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Veroneseans, power subspaces and independence

W. M. Kantor and E. E. Shult∗
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Abstract. Results are proved indicating that the Veronese map vd often increases independence of
both sets of points and sets of subspaces. For example, any d + 1 Veronesean points of degree d
are independent. Similarly, the dth power map on the space of linear forms of a polynomial algebra
also often increases independence of both sets of points and sets of subspaces. These ideas produce
d+ 1-independent families of subspaces in a natural manner.

2000 Mathematics Subject Classification. Primary: 51A45

1 Introduction

In this paper we will study independence questions involving points or subspaces obtained
from standard geometric or algebraic objects: Veronese maps and polynomial rings. The
proofs are elementary, but some of the results seem unexpected.

We will always be considering integers d, n > 1. For any field K, the (vector)
Veronese map1 vd : Kn → KN , N =

(
d+n−1
d

)
, is defined in (2.1); the 1-subspaces in

vd(K
n) are the Veronesean points of degree d. We will be concerned with the behavior

of vd on sets of subspaces of Kn: in general it increases independence. For example:

Theorem 1.1. Any d + 1 Veronesean points of degree d in KN are independent (that is,
they span a d+ 1-space).

The dimension n of the initial space Kn does not play any role in this result or others in
this paper. Section 2.2 contains a surprisingly elementary proof. These types of results are
in the geometric framework appearing in [12, 9, 3, 2, 10, 11] rather than the more standard
Algebraic Geometry occurrences of the Veronese map [6, p. 23], [13, pp. 40–41].

More generally, we will consider independence of sets of subspaces of KN . We call
a set U of at least d + 1 such subspaces d + 1-independent if the subspace spanned by

∗This research was supported in part by NSF grant DMS 0753640.
1Traditionally this map is defined sending the projective geometry P(Kn) on Kn to P(KN ). For our proofs

it is preferable to deal with vectors, which still allows us to act on projective geometries.
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512 W. M. Kantor and E. E. Shult

any d+ 1 members of U is their direct sum. For example, 2-independence means that any
two members have intersection 0, which is a very familiar geometric situation. With this
terminology, Section 2.3 contains an elementary proof of the following generalization of
the preceding theorem concerning sets vd(U) := {〈vd(U)〉 | U ∈ U} of subspaces KN :

Theorem 1.2. If U is any e+ 1-independent set of at least de+ 1 non-zero subspaces of
Kn, then vd(U) is a de+ 1-independent set of subspaces of KN .

Even when U is a spread we suspect that the resulting d+1-independent family vd(U)
is not maximal. It is the natural way of obtaining vd(U) that seems more interesting than
the possible maximality. Note that the dimensions of the subspaces in the preceding
theorem are allowed to vary arbitrarily.

For any finite set {x1, . . . , xn} of indeterminates and any integer m ≥ 1, we will
consider the space Am consisting of all homogeneous polynomials of degree m in the
polynomial algebra A = K[x1, . . . , xn]. A powerpoint is a 1-space 〈fd〉 in Ad, where
0 6= f ∈ A1. Powerpoints in Ad are closely related to Veronesean points in suitable
characteristics (cf. Theorem 3.1). As in the case of the Veronese map, we are interested
in the behavior of d-fold powers on sets of subspaces of A1. The case of powerpoints
follows easily from Theorem 1.1 (cf. Section 3.1):

Theorem 1.3. For any field whose characteristic is 0 or greater than d, any d + 1 pow-
erpoints of Ad are independent.

More specialized results are possible for small positive characteristics (cf. Theorems
3.2 and 3.3).

Let 〈T d〉 denote the subspace spanned by all products of d members of a subset T of
A. Section 4.2 again concerns increasing independence of subspaces, once again assum-
ing a restriction on the characteristic:

Theorem 1.4. Assume that 1 ≤ r ≤ d and d!/(d − r)! 6= 0 in K. If T is any e + 1-
independent set of at least re + 1 non-zero subspaces of A1, then {〈T d〉 | T ∈ T } is an
re+ 1-independent set in Ad.

Theorem 1.2 can be used to prove this when r = d, while Theorem 1.3 is a special case,
although the proofs use very different tools. In Section 5 we prove a somewhat weaker-
looking variation on the preceding theorem.

Generalized dual arcs and other configurations are constructed in Section 6 using very
elementary properties of the polynomial algebraA. One of these configurations is another
infinite family of 3-independent subspaces.

Note: We will always use vector space dimension.

2 The Veronese map

In this section we will prove Theorems 1.1 and 1.2. In passing we use the polynomial ring
to reprove a standard result on Veronesean action.
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Veroneseans, power subspaces and independence 513

2.1 Background concerning the Veronese map. Consider two integers d, n > 1, to-
gether with N =

(
d+n−1
d

)
. For a field K of arbitrary characteristic and size, we will

use the K-space V = Kn of all n-tuples t = (t1, . . . , tn) = (ti), ti ∈ K, and the K-
space W = KN of all N -tuples (yα) for a fixed but arbitrary ordering of all sequences
α = (a1, . . . , an) of integers ak ≥ 0 satisfying

∑
k ak = d. Corresponding to α there

is a monomial function t 7→ tα := ta1
1 · · · tann of degree d in the coordinates ti. (See

Section 2.4 for more discussion of this setting.)
The (vector) Veronese map vd : V →W is defined by

vd((ti)) := (tα). (2.1)

This induces the classical Veronese map P(V ) → P(W ) on projective spaces [6, p. 23],
[13, pp. 40–41]. Some of its geometric aspects have been studied outside Algebraic Ge-
ometry in [12, 9, 3, 2, 10, 11].

There is a natural map from homogeneous polynomial functions g in t1, . . . , tn of
degree d to linear functionals W → K. Namely, if g(t1, . . . , tn) =

∑
α aαt

α, where
aα ∈ K using all α as before, then the corresponding linear functional g̃ : W → K is
given by g̃((yα)) :=

∑
α aαyα. If the field is tiny then it is possible that two monomial

functions tα coincide, so that this correspondence is not bijective, in fact “sending” g to g̃
is not actually a function! However, what matters here is that this recipe produces a linear
functional, and that every linear functional on W arises this way.

Clearly, g̃ is a linear functional on W such that

g̃(vd(t)) = g(t) for all t = (ti) ∈ V. (2.2)

2.2 Veronesean points. The following elementary observation implies Theorem 1.1
(see Lemma 2.7 for a much stronger version):

Lemma 2.3. If z is a point of V not in each of d subspaces U1, . . . , Ud of V , then vd(z)
is not in 〈vd(U1), . . . , vd(Ud)〉.

Proof. For 1 ≤ j ≤ d let fj be a linear function V → K that vanishes on Uj but not
on z. Then g :=

∏
j fj is a homogeneous polynomial function of degree d that vanishes

on all Uj but not on z. By (2.2), the corresponding linear functional g̃ on W vanishes on
〈vd(U1), . . . , vd(Ud)〉 but not on vd(z), as required. 2

See [2], [3, Theorem 2.10], [1, 4, 14] and [5] for results similar to Theorem 1.1.

Remark 2.4. If q ≥ d then the rational normal curve vd(P(K2)) spans KN = Kd+1 [8,
p. 229]. It follows that vd(K2) does not contain d + 2 independent points: Theorem 1.1
is best possible.

Theorem 1.1 can be viewed as a statement about the code C having a check matrix
whose columns consist of one non-zero vector in each Veronesean point: C has minimum
weight > d+ 1. By the preceding paragraph, the minimum weight is d+ 2 if q is not too
small, with codewords of weight d+ 2 arising from d+ 2 points in a 2-space in Kn; and
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514 W. M. Kantor and E. E. Shult

similarly, the next smallest weight is 2d+ 2, occurring from d+ 1 points on each of two
2-spaces in a 3-space.

We have not been able to find any reference to this code in the literature. It is probably
worth studying, at least from a geometric perspective.

Remark 2.5. The notation vd is ambiguous, since it omits the original dimension n. With
this in mind, these maps can be composed. It is easy to use monomials to check that
ve(vd(P(Kn))) is just ved(P(Kn)) on a subspace of the underlying

(
e+N−1

e

)
-dimensional

space (where N is as before). For example, for any set X of points of a projective space,
ve(P(X)) is e + 1-independent by Theorem 1.1; but if X = vd(P(Y )) for Y ⊆ A1 then
ve(P(X)) is de+ 1-independent.

In particular, if C is a conic in K3 then v2(C) = v2(v2(P(K2))) is 5-independent:
it is a rational normal curve in a 5-space. Similarly, it is natural to ask for the indepen-
dence properties of vd-images of geometrically natural sets of points. For example, by
Theorem 1.2, v2(hyperoval) and v2(ovoid) are 5-independent (and 5 is best possible).

2.3 Families of subspaces. The following special case of Theorem 1.2 contains Theo-
rem 1.1:

Theorem 2.6. If U is any set of at least d+ 1 non-zero subspaces of Kn pairwise inter-
secting in 0, then 〈vd(U)〉 is a d+ 1-independent set of subspaces of KN .

This is an immediate consequence of the following

Lemma 2.7. If U0 is a subspace of V intersecting each of d subspaces U1, . . . , Ud of V
only in 0, then 〈vd(U0)〉 ∩ 〈vd(U1), . . . , vd(Ud)〉 = 0.

Proof. We will construct a linear map L on W whose kernel contains vd(Uj), 1 ≤ j ≤ d,
and meets 〈vd(U0)〉 only in 0. By Corollary 2.19, one may arbitrarily change a basis
of V while leaving the set vd(V ) ⊆ W invariant. Thus we may assume that U0 =
{(t1, . . . , tm, 0, . . . , 0) | ti ∈ K}; we will view U0 as Km. Let W0 ∼= KN0 , N0 =(
d+m−1

d

)
, be the span of the set of vectors in W having a non-zero coordinate for some

member of vd(U0) and zero outside of vd(U0) (i.e., ith coordinate 0 for all i > m). Then
vd : U0 → W0 can be viewed as the Veronese map on U0. (If K is small then W0 might
not be the span of vd(U0), which adds a minor complication to our argument.)

Throughout this proof, β will range over all sequences (b1, . . . , bm, 0, . . . , 0) of n
integers bk ≥ 0 satisfying

∑
k bk = d.

Let H denote theK-space of all homogeneous polynomial functions g on V of degree
d such that g(Uj) = 0 for 1 ≤ j ≤ d. We will construct many elements of H. First
note that every monomial function tβ on U0 of degree d is the restriction of some member
of H. For, write tβ = tσ(1) · · · tσ(d) for a function σ : {1, . . . , d} → {1, . . . ,m}. If
1 ≤ i ≤ d let λi denote any linear functional on V such that λi((t1, . . . , tm, 0, . . . , 0)) =

tσ(i) and λi(Ui) = 0 (recall that U0 ∩ Ui = 0). Then
∏d
i=1 λi((t1, . . . , tm, 0, . . . , 0)) =∏d

i=1 tσ(i) = tβ and
∏d
i=1 λi(Uj) = 0 for 1 ≤ j ≤ d. Thus,

∏d
i=1 λi behaves as required.
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Veroneseans, power subspaces and independence 515

It follows that every homogeneous polynomial function on U0 of degree d is the re-
striction of some member of H.

Let W denote the set of all linear functionals on W that vanish on vd(Uj) for 1 ≤ j ≤
d. Set W• := 〈vd(U0)〉. The crucial step of the proof of the lemma is that

Every linear functional µ• on W• is the restriction of some µ ∈W. (2.8)

For, arbitrarily extend µ• to a linear functional µ0 on W0 (this is irrelevant if W0 = W•).
As noted in Section 2.1, there is a homogeneous polynomial function g0 on U0 of degree
d such that µ0 = g̃0. We have seen that g0 is the restriction to U0 of some g ∈ H.
Consequently, for (2.8) it suffices to show that µ := g̃ coincides with µ• on W•. If t ∈ U0
then we can apply (2.2) using both V and U0:

g̃(vd(t)) = g(t) = g0(t) = g̃0(vd(t)) = µ0(vd(t)) = µ•(vd(t)).

Since g̃ and µ• are linear on W• = 〈vd(U0)〉, it follows that g̃ = µ• on W•, which
proves (2.8).

SetN• := dimW•. By (2.8), W has a subset {µi | 1 ≤ i ≤ N•} whose restrictions to
W• form a basis of the dual spaceW ∗• . Then µi(vd(Uj)) = 0 for 1 ≤ i ≤ N•, 1 ≤ j ≤ d,
by the definition of W.

Define L : W → KN• by L((yα)) = (µi((ya))). Then L is linear, and L(vd(Uj)) =
(µi(vd(Uj))) = 0 for 1 ≤ j ≤ d. Since {µi | 1 ≤ i ≤ N•} restricts to a basis of W ∗• ,

〈vd(U0)〉 ∩ 〈vd(U1), . . . , vd(Ud)〉 ≤W• ∩ kerL = W• ∩
⋂
i

kerµi = 0. 2

Remark 2.9. The most familiar examples of 2-independent families are spreads. It would
be interesting to know for which r the set in Theorem 2.6 is r-independent when Σ is a
Desarguesian spread of k-spaces of a 2k-space.

The preceding lemma also yields Theorem 1.2:

Proof of Theorem 1.2. Consider distinct U0, . . . , Ude ∈ U , and suppose that
∑de
i=0 yi =

0 for some yi ∈ 〈vd(Ui)〉. By symmetry, it suffices to show that y0 = 0.
Let Π be any partition of {1, . . . , de} into d subsets π of size e. For π ∈ Π let

Uπ := 〈Ui | i ∈ π〉. Then U0 ∩ Uπ = 0 since {U0, Ui | i ∈ π} is e+ 1-independent. By
the preceding lemma,

−y0 =

de∑
1

yi ∈ 〈vd(U0)〉 ∩
∑
π∈Π

∑
i∈π
〈vd(Ui)〉

≤ 〈vd(U0)〉 ∩ 〈vd(Uπ) | π ∈ Π〉 = 0. 2

Remarks 2.10. 1. We used the rather weak inclusion 〈vd(A), vd(B)〉 ≤ 〈vd(〈A,B〉)〉
for subspaces A,B of Kn: in general the right side is far larger than the left.

2. The proof shows that we did not need independence for all e+ 1-subsets of U . For
each de+1-subset U ′ of U we only needed a family W of independent e+1-subsets of U ′
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such that the complement of each member of U ′ is partitioned by some of the members
of W.

The minimal version of this is as follows: each de+1-subset U ′ of U is equipped with
the structure of a 2-design with v = de + 1, k = e + 1, λ = 1, such that each block is
e+ 1-independent. In this situation, “almost all” triples from U need not be independent
and yet the proof shows that vd(U) nevertheless must be de+ 1-independent.

2.4 Veronesean action. This section develops two algebraic results that play a small
role in the proofs in this paper. One is that linear transformations of the space of homoge-
neous polynomials of degree one induce endomorphisms of degree zero of the polynomial
algebra K[X] (see Remark 2.12). The other is the often-quoted result that there is an ac-
tion of GL(Kn) on KN that stabilizes the set of Veronesean vectors, inducing an action
permutation-equivalent to its action on Kn (used in Lemma 2.7), which we prove using
polynomial rings and their morphisms.

2.4.1 Symmetric algebras and polynomial rings. Let V be an arbitrary vector space
over K of dimension n. The symmetric algebra S(V ) is the K-algebra of symmetric
tensors — that is, the free commutative K-algebra generated by the vector space V . It is
a graded algebra

S(V ) = K ⊕ V ⊕ S2(V )⊕ · · ·
where Sd(V ) is the vector space spanned by the d-fold symmetric tensors. If X =
{x1, x2, . . . , xn} is any basis of V then S(V ) is isomorphic to the polynomial ring

A = K[X] = K ⊕A1 ⊕ · · · ⊕Ad ⊕ · · · (2.11)

where Ad is the vector space of homogeneous polynomials of degree d. Thus selecting
the basis X of A1 produces a basis {xα} of Ad consisting of the monomials xα :=
xa1

1 · · ·xann , where α = (a1, . . . , an) is a sequence of non-negative integers for which
d =

∑
ai.

2.4.2 The substitution-transformation ρd. Let f : A1 → W be any linear transfor-
mation, where W is a K-vector space. Then f extends to a K-algebra homomorphism
f̄ : A[X] → S(W ) of graded algebras, by mapping any polynomial p(x1, . . . , xn) to
p(f(x1), f(x2), . . . , f(xn)), a “polynomial” in the algebra S(W ). By restriction of f̄ ,
we set

ρd(f) := f̄ |Ad
: Ad → S(W )d.

Its value at any monomial xα =
∏
xaii is

∏
f(xi)

ai in S(W )d. Thus ρd(f) is simply the
linear morphism on Ad which results from substituting f(xi) for xi.

Remark 2.12. Note that when W ≤ A1, f has been extended to an endomorphism of the
algebra K[X].

Now what happens when we apply ρd to a functional λ : A1 → K? Since ρ̄(λ) is
defined by substitution of each xi by the scalar λ(xi) in each polynomial of K[X], it
induces a functional ρd(λ) : Ad → K of Ad.
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Lemma 2.13. Some properties of ρd:
(1) ρd transforms any linear transformation A1 → A1 to a linear transformation of

Ad into itself. If T is the identity transformation of A1, then ρd(T ) is the identity
transformation of Ad.

(2) If T is in the group GL(A1), then ρd(T ) is an invertible transformation of Ad.
(3) If λ : A1 → K is a functional of A1, then ρd(λ) is a functional of Ad.
(4) If S : A1 → A1 is a linear transformation and if T : A1 → W , where W is either

the K-vector space A1 or the K-algebra K itself, then

ρd(T ◦ S) = ρd(T ) ◦ ρd(S), (2.14)

and is also K-linear.
(5) Suppose R, S are linear transformations A1 → A1 while T : A1 → W is also

K-linear, where W is as in (4). Then

ρd(T ◦ S ◦R) = ρd(T ) ◦ ρd(S) ◦ ρd(R). (2.15)

Proof. The first part of (1) follows from the fact that ρd(T ) is defined by substituting
T (xi) for xi in any homogeneous polynomial of degree d. If T is the identity map on A1,
then substitution of xi for xi, does not change anything — that is, ρd(T ) is the identity
transformation of Ad.

Statement (3) was explained in the paragraph preceding the lemma.
Statement (4) is also a consequence of ρd(T ) being defined by ”substitution". Since

S is a linear transformation of A1 into itself, we may utilize the basis X = {x1, . . . , xn}
to write

S(xi) =

n∑
j=1

cijxj , where cij ∈ K, i ∈ [1, n].

Then ρd(S) takes a monomial xα =
∏
xaii to

∏
(
∑
j cijxj)

ai . Since ρd(T ) takes any

monomial
∏
x
bj
j of degree d to

∏
T (xj)

bj , we see that

ρd(T ) ◦ ρd(S) : xα =
∏

xaii 7→
∏
i

(
∑

cijT (xj))
ai . (2.16)

But since T ◦ S takes xi to
∑
j cijT (xj) we see that it also takes the monomial xα to the

right side of Equation (2.16). Thus we have

ρd(T ◦ S) = ρd(T ) ◦ ρd(S),

establishing statement (4).
Remembering that W is permitted to be A1 in statement (4), statement (5) follows

from applying Equation (2.14) several times.
For statement (2) suppose T is invertible, so there exists a T−1 : A1 → A1 such that

T ◦ T−1 = id1, the identity transformation of A1. Now by (1) and (2.14), the identity
transformation idd of Ad can be written as

idd = ρd(id1) = ρd(T ◦ T−1) = ρd(T ) ◦ ρd(T−1),

proving that ρd(T ) is invertible. 2
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2.4.3 Veronesean functionals. Suppose λ ∈ A∗1 is the functional A1 → K that takes
the basis element xi to the scalar ti. Then ρd(λ) is the functional of Ad that takes the
basis element xα to tα ∈ K. We call a functional of this type (that is, one that maps
xα to tα where t = (t1, . . . , tn)) a Veronesean functional of Ad. These are very special
elements of A∗d.

Theorem 2.17. The group ρd(GL(A1)) induces an action on A∗d that stabilizes the set
of non-zero Veronesean functionals in A∗d and induces on this set an action that is per-
mutation-equivalent to the action of GL(A1) on the non-zero vectors of A∗1 . Explicitly, if
T ∈ GL(A1) acts on A∗1 by sending the functional λ to λ ◦ T , then ρd(T ) acts on ρd(λ),
the corresponding Veronesean functional, by sending it to ρd(λ) ◦ ρd(T ) = ρd(λ ◦ T ),
another Veronesean functional.

Proof. If λ ∈ A∗1 and S and T are elements of GL(A1), then by Lemma 2.13

ρd(λ ◦ S ◦ T ) = ρd(λ) ◦ ρd(S ◦ T ) = ρd(λ) ◦ ρd(S) ◦ ρd(T ), (2.18)

for any λ ∈ A∗1 .
By (2.18), we have a right action of ρd(GL(A1)) on the set of Veronesean functionals.

Since these functionals are in one-to-one correspondence with the elements of A∗1 , the
equation

ρd(λ ◦ T ) = ρd(λ) ◦ ρd(T )

exhibits the permutation-equivalence of the action of GL(A1) on A∗1 and the action of its
isomorphic copy ρd(GL(A1)) on the Veronesean functionals of A∗d. 2

2.4.4 The Veronesean action.

Corollary 2.19. There is an action of GL(A1) on the non-zero Veronesean vectors ofKN

that is permutation equivalent to its action on the non-zero vectors ofA∗1 , or, equivalently,
its action as GL(Kn) on Kn.

Proof. As before, α = (a1, . . . , an) is a sequence of non-negative integers summing to d,
so that xα =

∏
xaii is a monomial of degree d. We define the scalar tα =

∏
taii whenever

t = (t1, . . . , tn) ∈ Kn. IfN is the number of monomials of degree d in n indeterminates,
then the classical Veronesean vectors are the N -tuples of the form (tα). Define the action
of GL(A1) on A∗d by fT := f ◦ ρd(T ), for every functional f ∈ A∗d and T ∈ GL(A1).
Equation (2.14) shows that this meets the definition of a group action. By Theorem 2.17,
this action stabilizes the set of Veronesean functionals.

The vector space isomorphism τ : KN → A∗d which maps (yα) to the functional
of Ad whose value on xα is yα, bijectively maps the set vd(Kn) of Veronesean vectors
of KN to the set of Veronesean functionals of A∗d. Conjugation by τ then transports this
action of GL(A1) on non-zero Veronesean functionals described in the previous paragraph
to an equivalent action on the non-zero Veronesean vectors.

Similarly, let µ : Kn → A∗1 be the vector space isomorphism which maps an n-
tuple (ti) to the functional on A∗1 whose value at xi is ti. Then conjugation by µ−1
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Veroneseans, power subspaces and independence 519

transports the action of GL(A1) on A1 to an action as the full linear group on Kn. One
can express this in terms of the (vector) Veronesean mapping introduced in (2.1). Thus,
setting t = (ti) ∈ Kn,

τ(vd(t)) = ρd(µ(t)).

Then for any S ∈ GL(A1), we have

vd(t)
S := τ−1ρd(µ(t)) ◦ ρd(g) ◦ τ = vd(µ

−1 ◦ g ◦ µ) := vd((t
S)).

Equality of the extremal members of this equation justifies the last remark of the corol-
lary. 2

See [7, (2.3)] and [3, Theorem 2.10] for other approaches to this corollary.

3 Powerpoints

For the rest of this paper, x1, . . . , xn will denote indeterminates over K, and A :=
K[x1, . . . , xn] is the graded algebra (2.11), so that AiAj ⊆ Ai+j for all non-negative
integers i, j. (If P and Q are sets of polynomials then PQ will denote the set of all prod-
ucts pq, p ∈ P , q ∈ Q. In general, it is not a subspace even if P and Q are.) If we replace
{x1, . . . , xn} by any other basis of A1 then we still obtain the same subspaces Ad (cf.
Section 2.4).

In this and the next two sections we will be concerned with powers Ud of subspaces
U of A1. For now we will consider the set Pd(A1) of powerpoints Ud: the case in which
U has dimension 1, in which case so does Ud.

3.1 Powerpoints and Veronesean points. It is elementary and standard that these two
types of points are closely related for suitable characteristics:

Theorem 3.1. If charK > d or charK = 0, then there is a linear isomorphism σ : Ad →
KN , N =

(
d+n−1
d

)
, such that

(a) σ sends the set of powerpoints in Ad to the set vd(P(Kn)) of Veronesean points in
KN , and

(b) σ([η((ti))]
d) = (tα) if η : Kn → A1 sends (ti) 7→

∑
i tixi.

Here (tα) was defined in the preceding section.

Proof. By the Multinomial Theorem, each powerpoint is spanned by a polynomial of the
form

(t1x1 + · · ·+ tnxn)d =
∑
α

c(α)tαxα

with ti ∈ K and multinomial coefficients c(α). All c(α) are non-zero in view of the
assumed characteristic. Hence, the map σ defined by σ :

∑
α c(α)kαx

α 7→ (kα), kα ∈
K, behaves as required. 2

Proof of Theorem 1.3. Theorem 3.1 shows that linear independence of powerpoints cor-
responds to linear independence of Veronesean points. Now use Theorem 1.1. 2
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3.2 Small characteristic. We now use Remark 2.12 to prove additional independence
results in small characteristics, a situation excluded in Theorem 1.3:

Theorem 3.2. Assume that r is such that |K| > (r + 1)2/2 and
(
d
i

)
6= 0 in K for

0 ≤ i ≤ r. Then any r + 1 powerpoints of Ad are independent.

Proof. If n = 2 then all powerpoints are spanned either by xd1 or

(x2 + tx1)d =

r∑
0

(
d

i

)
tixd−i2 xi1 +

d∑
r+1

(
d

i

)
tixd−i2 xi1

for some t ∈ K. Since
(
d
i

)
6= 0 for 0 ≤ i ≤ r, it suffices to note that the Vandermonde

determinant det(tij)
r
0 6= 0 for any r + 1 different elements tj ∈ K.

If n > 2, assume that the result holds for n − 1 indeterminates xi. Consider r + 1
distinct powerpoints 〈fd1 〉, . . . , 〈fdr+1〉 and a linear dependence relation

∑r+1
1 kif

d
i = 0,

ki ∈ K. Apply the endomorphism T of A fixing x1, . . . , xn−1 and sending xn to an
arbitrarily chosen linear combination f of x1, . . . , xn−1 (cf. Remark 2.12). This produces
an identity

∑r+1
1 kiT (fi)

d = 0 in the ring T (A) = K[x1, . . . , xn−1]. If the powerpoints
〈T (fi)

d〉, 1 ≤ i ≤ r + 1, are distinct then induction implies that all ki are 0.
If 〈T (fi)

d〉 = 〈T (fj)
d〉 for some i 6= j then T 〈fi〉 = T 〈fj〉, so that 〈fi〉 and 〈fj〉 are

congruent modulo kerT = 〈xn − f〉. Therefore, we only need to choose f so that the
point 〈xn − f〉 of A1 does not lie on the line joining any two of our points 〈fi〉. Assume
that |K| = q is finite. The union of those lines has size at most

(
r+1

2

)
(q − 1) + r + 1.

There are qn−1 points 〈xn − f〉 as f varies. Since we have assumed that q > (r + 1)2/2,
it follows that qn−1 >

(
r+1

2

)
(q − 1) + r + 1 and a suitable f exists. When K is infinite

the argument is even easier. 2

A variant of the previous argument can be used in characteristic 2:

Theorem 3.3. Let K = GF(2m) and d = 2i + 1 with (i,m) = 1 and m ≥ 3. Then any
4 powerpoints of Ad are independent.

Proof. If n = 2 and d = 2i + 1 = s + 1, then each powerpoint is spanned by xd1 or
(x2 + tx1)d = xd2 + txs2x1 + tsx2x

s
1 + tdxd1 for some t ∈ K. By [8, Lemma 21.3.14],

the points 〈(0, 0, 0, 1)〉 and 〈(1, t, ts, ts+1)〉, t ∈ K, form a 4-independent set. (NB: By
contrast, in odd characteristic p, using s = pi the analogous set of points always has 4
dependent members, so that the analogue of the theorem does not hold.)

Now suppose that n > 2. We are given 4 distinct powerpoints 〈fd1 〉, . . . , 〈fd4 〉, and we
will assume a linear dependence relation

∑4
1 kif

d
i = 0 for scalars ki. Apply the endomor-

phism T ofA fixing x1, . . . , xn−1 and sending xn to an arbitrarily chosen linear combina-
tion f of x1, . . . , xn−1 (cf. Remark 2.12) in order to obtain an identity

∑4
1 kiT (fi)

d = 0
in the ring K[x1, . . . , xn−1]. If the powerpoints 〈T (fi)

d〉 are distinct then we will have
reduced the number of indeterminates xi, as desired: the ki are all 0.

As in the proof of the preceding theorem, we only need to choose f so that the point
kerT = 〈xn−f〉 does not lie on the line joining any two of the points 〈T (fi)〉. The union
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of those lines has size at most
(4

2

)
(q−1)+4, where q = 2m. There are qn−1 points 〈xn−f〉

as f varies. Then a suitable f exists since m ≥ 3 implies that qn−1 > 6(q − 1) + 4. 2

We emphasize that the preceding theorem is a higher-dimensional generalization of a
standard result in PG(3, q) [8, Lemma 21.3.14]. In fact, since this is only a question of
four points an approach that is easier than the above simply plays with the space spanned
by the fi. As in Remark 2.4 there is an associated code that may be worth some study.
For example, an elementary examination of possible dependence relations among the
polynomials fdi shows that all minimum weight codewords arise from 2-spaces of Kn.

4 Independence of power subspaces

Let A be as in (2.11). Recall that, if T is a subspace of A1, then 〈T d〉 is the subspace
of Ad spanned by all d-fold products of linear polynomials in T . Note that dim〈T d〉 =(
d+dimT−1

d

)
since the monomials of degree d in a basis of T form a basis of 〈T d〉.

Before we can prove Theorem 1.4 we need a few algebraic preliminaries. In this
section we will use the uncommon notation V (d) to denote a cartesian power, in order to
distinguish it from powers in rings.

4.1 The universal nature of symmetric tensors. For a K-vector space V and a com-
mutative K-algebra B, we will need an almost-basic property of symmetric d-multilinear
K-forms V (d) → B; that is, multilinear forms f(v1, . . . , vd) assuming values in B and
invariant under all permutations of the vi ∈ V .

As in Section 2.4, we view the algebra S(V ) of symmetric tensors as the polynomial
algebraA = K[X] for a basisX of V , viewing V asA1 and the subspace S(V )d spanned
by the d-fold symmetric tensors as Ad. A standard and elementary universal property of
symmetric tensors is the case B = K of the following

Theorem 4.1. Let f : V (d) → B be a symmetric d-multilinear K-form with values in
a commutative K-algebra B without zero divisors. Then there is a K-linear mapping
f̄ : Ad = S(V )d → B such that, for every (v1, . . . , vd) ∈ V (d),

f(v1, . . . , vd) = f̄(v1 · v2 · · · vd).

Proof. Let K ′ be the field of fractions of B. Then K ′ ⊗K A = K ′[X] and K ′ ⊗K Ad =
K ′[X]d.

Let V ′ = K ′ ⊗K V . There is a symmetric multilinear K ′-form f ′ determined by
f together with a K-basis X := {x1, . . . , xn} of A1: for v′i =

∑
j βijxj ∈ V ′, i =

1, . . . , d, βij ∈ K ′, define

f ′(v′1, . . . , v
′
d) :=

∑
σ

[ d∏
i=1

βiσ(i)

]
f(xσ(1), . . . , xσ(d)),
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where the above sum is over all sequences σ = (σ(1), . . . , σ(d)) with entries in {1, . . . ,
n}. This definition is forced by multilinearity and the requirement that f ′(v′1, . . . , v

′
d) =

f(v′1, . . . , v
′
d) if all v′i ∈ V .

By the field case of the theorem there is a K ′-linear mapping f̄ ′ : K ′ ⊗K Ad =
K ′[X]d → K ′ such that, for all v′i ∈ V ′,

f̄ ′(v′1v
′
2 · · · v′d) = f ′(v′1, v

′
2, . . . , v

′
d).

If all v′i = vi ∈ V = A1 then the right side is just f(v1, v2, . . . , vd) ∈ B. Hence, the
desired K-linear mapping is f̄ := f̄ ′|Ad

: Ad = K[X]d → B, since f(v1, . . . , vd) =
f ′(v1, . . . , vd) = f̄ ′(v1 · · · vn) for every (v1, . . . , vd) ∈ V (d). 2

4.2 Proof of Theorem 1.4. We begin with the analogue of Lemma 2.7:

Lemma 4.2. Suppose that 1 ≤ r ≤ d with d!/(d−r)! 6= 0 inK. If T0 is a subspace ofA1
intersecting each of r subspaces T1, . . . , Tr ofA1 only in 0, then 〈T d0 〉∩〈T d1 , . . . , T dr 〉 = 0.

Proof. It suffices to prove that there is a subspace N0 of Ad such that N0 contains T dj for
all j ≥ 1 and N0 ∩ 〈T d0 〉 = 0. Change coordinates in A1 so that x1, . . . , xk is a basis of
T0. Let B := K[x1, . . . , xk], so that Bd := B ∩Ad is 〈T d0 〉.

If 1 ≤ j ≤ r then T0 ⊕ Tj is a direct summand of A1, so that there is a linear
transformation λj : A1 → A1 such that λj(xi) = xi, i = 1, . . . , k, and λj(Tj) = 0. (The
behavior of λj on a complement to T0 ⊕ Tj in A1 is irrelevant to the proof.)

If r < j ≤ d then λj : A1 → A1 will be the identity map.
Let Θ be a (left) transversal for the pointwise stabilizer Sd−r of 1, . . . , r in the sym-

metric group Sd on {1, . . . , d}, so that |Θ| = d!/(d− r)!. Define a d-multilinear K-form
L0 : A

(d)
1 → Ad by

L0(v1, . . . , vd) :=
∑
π∈Θ

d∏
j=1

λj(vπ(j)). (4.3)

We claim that L0 is symmetric. For, let π ∈ Θ, ρ ∈ Sd, and write ρπ = π′σ with
π′ ∈ Θ, σ ∈ Sd−r. Then

r∏
j=1

λj(vρπ(j))

d∏
j=r+1

λj(vρπ(j)) =

r∏
j=1

λj(vπ′σ(j))

d∏
j=r+1

vπ′σ(j)

=

r∏
j=1

λj(vπ′(j))

d∏
j=r+1

vπ′(j),

since {π′σ(j) | r+ 1 ≤ j ≤ d} is the complement in {1, . . . , d} of {π′σ(j) | 1 ≤ j ≤ r}
= {π′(j) | 1 ≤ j ≤ r}, and hence is {π′(j) | r + 1 ≤ j ≤ d}. Consequently, ρ permutes
the summands that define L0, which proves the claim.

By Theorem 4.1, there is a linear transformation L̄0 : Ad → B such that

L̄0(v1 · · · vd) = L0(v1, . . . , vd) =
∑
π∈Θ

d∏
j=1

λj(vπ(j)) (4.4)
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for all vi ∈ A1. Clearly L̄0(Ad) ⊆ Ad. We will show that N0 := ker L̄0 behaves as
required at the start of this proof.

Consider j ≥ 1. If all vi ∈ Tj , then vπ(j) ∈ Tj ⊆ kerλj , and each summand on the
right side of (4.4) is 0. Thus, L̄0(T dj ) = 0.

It remains to determine the action of L̄0 on 〈T d0 〉. We first calculate L̄0 on each mono-
mial xα = xa1

1 · · ·x
ak
k ,
∑
i ai = d. Since λj(xi) = xi for all i ≤ k and all j, (4.4)

gives
L̄0(xα) = |Θ|xa1

1 · · ·x
ak
k . (4.5)

Here |Θ| = d!/(d− r)! 6= 0 by hypothesis.
Thus, as xα ranges over all monomials of degree d in x1, . . . , xk, their L̄0-images form

a K-basis for Bd. Consequently, L̄0 restricted to 〈T d0 〉 is a surjection 〈T d0 〉 → Bd, and
hence an isomorphism since dim〈T d0 〉 = dimBd. Thus, N0∩〈T d0 〉 = ker L̄0∩〈T d0 〉 = 0,
as required. 2

Proof of Theorem 1.4. The case e = 1 of Theorem 1.4 follows immediately from the
preceding lemma. The general case is obtained exactly as in the proof of Theorem 1.2
near the end of Section 2.3. 2

When r = d, an entirely different proof of Theorem 1.4 is obtained by combining
Theorems 2.6 and 3.1. Theorem 1.4 clearly contains Theorem 1.3 as a special case, but it
does not quite contain Theorem 3.2: the requirements on r are less stringent in the latter
result. (For example, if d = 5 and the characteristic is r = 3, then 3 divides 5!/(5 − 3)!
but none of the binomial coefficients

(5
i

)
.)

5 r-independence of power subspaces

In this section we will use subspaces of polynomials to prove a (weak) variation on the
results in the preceding section:

Theorem 5.1. Let r ≥ 1. If d > 1 is not a power of charK and if T is any r-independent
set of subspaces of A1, then {〈T d〉 | T ∈ T } is an r + 1-independent set in Ad.

5.1 Calculating with spaces of polynomials. We will make frequent use of the fol-
lowing elementary observation and its consequences.

Proposition 5.2. In (2.11) let U1 and U2 be subspaces of A1 such that U1 ∩ U2 = 0. If
d > 1, then

〈Ad−1U1〉 ∩ 〈Ad−1U2〉 = 〈Ad−2U1U2〉 (5.3)

〈(U1 + U2)d〉 =
d⊕
k=0

〈Uk1 Ud−k2 〉 (5.4)

〈Ud1 〉 ∩ 〈Ad−1U2〉 = 0. (5.5)
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Proof. Let X1 := {x1, . . . , x`} and X2 := {x`+1, . . . , xm} be respective bases for U1
and U2. Let X ⊇ X1∪̇X2 be a basis of V .

Both sides of each of the above equations are subspaces of Ad. The left side of (5.4)
is the subspace of Ad spanned by all monomials of degree d with factors chosen from
X1∪̇X2. Partitioning these monomials according to the number of factors of X1 they
contain proves (5.4).

For (5.5) note that 〈Ud1 〉 is spanned by monomials in X1 of degree d, while 〈Ad−1U2〉
is spanned by monomials containing at least one factor from X2.

For (5.3), consider the following pairwise disjoint sets of monomials in X:
• Yi ⊂ Ad−1Xi is the set of monomials in X with at least one factor from Xi and no

factor from X3−i, for i = 1, 2, and
• Y12 ⊂ Ad−2X1X2 is the set of all monomials in X having at least one factor from
X1 and at least one from X2.

It follows that 〈Y1〉 ∩ 〈Y2〉 = 0 and 〈Ad−1Ui〉 = 〈Yi〉 ⊕ 〈Y12〉 for i = 1, 2. Consequently,
〈Ad−1U1〉 ∩ 〈Ad−1U2〉 = 〈Y12〉 = 〈Ad−2U1U2〉. 2

We can now show that the dth power operator commutes with intersections:

Corollary 5.6. For any subspaces B and C of A1,

〈Bd〉 ∩ 〈Cd〉 = 〈(B ∩ C)d〉. (5.7)

Proof. We may assume that d > 1. Set C1 := B ∩ C, and choose a subspace C2 such
that C = C1 ⊕ C2. Since d > 1, (5.4) yields

〈Cd〉 =

d⊕
j=0

〈Cj1C
d−j
2 〉 = 〈Cd1 〉 ⊕ 〈C2C

d−1〉. (5.8)

Since B ∩ C2 = B ∩ (C ∩ C2) = C1 ∩ C2 = 0, (5.5) forces 〈Bd〉 ∩ 〈Cd−1C2〉 = 0. On
the other hand, 〈Bd〉 contains 〈Cd1 〉, the first summand at the end of (5.8). Thus,

〈Bd〉 ∩ 〈Cd〉 = 〈Cd1 〉 = 〈(B ∩ C)d〉. 2

5.2 Proof of Theorem 5.1. We begin with a special case:

Proposition 5.9. Suppose that A1 = T1 ⊕ · · · ⊕ Tr with dimTi = s, and that Tr+1 is an
s-space in A1 such that the set {T1, . . . , Tr+1} is r-independent. Then 〈T d1 , . . . , T dr 〉 =
〈T d1 〉 ⊕ · · · ⊕ 〈T dr 〉, and one of the following holds:
(1) 〈T dr+1〉 ∩ (〈T d1 〉 ⊕ · · · ⊕ 〈T dr 〉) = 0, or
(2) charK is a prime p, d is a power of p, and dim[〈T dr+1〉 ∩ (〈T d1 〉 ⊕ · · · ⊕ 〈T dr 〉)] = s.

Proof. Let {y1, . . . , ys} be a basis of Tr+1. If xij is the projection of yj into Ti, 1 ≤ i ≤ r,
then yj =

∑
i xij with each xij 6= 0 due to r-independence, andXi := {xij | 1 ≤ j ≤ s}

is a basis of Ti for i ≤ r. Then 〈T d1 , . . . , T dr 〉 = 〈T d1 〉 ⊕ · · · ⊕ 〈T dr 〉 since 〈T di 〉 is spanned
by monomials in Xi.
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If 0 6= f ∈ 〈T dr+1〉 ∩ (〈T d1 〉 ⊕ · · · ⊕ 〈T dr 〉), then

f =
∑
α

kα

s∏
j=1

y
aj
j , (5.10)

where kα ∈ K and the sum is indexed by all α = (a1, . . . , as) with all ai ≥ 0 and∑
i ai = d. Since f ∈ 〈T d1 〉 ⊕ · · · ⊕ 〈T dr 〉, when expanded as a linear combination of

monomials in
⋃
iXi of degree d the coefficients of the monomials in (5.10) with “mixed

terms” — i.e., monomials containing members of XiXj with i 6= j — must be zero.
Let α = (a1, . . . , as) be as above and suppose that (at least) two of the numbers a`

and am are positive (` 6= m). Then the product
s∏
j=1

x
aj
∗j , where ∗ = 1 except that ∗ = 2

when j = m, contains a term in X`Xm, and this product occurs only once in (5.10).
Since f ∈ 〈T d1 〉 ⊕ · · · ⊕ 〈T dr 〉, it follows that the coefficient kα in (5.10) is zero for all
α = (a1, . . . , as) having at least two non-zero terms.

Now (5.10) reduces to
f =

∑
i

kiy
d
i . (5.11)

By the Binomial Theorem, f involves a non-zero mixed term containing a member of
X1X2 unless K has characteristic p > 0 and d = pe for some e. Then ydi = (

∑
i xij)

d =∑
i x

d
ij ∈ 〈T d1 〉 ⊕ · · · ⊕ 〈T dr 〉, and (2) holds. 2

Proof of Theorem 5.1. It suffices to prove that, if T1, . . . , Tr+1 are distinct members of
T , then

〈T dr+1〉 ∩ 〈T d1 , . . . , T dr 〉 = 0 (5.12)

(compare Lemma 4.2). Set T := 〈T1, . . . , Tr〉 = 〈T1〉 ⊕ · · · ⊕ 〈Tr〉 (by r-independence)
with corresponding projections πi : T → Ti.

Let Ur+1 := Tr+1 ∩ T . We may assume that Ur+1 6= 0, as otherwise 〈T1, . . . , Tr+1〉
= T1 ⊕ · · · ⊕ Tr+1 and (5.12) is clear (use Corollary 5.6 with C = T ).

Once again let {y1, . . . , ys} be a basis for Ur+1 and xij := πi(yj), 1 ≤ j ≤ s,
1 ≤ i ≤ r. If, for some i, {xij | 1 ≤ j ≤ s} is linearly dependent, then some y 6= 0
in Ur+1 satisfies πi(y) = 0, and r-independence produces the contradiction y ∈ Ur+1 ∩
kerπi ≤ Tr+1 ∩ ⊕j 6=iTj = 0.

Thus, Ui := 〈xij | 1 ≤ j ≤ s〉 is an s-subspace of Ti for each i. Since yj ∈ T we have
yj ∈ 〈πi(yj) | 1 ≤ i ≤ r〉 and hence Ur+1 ≤ U := 〈U1, . . . , Ur〉. Since Ui ≤ Ti and
{T1, . . . , Tr+1} is an r-independent family, so is the family {U1, . . . , Ur+1} of subspaces
of T . Apply Proposition 5.9 to this family with Ui and U in the roles of Ti and A1:

〈Udr+1〉 ∩ 〈Ud1 , . . . , Udr 〉 = 0, (5.13)

which resembles our goal (5.12).
We claim that

〈T dr+1〉 ∩ 〈T d1 , . . . , T dr 〉 ≤ 〈Udr+1〉 ∩ 〈T d1 , . . . , T dr 〉 (5.14)
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(and later we will show that the right hand side is 0). For, select a complement Wi

to Ui in Ti for i = 1, . . . , r + 1, and let W := 〈W1, . . . ,Wr〉. Then T = U ⊕ W
and 〈T1, . . . , Tr+1〉 = U ⊕ W ⊕ Wr+1. By Corollary 5.6, 〈T dr+1〉 ∩ 〈T d1 , . . . , T dr 〉 ≤
〈T dr+1〉 ∩ 〈T d〉 = 〈(Tr+1 ∩ T )d〉 = 〈Udr+1〉, which proves (5.14).

By (5.5), 〈Ud〉 ∩ 〈Ad−1W 〉 = 0. Since 〈Ud1 , . . . , Udr 〉 ≤ 〈Ud〉, by the modular law

〈Ud〉 ∩ [〈Ud1 , . . . , Udr 〉)⊕ 〈Ad−1W 〉] = 〈Ud1 , . . . , Udr 〉 ⊕ (〈Ud〉 ∩ 〈Ad−1W 〉)
= 〈Ud1 , . . . , Udr 〉,

and hence (since T di = (Ui ⊕Wi)
d ≤ Udi ⊕Ad−1Wi by (5.4))

〈Ud〉 ∩ 〈T d1 , . . . , T dr 〉 ≤ 〈Ud〉 ∩ [〈Ud1 , . . . , Udr 〉+ 〈Ad−1W1, . . . , Ad−1Wk〉]
= 〈Ud〉 ∩ [〈Ud1 , . . . , Udr 〉+ 〈Ad−1W 〉] = 〈Ud1 , . . . , Udr 〉.

Since 〈Udr+1〉 ≤ 〈Ud〉, (5.13) yields

〈Udr+1〉 ∩ 〈T d1 , . . . , T dr 〉 = 〈Udr+1〉 ∩ [〈Ud〉 ∩ 〈T d1 , . . . , T dr 〉]
≤ 〈Udr+1〉 ∩ 〈Ud1 , . . . , Udr 〉 = 0.

Now (5.14) implies (5.12), as required. 2

6 Generalized dual arcs and polynomial rings

6.1 Definitions. A generalized dual arc of V = Kn with vector dimensions (n, n1, . . . ,
nd) is a set D of n1-subspaces of V such that the intersection of any j of them has
dimension nj > 0, j = 2, . . . , d, and the intersection of any d + 1 of them is 0. This
notion was introduced in [10, 11], but using projective dimension instead of vector space
dimension. When d = 2 and nd = 1, D is a dual arc.

Suppose D is a generalized dual arc with vector dimensions (n, n1, . . . , nd). If D ∈
D, thenD′ := {D∩D′ | D′ ∈ D−{D}} is a generalized dual arc with vector dimensions
(n1, . . . , nd). In general, this procedure can be iterated.

For any subset ∆ of a sublattice L of the lattice L(V ) of all subspaces of V , let L(∆)
denote the sublattice generated by ∆ (the smallest sublattice containing ∆), and let I(∆)
denote the ideal generated by ∆ (the set of all elements of L(∆) that are bounded above
by at least one element of ∆). We call ∆ regular if V = 〈∆〉, and, for each intersection
U of finitely many members of ∆,

U = 〈U ∩D | D ∈ ∆, D 6⊆ U〉. (6.1)

We call ∆ strongly regular if it is regular and

U ∩ 〈D1, . . . , D`〉 = 〈U ∩Di | 1 ≤ i ≤ `〉 (6.2)

for anyD1, . . . , D` ∈ ∆ and any subspace U that is an intersection of finitely many mem-
bers of ∆. There are many stronger versions of this concept possible2, but this definition
is geared to conform to the definitions appearing in [10, 11].

2For example, U might be restricted to range over all elements of L(∆) ∩ I(∆).

Authenticated | kantor@uoregon.edu author's copy
Download Date | 7/11/13 1:17 AM



Veroneseans, power subspaces and independence 527

6.2 An elementary construction. Consider (2.11), fix d ≥ 2, and let D be the follow-
ing set of K-subspaces of Ad:

D := {Ad−1y | 0 6= y ∈ A1}. (6.3)

If z = αy, α ∈ K∗, then Ad−1y = Ad−1z, so D is parametrized by the 1-spaces of A1.
If Dj := Ad−1yj , 1 ≤ j ≤ d, are distinct elements of D, we claim that

D1 ∩D2 ∩ · · · ∩Dj = Ad−jy1 · · · yj . (6.4)

Clearly the right side of (6.4) is contained in the left. The left side is precisely all homo-
geneous polynomials of degree d that are divisible by all of the polynomials y1, . . . , yj .
Since the polynomials yi are primes of the unique factorization domainA no two of which
are associates, each polynomial on the left side of (6.4) is a multiple of y1 · · · yj and so
lies in the right side, as claimed.

The dimension of the subspace in (6.4) is dimAd−j . This proves

Theorem 6.5. D is a generalized dual arc in Ad with vector dimensions((
n+ d− 1

d

)
,

(
n+ d− 2
d− 1

)
, . . . , nd−1 =

(
n

1

)
= n, nd = 1

)
.

In [11] there are objects with similar properties constructed without the use of poly-
nomials. Note that 〈D〉 = Ad.

6.3 Regularity properties of this construction: Examples.

Example 6.6. Strong regularity can fail for (6.3). Suppose n = dimA1 ≥ 3 and d = 2.
We will see in the next Example that D in (6.3) is regular since d is small. However, D
is not strongly regular. For, consider the subspaces Di := A1xi, i = 1, 2, and U :=
A1(x1 + x2) < 〈D1, D2〉 belonging to D.

Since U ∩Di = 〈xi(x1 +x2)〉, i = 1, 2, dim〈U ∩D1, U ∩D2〉 = 2 < n = dimU =
dim(U∩〈D1, D2〉), so that U∩〈D1, D2〉 6= 〈U∩D1, D2∩D′〉 and (6.2) fails, as required.

Example 6.7. Even regularity can fail for (6.3), but only for finite K and enormous d.
Since 〈D〉 = Ad, in order to see this we must examine (6.1).

Each U 6= 0 in (6.1) has the form U :=
⋂k
i=1(Ad−1yi) = Ad−kπ for distinct

〈y1〉, . . . , 〈yk〉 in A1 and π := y1 · · · yk, where d ≥ k. Regularity asserts that each
such U is spanned by the subspaces U ∩ (Ad−1y) where y ranges over the set Y ′ of linear
polynomials not in 〈y1〉 ∪ · · · ∪ 〈yk〉.

By (6.4),

〈U ∩ (Ad−1y) | y ∈ Y ′〉 = 〈Ad−k−1yπ | y ∈ Y ′〉 = 〈Ad−k−1Y
′〉π.

In particular, if A1 = 〈Y ′〉 then 〈U ∩ (Ad−1y) | y ∈ Y ′〉 = Ad−kπ = U .
Thus, if D is not regular then, for some U , the corresponding set Y ′ must span a

proper subspace H of A1. Then the k-set {〈y1〉, . . . , 〈yk〉} must contain all 1-spaces of
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A1 not in H . Thus, K is finite and k ≥ |K|n−1, the number of points not in a hyperplane
of P(A1). Then d ≥ k ≥ |K|n−1.

Conversely, if d ≥ |K|n−1 choose U :=
⋂k
i=1(Ad−1yi), where {〈y1〉, . . . , 〈yk〉}

consists of all k = |K|n−1 points outside the hyperplane H = 〈x1, . . . , xn−1〉 of A1.
Then the previous argument produces a subspace

〈U ∩ (Ad−1y) | y ∈ Y ′〉 = 〈Ad−k−1H〉π

of dimension smaller than that of U = Ad−kπ, which proves nonregularity.

Thus, we have proved

Proposition 6.8. A generalized dual arc D in (6.3) need not be strongly regular.
Moreover, D is not regular if and only if K is a finite field GF(q) and d ≥ qn−1.

6.4 A generalization of the construction. Let Ik denote the set of 1-spaces spanned
by the various homogeneous polynomials of degree k that are powers of irreducible poly-
nomials (the degrees of these irreducible polynomials are allowed to vary). If d ≥ k,
then

D := {Ad−ky | y ∈ Ik}
is a set of |Ik| subspaces ofAd, each of dimension dimAd−k. Choose the positive integer
c such that 0 ≤ d − kc < k. By unique factorization in A, if 2 ≤ m ≤ c then the
intersection of any m members of D is a subspace of dimension dimAd−mk, and the
intersection of any c+ 1 members of D is 0. Thus,

Theorem 6.9. D is a generalized dual arc with vector dimensions

(dimAd,dimAd−k, . . . ,dimAd−ck).

Theorem 6.5 is the special case k = 1. This time, D need not span Ad (e.g., if
k = charK).

6.5 Further variations.

6.5.1 An example leading to a 3-independent family.

Lemma 6.10. If dimK A1 = n and H is a k-space in A1, then A1H is a subspace of A2
of dimension kn−

(
k
2

)
.

Proof. Clearly
〈A1H〉 = A1x1 +A1x2 + · · ·+A1xk, (6.11)

assuming that {x1, . . . , xk} is a basis ofH . The intersection of any two summands on the
right side of (6.11) is a 1-space while the intersection of any three is 0. Consequently, by
elementary linear algebra and inclusion-exclusion,

dim
( k∑
i=1

A1xi

)
=

k∑
i=1

dimA1xi −
∑

1≤i<j≤k

dim(A1xi ∩A1xj) = kn−
(
k

2

)
. 2
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Lemma 6.12. Let S be a partial spread of k-subspaces of A1, where dimA1 = 2k.

(1) If H ∈ S then dim〈A1H〉 = k(3k + 1)/2.
(2) For any distinct H1, H2 ∈ S, 〈A1H1〉 ∩ 〈A1H2〉 = 〈H1H2〉 has dimension k2.
(3) For any distinct H1, H2, H3 ∈ S, dim

(⋂3
i=1〈A1Hi〉

)
=
(
k
2

)
.

Proof. (1) follows from Lemma 6.10 with n = 2k.
(2) follows from (5.3).
(3) We may assume that X1 = {x1, . . . , xk} and X2 = {xk+1, . . . , x2k} are bases of

H1 and H2, respectively, such that {xi + xk+i | 1 ≤ i ≤ k} is a basis of H3. Using (2),
if y ∈ 〈A1H1〉 ∩ 〈A1H2〉 ∩ 〈A1H3〉 = 〈H1H2〉 ∩ 〈A1H3〉 then we can write

y =
k∑
i=1

yi(xi + xk+i) (6.13)

where yi =
∑k
j=1(αijxj + βijxk+j). Since X1X2 is a basis of 〈H1H2〉, for 1 ≤ i, j ≤ k

the coefficients of x2
i , xixj and xk+ixk+j in the polynomial y must be 0:

αii = βii = 0, αij = −αji, and βij = −βji, 1 ≤ i, j ≤ k. (6.14)

The coefficient of xixk+j in (6.13) is βij + αji = βij − αij , by (6.14). Similarly, the
coefficient of xjxk+i is αij − βij . Then

y =
∑

1≤i<j≤k

(βij − αij)(xixk+j − xjxk+i). (6.15)

Conversely, by reversing the steps, it is clear that any y as in (6.15) lies in 〈H1H2〉 =
〈A1H1〉∩〈A1H2〉 and also in 〈A1H3〉. It follows that the desired dimension is the number
of pairs i, j such that 1 ≤ i < j ≤ k. 2

Again consider a partial spread S and D = {A1H | H ∈ S} in Lemma 6.12: a set of
subspaces of the

(2k+1
2

)
-spaceA2 of dimension k(3k+1)/2, any two meeting in a space of

dimension k2 and any three meeting in a subspace of dimension k(k − 1)/2. Subtracting
these numbers from dimA2, we see that these intersections have codimensions

(
k+1

2

)
,

2
(
k+1

2

)
, and 3

(
k+1

2

)
, respectively. This implies the following:

Proposition 6.16. Let S be a partial spread of k-spaces of the 2k-spaceA1, and consider
the set D = {A1H | H ∈ S} of subspaces of A2. The dual set D∗ is a 3-independent
family of

(
k+1

2

)
-spaces in the dual

(2k+1
2

)
-space A∗2 .

Intersection dimensions of four members of the preceding set D are not, in general,
constant.
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6.5.2 Three 4-space structures in dimension 10. Let K = GF(q).

Example 6.17. Let n = dimA1 = 3 and D1 = {A2f | 0 6= f ∈ A1}. Then D1 is a set
of 1 + q+ q2 6-subspaces of the 10-space A3. Any two members of D1 meet at a 3-space
and so generate a 9-space. Since the intersection of any three is a 1-space, any three span
a space of dimension 6 + 6 + 6 − 3 − 3 − 3 + 1 = 10, hence the entire space. Then in
the dual space A∗3 we obtain a set D∗1 of 1 + q + q2 4-spaces, any two of which meet at
a 1-space, and any three of which meet at 0. Thus, D∗1 is a dual arc in A3(K(3))∗ with
vector dimensions (10, 4, 1).

Example 6.18. If n = 4 then D2 := {A1f | 0 6= f ∈ A1} consists of 1 + q + q2 + q3

4-spaces of the 10-space A2. Any two members of D2 intersect at a 1-space, so D2 is
another dual arc in A2(K(4)) with vector dimensions (10, 4, 1), but it has more members
than D∗1 .

Example 6.19. Let V be any vector space over K of dimension n. The exterior algebra∧
V = K ⊕ V ⊕ (V ∧ V )⊕ (V ∧ V ∧ V )⊕ · · · is a graded algebra that can replace the

polynomial ring in the construction in Section 6.2. While we obtain a set of subspaces of
a graded component of this algebra with good pairwise intersections, triple intersections
show that it is no longer a generalized dual arc.

Suppose dimV = 5. ThenD3 := {V ∧〈v〉 | 0 6= v ∈ V } is a set of 1+q+q2+q3+q4

4-spaces of the 10-space V ∧V . The intersection of any two members of D3 is a 1-space.
Any 1-space that is the intersection of two members of D3 in fact lies in 1 + q members
of D3, so this is not a dual arc.

Besides illustrating a use both of duals and exterior algebra, these last three exam-
ples possess a numerology that raises a question. In view of the fact that the 10-spaces
A3(K3)∗, A2(K4) and K5 ∧K5 are isomorphic, is there a relationship among the struc-
tures D∗1 , D2 and D3?

Acknowledgment. We are grateful to A. Maschietti and A. Polishchuk for helpful com-
ments concerning Section 2.2.
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