A brief graph-theoretic introduction to buildings

William M. Kantor#®

University of Oregon

1. Introduction

Buildings were introduced by J. Tits in order to
encode various fundamental geometric and combinatorial
properties of simple Lie, algebraic and finite groups
(cf. [8]). More recently, he generalized the notion of
building in [9], partly in response to the discovery of
interesting "'mear-buildings'" (e.g., in [4]). The pur-
pose of this paper is to survey this new approach, with
an emphasis on its graph-theoretic aspects.

Every rank r building is a highly structured
r-partite graph (r = 2) with the property that, for
r > 2, all neighborhoods of vertices are rank r - 1
buildings. As we will see, there are non-buildings that
also share this recursive property. First, in § 2 we
discuss rank 2 buildings, and use them in § 3 to define
GABs (''graphs that are almost buildings"). Four types of
examples are given. In § 4 covers of GABs are introduced
and used to define buildings. Finally, § 5 contains fur-
ther examples and open problems.

GABs are natural from a graph-theoretic point of view,
especially in the bipartite case (rank r = 2). They are
somewhat rare, but large enough quantities exist to make
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their study and classification both interesting and dif-

Ficu

lt. One of their many interesting aspects is that the

study of finite GABs forces the consideration of infinite

ones

2. Rank 2 buildings

A rank 2 building is a connected bipartite graph I

having diameter

n

and girth 2n for some integer n = 2,

and such that all vertices have valence = 3, (Such a graph

is also called g

eneralized n-gon, since the incidence

graph of an ordinary n-gon shares the defining properties

other than valence.)

The case

n =2 1is equivalent to that of complete

bipartite graphs in which both parts have size = 3.

The case

n =3 is precisely the same as that of the

incidence graph of a projective plane. Thus, we already

see that some buildings are very familiar combinatorial

objects.

For example, let

m™
There are several types of examples known when n =

K

~ &~

be a field, and for (qi) N (bi) « K

write ((gi) ,(Bi)) = %iBy - Gyfy + agBy, - 6483 . The

vertices of T

2-spaces U

inclusion.

ple.

When K

It has

are

the 1-spaces of K4, and also those

such that (U, U) = 0. Adjacency is just

GF(2)

this is an especially Familiar exar

30 vertices that can be identified with a"

the 2-sets of § =

tions

2/2/2

of

S.

{1, 2, 3, 4, 5, 6} and all the parti-

Adjacency is the obvious one

e S Ty

(essentially inclusion).

We are not assuming finiteness in this paper, for
reasons that will become clear in § 4. However, the most
studied rank 2 buildings are the finite ones. Assume that
I' 1is finite. The Feit-Higman theorem (see [1, Ch. 23; 2])
asserts that n=2, 3, 4, 6 or 8. Let n=4, 6 or 8.
If Vl and V2 are the two parts of our bipartite graph
then all vertices in Vl have the same valence s + 1,
and all in V2 have the same valence t + 1, The integers
s and t are the parameters of I'. Several restrictions
on them are known. For example, ¢t < 32 when n = 4 or 8,
while t = s3 when n = 6. Also, st dis a square when
n =6, and 2st 1s a square when n = 8,

There are rank 2 buildings known in the following
situations: n =4, {s,t} = {q,q}, {q ,qz}, {q2 ,q3},
{a-1,q+1}; n=6, (s,t} = {q,q}, {d,9°}; n=8,
{s,t} = {q ,qz}. Here, q 1is any prime power, except
that q must have the form 22e-+1 in the n = 8§ examples.
When n = 6 or 8, only one example is known for each q,
and it seems very plausible that these are the only possi-
bilities for these wvalues of n., On the other hand, there
are a few possibilities known for mn =4 and {s, t}

={q,q9} or {q-1,q+1l}, q even; and two possibilities

are known when n =4, {s,t} = {q ,qz}, q=2 (mod 3),

q > 2.

In other words, finite examples with n > 3 are
relatively scarce -- much more so than finite projective
planes.
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3. GABs

Let r = 2. By a labeled Kr we mean the complete
graph D on r vertices l,e«e,r (say) with each edge
{i, 3} 1labeled by an integer D(i, j) =D(j, i) = 2.

A rank r GAB with diagram D is defined recur-

sively as follows. First of all, it is a connected r-
partite graph I with parts Vl,---,Vr. When r =2, T
1s a rank 2 building (§ 2) of diameter D(1, 2). When

r > 2, for any vertex v, in Vi’ say, the neighborhood
I'(v) = {vertices joined to v}l is a GAB whose diagram
is obtained from D by deleting vertex i and all edges
through it.

Thus, if i # 5 and X is any r -2-clique in T
not involving vertices from Vi U Vj » then its neighbor-
hood T'(X) = N{I'(x) | x € X} has diagram -212—L124.

The abbreviated diagram of I" is obtained from D

as follows: every edge -24, .ji. or .an is replaced by

a non-edge o o, an unlabeled adge e—s, or a double edge
===, respectively. The most important GABs have dia-
grams with only these particular labels (see the examples
indicated below). Moreover, we now have the notation of
a connected diagram. It is easy to see that any GAB with
disconnected diagram can be obtained by glueing together
smaller rank GABs and null graphs.

Example 1. Let V be an n-dimensional vector space
over a field K. Let I be the (n - 1)-partite graph
whose vertices are all the proper subspaces of V, with

adjacency being inclusion. Then T 1is arank n -1

10

GAB with diagram e—s ... e=—e (3 path). An n - 3-
ciique X is jJust an increasing sequence of subspaces, and
T(X) 1is either complete bipartite (with parts of size
|[R| + 1) or the projective plane over K.

Example 2 [7]. Let V be a 2r-dimensional vector
space over a field K. Let (u,v) be a nonsingular alter-
nating bilinear form, obtained as in § 2 when 2r = 4,
Then let T consist of all proper subspaces U such
(U, U) = 0, again with adjacency being inclusion. This
produces a rank r GAB with diagram o ... &= (g
path of r vertices with exactly one double edge, at the
end of the path).

Examples 1 and 2 belong to a large class of examples
[7]1. If D is the diagram of a crystallographic semi-
regular polytope ‘in R;; r > 2, and K 1is any field
(perfect if the characteristic is 2) then there is at
least one GAB with diagram D 'coordinatized" by K

(somewhat as in the preceding examples). The relevant

diagrams are as follows.
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The finite GABs with these diagrams and no double edges
are all known. No corresponding result is known in the
double edge case.

Example 3. The only "peculiar" Ffinite ——c——»
known is obtained as follows. There are 7 points
L, 2,3, 4, 5,6, 7, and 35 Lines, all (}) subsets
of 3 points. Finally, there are 15 planes, each of
which has the structure of a PG(2, 2) consisting of all
7 points and 7 of the 35 lines.

point line plane
et —

Each PG(2, 2) structure uniquely determines 14 other
PG(Z, 2)s such that any two of the 1 + 14 PG(2, 2)s
have exactly one common line. The vertices of I' consist
of all of the points, lines and planes, and adjacence is
just inclusion. (For example, every point is joined to
every plane.) Note that the subgraph consisting of all
lines and planes is isomorphic to the incidence graph of
all lines and planes of PG(3, 2).

For each vertex v, T'(v) is a PG(2, 2), K3’ 3 or
30-vertex graph in § 2, according to whether v 1is a
plane, line or point.

Example 4. Examples of GABS e——m——» [4]. Let
M= {(ui) € Q6| denominator of each %; 1s a power of

2}° An orthogonal basis of M is any sextuple

epsot,eg
€ M such that ej * ey = 0 Vi # 3 (the usual dot prod-
uct) and every element of M can be written Xsiei,
where the denominator of each By is a power of 2, A
nice basis is an orthogonal one such that e; - e, =23

J ij
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for all i, j. In this case there are 15 corresponding

nice bases, such as

fl’ f2 = e T ey 5 f3, f4 =e3 - e, ; f5, f6 = eg t eg.
Write v; = {(el>,-°-,<e6>}
= {<fl>,-~-,<f6>}

. | t £, Y
{<e1>,<e2>,<fl>,<f2>,<ei_ej>,< RN

v
2
where j > i = 3}. Then each vertex of I looks like

Vis Vo O Vg, and each edge has the form {vl ,vz},
{vy ,v3}, or {v3 ,vl}, for some orthogonal basis
eq,°°*,8g and some permutation of 1l,.+.,6.

This produces a GAB e==#—= each of whose neigh-
borhoods is either a 30-yertex example (§ 2) or K3’ 3e

Now let m be any odd integer > 1. Read all of the
above mod m. This corresponds to a graph homomorphism
T » T'(mod m) onto another GAB called T'(mod m) with
diagram e===», but now we have finite GABs. Moreover,
if 1 < k|m then there is a homomorphism TI'(mod k)
-+ T(mod m).

All of these homomorphisms have the property that

they are locally isomorphisms: each neighborhood in T

is mapped isomorphically onto a neighborhood in T (mod m) .«

4, Covers and buildings

Let T' and T be GABs with the same diagram D
and rank r > 2, and partitions Vy,***,V, and
Vi"‘°’V£' A cover m:I'' #» I' is an adjacency-preserving

. ] L3
map from T' onto T, sending V; onto Vs for each i,

™
such that 1w induces an isomorphism T(X) » ©''(X') for
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each r -2-clique X of T, In particular, if v 1ig

any vertex of ' and v' 1is itg image under m then

7 induces a cover TI'(v) - ™ (v').

Thus, covers are "local" isomorphisms. For examples

see Example 4 in § 3.

Tits [9] showed that each CAB has a universal cover

'+ r, where "universal" refers to the standard type of
universal mapping property.

In Examples 1 - 4, the identity map I » T ig
universal. In Example 4, T -+ TI"(mod m) is a universal

cover of TI'(mod m).

The GAB T is simply connected if the identity map

'+ I is a universal cover. This is closely related to
the standard topological notion ofF simpile connectivity.
The two notions frequently coincide in practice, for

example when v = 3,

We can now define rank r buildings. If r = 2 this

was defined in § 2, ILet r > 2, Then a building with

diagram D is defined recursively to be a GAB T with
diagram D such that the following hold:
(i) For each vertex v the GAB TI'(v) is a building;
(ii) T is simply connected;
(ii1) D is not e—e3. ; ang
(iv) If D is e—e— then, for any distinct
Vi, Wy € Vl’ ]r(vl) n T(wl) n Vzl <1,
The heart of the definition is (i) and (ii). Con-
ditions (iii) and (iv) ére a bit irritating. If T is

finite then (iii) is automatic, by the Feit-Higman theorem
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(§ 2). It is conjectured that Example 3 is the only

finite GAB with diagram e—e=== that fails to satisfy

(iv).

The main theorems concerning buildings are the fol-

lowing results of Tits,

(I) (Tits [7].) Classification of all finite
buildings with connected diagram and rank r = 3.

(II) (Tits [7].) Classification of all infinite
buildings whose diagrams are those of the crystallographic
semiregular polytopes in § 3.

(I11) (Tits, unpublished.) Classification of all

buildings whose diagrams correspond to semiregular tes-

1
and :)(:.

A near-example is e==—= | which corresponds to the

- .
selations of R , T =4,

Examples of diagrams in (III) are

square lattice in,iRz——but of course r = 3 here so that
(II1) does not apply.

(IVv) (Tits [9].) Let T be a GABR of rank r = 3.
Assume that there is no subdiagram —a . and that all
subdiagrams e—e«==» correspond to neighborhoods that
are buildings. If [ + I is a universal cover then T
is a building.

Example. A finite GAB e«——=— 3always has an
infinite building e—===» covering it.

Therefore, the study of finite GABs forces the

. 1 PPy .
study of infinite ones. For example, Tits' classification

theorems give information concerning finite GABs (see

and :><:").

[4 ;5] £for the cases of diagrams
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5. Finite examples of GABs, r > 2 ; open problems

Many finite examples are known, but they have highly

limited local behavior: all rank 2 pieces (i.e., bipar-

tite neighborhoods) have small numbers of vertices. Here

is a list of some of the corresponding diagrams.

f Examples in which the projective planes are

PG(2, 2); examples in which they are PG(2, 8). |

Several classes of examples, related to

p——— — ]
GF(2), GF(3) or GF(4).
6 Infinitely many with PG(2, 2)s and the

same universal cover; one with PG(2, 5)s

or :><:

Two examples are known, both using PG(2, 2)s

Infinitely many, using PG(2 s 2)8.

and the 30 vertex examples in'§ 2.

30 vertex rank 2 buildings all around.

These are just a sample of the known finite examples
of GABs (e.g., [4;5]). All of these, and most of the
known explicit examples, are constructed so as to have
Aut (T) transitive'on the set of all maximal cliques of
T'. However, this is really a crutch, and hopefully will
not persist. (See [8, pp. 318 - 319] for an indication
of how to use infinite groups to construct large numbers
of not terribly explicit Ffinite GABs.)

Problems.

(1) Construct more examples, especially without using

groups.

(ii) Many known finite GABs with diagram ZZE\ are

related to planar difference sets. There is a good chance

16

that every planar difference set will produce (via covers)
infinitely many finite GABs zf}; [6]. Conceivably,
the algebraic approach used to prove the Feit-Higman
theorem (via adjacency matrices and eigenvalues) can even
be used together with GABs in order to obtain new infor-
mation concerning difference sets.

(iii) Classify some of the known finite GABs under
suitable hypotheses.

(iv) Rank 2 buildings are bipartite of diameter =n
and girth 2n. Therefore, they are extremal in a natural
sense (see [1]). It would be of interest to have extremal
problems for r-partite graphs more or less characterizing
finite GABs or buildings.

(v) Study further graph theoretic properties of
classes of Finite GABs. This entire subject is still in
its infancy: new properties obtained from new points of

view are undoubtedly waiting to be discovered.
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