not have rank :
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of fixed points and lines of Px., for
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Thus, we may assume that Z
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*  We claim that P, fixes no point of A(y). For otherwise, by (2.1) P, fixes
f elementwise a subquadrangle of order (p, 1), where pt =t = p>and p | 1,. Thus,
L t=p’, so | P, |z p’. Now 1 — 1, <p’ implies that, for some line M# L on x,
P.>P.n#1. Then P.y fixes more than p +1 lines through x; by (2.1), it
, determines a subquadrangle of order (p, t;) with p.=t = p® and t;>t,. This
, contradiction proves our claim.

Thus, P, fixes only points of y*. Since w and y are arbitrary, Z = Z(P) fixes

As |A(x)|=p*, P.#1 for some |
= x* N w*. By (2.11), the set of fixed
e of order (p,t), which is absurd.

5.1), p<t<p®’ Also, for some ,

no nontrivial subgroup of P can fix |
2.1) such a quadrangle would have |
o t, = p — 1. However, by (2.6) no

' each point of L.

. Letu€x*— L. Since pt = p?, by (2.2) each P-orbit on x*— L has length pt,.
"l Thus, | P: P. | = pt,. Clearly, P, has an orbit # {xu} of lines K on u of length = t,.
E Thus, | P: Px | =|P:Pux | = Pt;, so Px#1.

We claim that all fixed lines of Px are adjacent to xu. For otherwise, by (2.1)
- the set 2, of fixed points and lines of Px is a subquadrangle of order (p, t;) (as
Px = P(xu) fixes at least p + 1 lines on x). Here p’=t = pt, by (2.1), while p | £
| Thus, t=p® and t, = p. By (2.1), Px must be semiregular on the ¢t —t, lines
L through x it moves, so | Px | = p. Thus, | K | Z p*, so K” consists of all lines not
, adjacent to L. Moreover, Np(Px) is transitive on K* N 2,, and hence (by
E intersecting these lines with x*) alsoon (x* = L) N 2.. Since L can be any line of
2, it follows that N(Px) has rank 3 on the dual of 2. Moreover, p* ¥ | N(Px )|
‘ since P% = 1. By Section 4, this is impossible, and our claim is pfoved.

E Thus, Z= C(Px) must fix xu. As u €Ex"— L was arbitrary, we now have
B Z=P(x)NP(L).

I Let G(L*) denote the set of elements of G fixing every line adjacent to L.
’ Suppose that Z N G(L*)# 1. By (2.3) (applied to the dual of 2), | G(LY)] |p-
Thus, G(L*) = Z. Clearly, G(L*)=G.. Set E =(G(M*)|x € M). Then E =
~, G(x) is elementary abelian, and G, acts 2-transitively on the t+1>p +1
] groups G(M*). In particular, | E | = p*. But GL(3, p) has no such 2-transitive
subgroup since t +1 < p*+p +1 (Mitchell [5]). Thus |E |z p*. If now 1 <p’
| then | P|= p°. Then | P, | = p®, so P, > Pux# 1 for some line K adjacent to yw.
| (Note that | P, | Z| G ((yw)")|.) As usual, P.x determines a subquadrangle, and
| (2.1) produces a contradiction. Thus, 1 = p?, so |xu”|=p® By (2.5), we may
- assume that G does not have rank 3 on lines. Then | K” | = p*for each line K not
adjacent to L, so | Px | Z p>. As usual, (2.1) implies that for w € K N A(x), the set
E of fixed points and lines of Px. form a quadrangle of order (p, p)- Hence, again
V by 2.1), |Pxw|=p, |P<|=p’ and hence |P|=p°. Now |P:P(x)|=p*=
|xu?| = t shows that no subgroup of P can fix exactly p +1 lines on x, whereas

f the pt® lines K not on x. Then
P(K) fixes at least p lines L’ on x,
e point of L' —{x}, this contradicts

Then p fixes some line L on x.
ines of P, from a subquadrangle,
ere t, =t (mod p), while pt, =t < p*
) is transitive on the ordered pairs

= p*. Then 1# P.. <P, for some
ines of P..- forms a subquadrangle
y (2.1), p*t < pt2 < t < p*, which is

transitivity of N(P.) implies that

»? for some u € x*— L. Then P, is
o point of x* — xu. Thus, Z(P) fixes
th | P(xu)|= p®. If v is any point of
<p,so P,#1 and Z(P)= C(P(xv))
pointwise, and hence determines a
is time, p =1, and this contradicts

. on x. Let ¢, denote the p-part of I,
he conclusions of (1.1) hold.

1| P|=pcift = p>. By (2.1),t =p”.
€ A(x). Then p*zpitz|w” |z p’,
that P, = P(yw)if{y}=L Nw™.

| Px. is such a subgroup.
Thus, we may assume that Z N G(L*)=1, and (eventually) will derive a
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contradiction from this assumption. Since P is transitive on L —{x}, Z N P(y)=
1 for each y € L —{x}. Since P(L) is Sylow in G(L), we can find g € G,
such that P® = P(L) and P* is Sylow in G,.. Set W = Z* Then W = P(L).
Moreover, P, = P(L)= Cp(W).

Recall that all fixed points of P, are in y*. Since P, fixes L and wy pointwise,
while N(P. ) is transitive on ordered pairs of non-adjacent fixed points of P., we
must have | N: P, |=|L —{y}|-|wy —{y}| = p>, where N = Np(P.).

We can now prove t = p>. For suppose t < p®. By (2.1), P, is semiregular on
the lines # L through x,so | P, | = p and | P| = p*. In particular, N = G»(P..) and
| P: N| = p. Also, P, £ P(x) implies that P.,£ Z,so | N|=p>. Then P.Z = Z(N)
implies that N is abelian. Hence, N centralizes its subgroup W. But the
transitivity of N(P.) implies that N is transitive on L —{x}. Thus, W = P(y)
fixes every line meeting L — {x}. Since Z is conjugate to W, Z must fix every line
meeting L —{y}, which is not the case.

Thus, t = p*> and | P |= p°.

Next note that P(x*) = 1. For otherwise, h is a power of p by (3.3),s0 h = p*
by (3.5i), whereas s’t/h = (s — 1)(t + 1)+ 1 by (3.3iv).

Hence, the transitivity of P on x* — L (see (2.2)) implies that Z is semiregular
on x*— L. Thus, for each L' on x, P(x) N P(L’) contains a G,-conjugate Z' # Z
of Z. In fact, if P’ is a Sylow p-subgroup of G, such that P'(x) = P(x), then we
can choose Z' = Z(P'). Thus, Z(P(x)) has p*>+ 1 nontrivial subgroups, any two
meeting trivially. In particular, | Z(P(x))| = p°. But (P, P') permutes p* + 1 such
subgroups 2-transitively, so | Z(P(x))| = p*.

If | P(x)|= p®, then P(x).# 1, and this contradicts (2.1).

Thus, |P(x)|=p* and P(x) is elementary abelian. Moreover, |P(x)N
P(L)|=p>. Since P(x) is transitive on L —{x} and centralizes P(x) N P(y), we
have P(x)N P(y)=P(L*)=1. Thus, since |P(y)NP(L)|=p’, necessarily
|P(L)|=p®-p’ so |P|zp’ and |P.|Z p’. Consequently, P.y# 1 for some
M#L on x. By (2.1), P.n N P(x)=1.

N(P(x)) induces the same 2-transitive representation on the p*+ 1 lines on x
and the p?+ 1 subgroups P(x) N P(L) of P(x). It thus induces a subgroup of
GL (4, p), 2-transitive on p’+ 1 hyperplanes, and having a nontrivial p-subgroup
(induced by P..) fixing more than one such hyperplane. However, GL (4, p) has
no such subgroup.

Proof of Theorem 1.1 when p’| |G|

In view of the preceding lemmas, it remains to eliminate the case p [, p<t,
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and p*r2 4 | G |. By (2.1iii), either ¢
P
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Suppose first that t < p®. Then P

| thenP, = P(L) is semiregular on :
L (which is nontrivial as otherwise |
x*—xu. In particular, Z = Z(P)
b P(L)<\P,so Z = P(L). Thus, Z =
P, and Z are conjugate in G, (by
(1> p + 1 distinct proper subgre
| impossible.

Thus, ¢ = p®. Suppose next that

f on A(x), P.# 1foreachu € x*— L
‘ Moreover, |ZNP(L)|=p=|P.|
t P(xu).. Thus, ZN P(L)= P(L).
f P.=P(xu). conjugate to ZNP
L | P: P(x)| = p. Once again, this co

Consequently, | P| = p°. Now | P

| each u € x* — L. Thus, P, fixes nc
L Also, ZN P(L)#1. Since P(x")
| semiregular on x*— L. Thus, | Z (

Foreachu €x*— L, Z(P(x))N

; Thus, Z(P(x)) has p*>+ 1 such sut
I permutes these subgroups 2-transit
| is again ridiculous.

This completes the proof of (1.

6. The case p’ ¥ |G|

We now consider the case p

since {A(x)| = p*t. Thus, a Sylow
L some point x. By (2.7), p £ 1 +1, sc
 line. P is semiregular on A(x), so

LemMa 6.1. =1 or 3, so p

, N(P)/C(P)= SL(2,3).

Proor. By (2.2), N(P), is 2-tral

; the lemma does not hold then ¢
E subgroups. Then (2.6) implies ¢ =
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L and p*2¥ | G |. By (2.1iii), either t <p®and | P|=p>, or t = p*and | P| = p* or

5

Suppose first that 1 < p* Then P is semiregular on A(x). Hence, if y € L — {x}

1 thenP, = P(L) is semiregular on x*— L. Consequently, if u € x*— L, then P,
b (which is nontrivial as otherwise p>=|u”|=|x*—L|=pt) is semiregular on
| x'-xu. In particular, Z=Z(P)=G(x). By 22), Z<P, so |Z|=p. But

. P(L)<AP,so Z=P(L). Thus, Z = P(L).- whenever x € L' # L. Consequently,

[ P, and Z are conjugate in G, (by (2.2)), so P, = P(x)N P(xu). Now P(x) has
L t+1>p+1 distinct proper subgroups, so | P(x)| = p*=| P|. By (2.2ii), this is

L impossible.

Thus, t = p>. Suppose next that | P| = p*. Then once again, P is semiregular

: onA(x), P,#1foreach u € x* — L, P, is semiregular on x* — xu, and Z = G(x).
L Moreover, | ZNP(L)|=p =|P.| by the semiregularity of P(L), and P, =
. P(xu).. Thus, ZN P(L)= P(L). whenever x € L' # L. As above, we then have
E P, = P(xu). conjugate to ZNP(L), so P, =P(x), |P(x)|Zzp’, and hence
| |P: P(x)| = p. Once again, this contradicts (2.2ii).

Consequently, | P| = p°. Now | P, | = p for each w € A(x), while | P, | = p? for

 each u € x* — L. Thus, P, fixes no points of x*— xu, so Z = P(x) once again.

E Also, ZNP(L)#1. Since P(x*)=1 as in the proof of (5.3), ZNP(L) is
semiregular on x* — L. Thus, | ZNP(L)|=p.

Foreach u € x* — L, Z(P(x)) N P(xu) contains a G,-conjugate of Z N P(L).

| Thus, Z(P(x)) has p>+ 1 such subgroups, and | Z(P(x))| = p>. Since N(P(x))

permutes these subgroups 2-transitively, | Z(P(x))| = p*. But now | P: P(x)|=p

§ is again ridiculous.

This completes the proof of (1.1) when p*| | G|.

6. The case p° t |G|

We now consider the case p*4 |G| of Theorem 1.1. Certainly, p*| |G |

 since |A(x)| = p*t. Thus, a Sylow p-subgroup P of G has order p? and fixes

I some point x. By 2.7), p A t+ 1,50 P fixes 1 + £ =2 lines on x. Let L be such a

 line. P is semiregular on A(x), so P(L) is semiregular on x*— L.

Lemma 6.1. £=1 or 3, so plt—1 or t=3. If ¢ =3 then 3|p—1 and

N(P)/C(P)= SL(2,3).

Proor. By (2.2), N(P), is 2-transitive on the 1 + ¢ subgroups P(L). Hence, if
the lemma does not hold then £ =2 and N(P)/C(P) induces S; on these

. subgroups. Then (2.6) implies ¢ = p + 2. Since N(P) acts irreducibly on P and
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1+t>1+¢, P#P(x)and hence P(x)= 1. Thus, G, acts on the lines through x
as a group of degree p + 3 and order divisible by p?, which is absurd since p#3

here (as t#p°—p—1).

COMPLETION OF THE PROOE OF (1.1). By (6.1) and (2.7), t =2p + 3and £ =3.
Then P has just 2 nontrivial orbits 0 and O of lines on x. Then the commutator
group N(P) fixes 0, and 02, and induces a metacyclic group in each 0, so N(P)'
induces the identity on both orbits by (6.1). N(P)" has an element g inverting P.
Then g normalizes P(L), so g € G(x). Now P=[P,g]=[P,.G(x)] = G(x), s0
1+ ¢ = 1+t This contradiction proves the theorem.
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MONOMIAL C

LOU

Drazin introduced the notion |
tions of monomials in a ring, .
primitive rings which have p
monomial conditions related tc
characterization of prime Gol
characterization of the socle of
monomials.

1. Preliminaries

In this paper, all rings are as:

L rings, with 1€ R’, such that R
. (without 1) generated by the cc
X, Xs, -+, Z{X;t} = subring
. {monic monomials h € Z{X}|
w()NZ{X;k}. Say yER' is R

strongly left R-regular if yr#0 a

: b#0 in R, there are nonzero a
| essential). Weakening Drazin’s d
b X, --- X, is (R’,R)-pivotal |
homomorphism ¢: Z{X;t}— R,
i R-regular) element y of R’, suc

will be the ring obtained by adj
group ZDPR, endowed

(ning, nira+ nery + riry), and the
nir+rnr and r(n,r)=rm;+rm

:: pivotal) will merely be called K
. almost R-pivotal for R a dom
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