Veroneseans, power subspaces and independence

W. M. Kantor and E. E. Shult*
(Communicated by T. Penttila)

Abstract

Results are proved indicating that the Veronese map v_{d} often increases independence of both sets of points and sets of subspaces. For example, any $d+1$ Veronesean points of degree d are independent. Similarly, the d th power map on the space of linear forms of a polynomial algebra also often increases independence of both sets of points and sets of subspaces. These ideas produce $d+1$-independent families of subspaces in a natural manner.

2000 Mathematics Subject Classification. Primary: 51A45

1 Introduction

In this paper we will study independence questions involving points or subspaces obtained from standard geometric or algebraic objects: Veronese maps and polynomial rings. The proofs are elementary, but some of the results seem unexpected.

We will always be considering integers $d, n>1$. For any field K, the (vector) Veronese map ${ }^{1} v_{d}: K^{n} \rightarrow K^{N}, N=\binom{d+n-1}{d}$, is defined in (2.1); the 1 -subspaces in $v_{d}\left(K^{n}\right)$ are the Veronesean points of degree d. We will be concerned with the behavior of v_{d} on sets of subspaces of K^{n} : in general it increases independence. For example:

Theorem 1.1. Any $d+1$ Veronesean points of degree d in K^{N} are independent (that is, they span a $d+1$-space).

The dimension n of the initial space K^{n} does not play any role in this result or others in this paper. Section 2.2 contains a surprisingly elementary proof. These types of results are in the geometric framework appearing in $[12,9,3,2,10,11]$ rather than the more standard Algebraic Geometry occurrences of the Veronese map [6, p. 23], [13, pp. 40-41].

More generally, we will consider independence of sets of subspaces of K^{N}. We call a set \mathcal{U} of at least $d+1$ such subspaces $d+1$-independent if the subspace spanned by

[^0]any $d+1$ members of \mathcal{U} is their direct sum. For example, 2-independence means that any two members have intersection 0 , which is a very familiar geometric situation. With this terminology, Section 2.3 contains an elementary proof of the following generalization of the preceding theorem concerning sets $v_{d}(\mathcal{U}):=\left\{\left\langle v_{d}(U)\right\rangle \mid U \in \mathcal{U}\right\}$ of subspaces K^{N} :

Theorem 1.2. If \mathcal{U} is any $e+1$-independent set of at least de +1 non-zero subspaces of K^{n}, then $v_{d}(\mathcal{U})$ is a de +1 -independent set of subspaces of K^{N}.

Even when \mathcal{U} is a spread we suspect that the resulting $d+1$-independent family $v_{d}(\mathcal{U})$ is not maximal. It is the natural way of obtaining $v_{d}(\mathcal{U})$ that seems more interesting than the possible maximality. Note that the dimensions of the subspaces in the preceding theorem are allowed to vary arbitrarily.

For any finite set $\left\{x_{1}, \ldots, x_{n}\right\}$ of indeterminates and any integer $m \geq 1$, we will consider the space A_{m} consisting of all homogeneous polynomials of degree m in the polynomial algebra $A=K\left[x_{1}, \ldots, x_{n}\right]$. A powerpoint is a 1 -space $\left\langle f^{d}\right\rangle$ in A_{d}, where $0 \neq f \in A_{1}$. Powerpoints in A_{d} are closely related to Veronesean points in suitable characteristics (cf. Theorem 3.1). As in the case of the Veronese map, we are interested in the behavior of d-fold powers on sets of subspaces of A_{1}. The case of powerpoints follows easily from Theorem 1.1 (cf. Section 3.1):

Theorem 1.3. For any field whose characteristic is 0 or greater than d, any $d+1$ powerpoints of A_{d} are independent.

More specialized results are possible for small positive characteristics (cf. Theorems 3.2 and 3.3).

Let $\left\langle T^{d}\right\rangle$ denote the subspace spanned by all products of d members of a subset T of A. Section 4.2 again concerns increasing independence of subspaces, once again assuming a restriction on the characteristic:

Theorem 1.4. Assume that $1 \leq r \leq d$ and $d!/(d-r)!\neq 0$ in K. If \mathcal{T} is any $e+1-$ independent set of at least re +1 non-zero subspaces of A_{1}, then $\left\{\left\langle T^{d}\right\rangle \mid T \in \mathcal{T}\right\}$ is an $r e+1$-independent set in A_{d}.

Theorem 1.2 can be used to prove this when $r=d$, while Theorem 1.3 is a special case, although the proofs use very different tools. In Section 5 we prove a somewhat weakerlooking variation on the preceding theorem.

Generalized dual arcs and other configurations are constructed in Section 6 using very elementary properties of the polynomial algebra A. One of these configurations is another infinite family of 3-independent subspaces.

Note: We will always use vector space dimension.

2 The Veronese map

In this section we will prove Theorems 1.1 and 1.2. In passing we use the polynomial ring to reprove a standard result on Veronesean action.
2.1 Background concerning the Veronese map. Consider two integers $d, n>1$, together with $N=\binom{d+n-1}{d}$. For a field K of arbitrary characteristic and size, we will use the K-space $V=K^{n}$ of all n-tuples $t=\left(t_{1}, \ldots, t_{n}\right)=\left(t_{i}\right), t_{i} \in K$, and the K space $W=K^{N}$ of all N-tuples $\left(y_{\alpha}\right)$ for a fixed but arbitrary ordering of all sequences $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ of integers $a_{k} \geq 0$ satisfying $\sum_{k} a_{k}=d$. Corresponding to α there is a monomial function $t \mapsto t^{\alpha}:=t_{1}^{a_{1}} \cdots t_{n}^{a_{n}}$ of degree d in the coordinates t_{i}. (See Section 2.4 for more discussion of this setting.)

The (vector) Veronese map $v_{d}: V \rightarrow W$ is defined by

$$
\begin{equation*}
v_{d}\left(\left(t_{i}\right)\right):=\left(t^{\alpha}\right) \tag{2.1}
\end{equation*}
$$

This induces the classical Veronese map $\mathbf{P}(V) \rightarrow \mathbf{P}(W)$ on projective spaces [6, p. 23], [13, pp. 40-41]. Some of its geometric aspects have been studied outside Algebraic Geometry in $[12,9,3,2,10,11]$.

There is a natural map from homogeneous polynomial functions g in t_{1}, \ldots, t_{n} of degree d to linear functionals $W \rightarrow K$. Namely, if $g\left(t_{1}, \ldots, t_{n}\right)=\sum_{\alpha} a_{\alpha} t^{\alpha}$, where $a_{\alpha} \in K$ using all α as before, then the corresponding linear functional $\tilde{g}: W \rightarrow K$ is given by $\tilde{g}\left(\left(y_{\alpha}\right)\right):=\sum_{\alpha} a_{\alpha} y_{\alpha}$. If the field is tiny then it is possible that two monomial functions t^{α} coincide, so that this correspondence is not bijective, in fact "sending" g to \tilde{g} is not actually a function! However, what matters here is that this recipe produces a linear functional, and that every linear functional on W arises this way.

Clearly, \tilde{g} is a linear functional on W such that

$$
\begin{equation*}
\tilde{g}\left(v_{d}(t)\right)=g(t) \quad \text { for all } t=\left(t_{i}\right) \in V \tag{2.2}
\end{equation*}
$$

2.2 Veronesean points. The following elementary observation implies Theorem 1.1 (see Lemma 2.7 for a much stronger version):

Lemma 2.3. If z is a point of V not in each of d subspaces U_{1}, \ldots, U_{d} of V, then $v_{d}(z)$ is not in $\left\langle v_{d}\left(U_{1}\right), \ldots, v_{d}\left(U_{d}\right)\right\rangle$.

Proof. For $1 \leq j \leq d$ let f_{j} be a linear function $V \rightarrow K$ that vanishes on U_{j} but not on z. Then $g:=\prod_{j} f_{j}$ is a homogeneous polynomial function of degree d that vanishes on all U_{j} but not on z. By (2.2), the corresponding linear functional \tilde{g} on W vanishes on $\left\langle v_{d}\left(U_{1}\right), \ldots, v_{d}\left(U_{d}\right)\right\rangle$ but not on $v_{d}(z)$, as required.

See [2], [3, Theorem 2.10], [1, 4, 14] and [5] for results similar to Theorem 1.1.
Remark 2.4. If $q \geq d$ then the rational normal curve $v_{d}\left(\mathbf{P}\left(K^{2}\right)\right)$ spans $K^{N}=K^{d+1}$ [8, p. 229]. It follows that $v_{d}\left(K^{2}\right)$ does not contain $d+2$ independent points: Theorem 1.1 is best possible.

Theorem 1.1 can be viewed as a statement about the code C having a check matrix whose columns consist of one non-zero vector in each Veronesean point: C has minimum weight $>d+1$. By the preceding paragraph, the minimum weight is $d+2$ if q is not too small, with codewords of weight $d+2$ arising from $d+2$ points in a 2 -space in K^{n}; and
similarly, the next smallest weight is $2 d+2$, occurring from $d+1$ points on each of two 2-spaces in a 3-space.

We have not been able to find any reference to this code in the literature. It is probably worth studying, at least from a geometric perspective.

Remark 2.5. The notation v_{d} is ambiguous, since it omits the original dimension n. With this in mind, these maps can be composed. It is easy to use monomials to check that $v_{e}\left(v_{d}\left(\mathbf{P}\left(K^{n}\right)\right)\right)$ is just $v_{e d}\left(\mathbf{P}\left(K^{n}\right)\right)$ on a subspace of the underlying $\left({ }_{e}^{e+N-1}\right)$-dimensional space (where N is as before). For example, for any set X of points of a projective space, $v_{e}(\mathbf{P}(X))$ is $e+1$-independent by Theorem 1.1; but if $X=v_{d}(\mathbf{P}(Y))$ for $Y \subseteq A_{1}$ then $v_{e}(\mathbf{P}(X))$ is $d e+1$-independent.

In particular, if C is a conic in K^{3} then $v_{2}(C)=v_{2}\left(v_{2}\left(\mathbf{P}\left(K^{2}\right)\right)\right)$ is 5-independent: it is a rational normal curve in a 5 -space. Similarly, it is natural to ask for the independence properties of v_{d}-images of geometrically natural sets of points. For example, by Theorem 1.2, v_{2} (hyperoval) and v_{2} (ovoid) are 5 -independent (and 5 is best possible).
2.3 Families of subspaces. The following special case of Theorem 1.2 contains Theorem 1.1:

Theorem 2.6. If \mathcal{U} is any set of at least $d+1$ non-zero subspaces of K^{n} pairwise intersecting in 0 , then $\left\langle v_{d}(\mathcal{U})\right\rangle$ is a $d+1$-independent set of subspaces of K^{N}.

This is an immediate consequence of the following

Lemma 2.7. If U_{0} is a subspace of V intersecting each of d subspaces U_{1}, \ldots, U_{d} of V only in 0 , then $\left\langle v_{d}\left(U_{0}\right)\right\rangle \cap\left\langle v_{d}\left(U_{1}\right), \ldots, v_{d}\left(U_{d}\right)\right\rangle=0$.

Proof. We will construct a linear map L on W whose kernel contains $v_{d}\left(U_{j}\right), 1 \leq j \leq d$, and meets $\left\langle v_{d}\left(U_{0}\right)\right\rangle$ only in 0 . By Corollary 2.19 , one may arbitrarily change a basis of V while leaving the set $v_{d}(V) \subseteq W$ invariant. Thus we may assume that $U_{0}=$ $\left\{\left(t_{1}, \ldots, t_{m}, 0, \ldots, 0\right) \mid t_{i} \in K\right\}$; we will view U_{0} as K^{m}. Let $W_{0} \cong K^{N_{0}}, N_{0}=$ $\binom{d+m-1}{d}$, be the span of the set of vectors in W having a non-zero coordinate for some member of $v_{d}\left(U_{0}\right)$ and zero outside of $v_{d}\left(U_{0}\right)$ (i.e., i th coordinate 0 for all $i>m$). Then $v_{d}: U_{0} \rightarrow W_{0}$ can be viewed as the Veronese map on U_{0}. (If K is small then W_{0} might not be the span of $v_{d}\left(U_{0}\right)$, which adds a minor complication to our argument.)

Throughout this proof, β will range over all sequences $\left(b_{1}, \ldots, b_{m}, 0, \ldots, 0\right)$ of n integers $b_{k} \geq 0$ satisfying $\sum_{k} b_{k}=d$.

Let \mathbb{H} denote the K-space of all homogeneous polynomial functions g on V of degree d such that $g\left(U_{j}\right)=0$ for $1 \leq j \leq d$. We will construct many elements of \mathbb{H}. First note that every monomial function t^{β} on U_{0} of degree d is the restriction of some member of \mathbb{H}. For, write $t^{\beta}=t_{\sigma(1)} \cdots t_{\sigma(d)}$ for a function $\sigma:\{1, \ldots, d\} \rightarrow\{1, \ldots, m\}$. If $1 \leq i \leq d$ let λ_{i} denote any linear functional on V such that $\lambda_{i}\left(\left(t_{1}, \ldots, t_{m}, 0, \ldots, 0\right)\right)=$ $t_{\sigma(i)}$ and $\lambda_{i}\left(U_{i}\right)=0$ (recall that $\left.U_{0} \cap U_{i}=0\right)$. Then $\prod_{i=1}^{d} \lambda_{i}\left(\left(t_{1}, \ldots, t_{m}, 0, \ldots, 0\right)\right)=$ $\prod_{i=1}^{d} t_{\sigma(i)}=t^{\beta}$ and $\prod_{i=1}^{d} \lambda_{i}\left(U_{j}\right)=0$ for $1 \leq j \leq d$. Thus, $\prod_{i=1}^{d} \lambda_{i}$ behaves as required.

It follows that every homogeneous polynomial function on U_{0} of degree d is the restriction of some member of \mathbb{H}.

Let \mathbb{W} denote the set of all linear functionals on W that vanish on $v_{d}\left(U_{j}\right)$ for $1 \leq j \leq$ d. Set $W_{\bullet}:=\left\langle v_{d}\left(U_{0}\right)\right\rangle$. The crucial step of the proof of the lemma is that

$$
\begin{equation*}
\text { Every linear functional } \mu_{\bullet} \text { on } W_{\bullet} \text { is the restriction of some } \mu \in \mathbb{W} \text {. } \tag{2.8}
\end{equation*}
$$

For, arbitrarily extend μ_{\bullet} to a linear functional μ_{0} on W_{0} (this is irrelevant if $W_{0}=W_{\bullet}$). As noted in Section 2.1, there is a homogeneous polynomial function g_{0} on U_{0} of degree d such that $\mu_{0}=\tilde{g}_{0}$. We have seen that g_{0} is the restriction to U_{0} of some $g \in \mathbb{H}$. Consequently, for (2.8) it suffices to show that $\mu:=\tilde{g}$ coincides with μ_{\bullet} on W_{\bullet}. If $t \in U_{0}$ then we can apply (2.2) using both V and U_{0} :

$$
\tilde{g}\left(v_{d}(t)\right)=g(t)=g_{0}(t)=\tilde{g}_{0}\left(v_{d}(t)\right)=\mu_{0}\left(v_{d}(t)\right)=\mu_{\bullet}\left(v_{d}(t)\right)
$$

Since \tilde{g} and μ_{\bullet} are linear on $W_{\bullet}=\left\langle v_{d}\left(U_{0}\right)\right\rangle$, it follows that $\tilde{g}=\mu_{\bullet}$ on W_{\bullet}, which proves (2.8).

Set $N_{\bullet}:=\operatorname{dim} W_{\bullet} . \operatorname{By}(2.8), \mathbb{W}$ has a subset $\left\{\mu_{i} \mid 1 \leq i \leq N_{\bullet}\right\}$ whose restrictions to W_{\bullet} form a basis of the dual space W_{\bullet}^{*}. Then $\mu_{i}\left(v_{d}\left(U_{j}\right)\right)=0$ for $1 \leq i \leq N_{\bullet}, 1 \leq j \leq d$, by the definition of \mathbb{W}.

Define $L: W \rightarrow K^{N_{\bullet}}$ by $L\left(\left(y_{\alpha}\right)\right)=\left(\mu_{i}\left(\left(y_{a}\right)\right)\right)$. Then L is linear, and $L\left(v_{d}\left(U_{j}\right)\right)=$ $\left(\mu_{i}\left(v_{d}\left(U_{j}\right)\right)\right)=0$ for $1 \leq j \leq d$. Since $\left\{\mu_{i} \mid 1 \leq i \leq N_{\bullet}\right\}$ restricts to a basis of W_{\bullet}^{*},

$$
\left\langle v_{d}\left(U_{0}\right)\right\rangle \cap\left\langle v_{d}\left(U_{1}\right), \ldots, v_{d}\left(U_{d}\right)\right\rangle \leq W_{\bullet} \cap \operatorname{ker} L=W_{\bullet} \cap \bigcap_{i} \operatorname{ker} \mu_{i}=0
$$

Remark 2.9. The most familiar examples of 2 -independent families are spreads. It would be interesting to know for which r the set in Theorem 2.6 is r-independent when Σ is a Desarguesian spread of k-spaces of a $2 k$-space.

The preceding lemma also yields Theorem 1.2:
Proof of Theorem 1.2. Consider distinct $U_{0}, \ldots, U_{d e} \in \mathcal{U}$, and suppose that $\sum_{i=0}^{d e} y_{i}=$ 0 for some $y_{i} \in\left\langle v_{d}\left(U_{i}\right)\right\rangle$. By symmetry, it suffices to show that $y_{0}=0$.

Let Π be any partition of $\{1, \ldots, d e\}$ into d subsets π of size e. For $\pi \in \Pi$ let $U_{\pi}:=\left\langle U_{i} \mid i \in \pi\right\rangle$. Then $U_{0} \cap U_{\pi}=0$ since $\left\{U_{0}, U_{i} \mid i \in \pi\right\}$ is $e+1$-independent. By the preceding lemma,

$$
\begin{aligned}
-y_{0}=\sum_{1}^{d e} y_{i} & \in\left\langle v_{d}\left(U_{0}\right)\right\rangle \cap \sum_{\pi \in \Pi} \sum_{i \in \pi}\left\langle v_{d}\left(U_{i}\right)\right\rangle \\
& \leq\left\langle v_{d}\left(U_{0}\right)\right\rangle \cap\left\langle v_{d}\left(U_{\pi}\right) \mid \pi \in \Pi\right\rangle=0
\end{aligned}
$$

Remarks 2.10. 1. We used the rather weak inclusion $\left\langle v_{d}(A), v_{d}(B)\right\rangle \leq\left\langle v_{d}(\langle A, B\rangle)\right\rangle$ for subspaces A, B of K^{n} : in general the right side is far larger than the left.
2. The proof shows that we did not need independence for all $e+1$-subsets of \mathcal{U}. For each $d e+1$-subset \mathcal{U}^{\prime} of \mathcal{U} we only needed a family \mathbb{W} of independent $e+1$-subsets of \mathcal{U}^{\prime}
such that the complement of each member of \mathcal{U}^{\prime} is partitioned by some of the members of \mathbb{W}.

The minimal version of this is as follows: each $d e+1$-subset \mathcal{U}^{\prime} of \mathcal{U} is equipped with the structure of a 2-design with $v=d e+1, k=e+1, \lambda=1$, such that each block is $e+1$-independent. In this situation, "almost all" triples from \mathcal{U} need not be independent and yet the proof shows that $v_{d}(\mathcal{U})$ nevertheless must be $d e+1$-independent.
2.4 Veronesean action. This section develops two algebraic results that play a small role in the proofs in this paper. One is that linear transformations of the space of homogeneous polynomials of degree one induce endomorphisms of degree zero of the polynomial algebra $K[X]$ (see Remark 2.12). The other is the often-quoted result that there is an action of GL $\left(K^{n}\right)$ on K^{N} that stabilizes the set of Veronesean vectors, inducing an action permutation-equivalent to its action on K^{n} (used in Lemma 2.7), which we prove using polynomial rings and their morphisms.
2.4.1 Symmetric algebras and polynomial rings. Let V be an arbitrary vector space over K of dimension n. The symmetric algebra $S(V)$ is the K-algebra of symmetric tensors - that is, the free commutative K-algebra generated by the vector space V. It is a graded algebra

$$
S(V)=K \oplus V \oplus S_{2}(V) \oplus \cdots
$$

where $S_{d}(V)$ is the vector space spanned by the d-fold symmetric tensors. If $X=$ $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is any basis of V then $S(V)$ is isomorphic to the polynomial ring

$$
\begin{equation*}
A=K[X]=K \oplus A_{1} \oplus \cdots \oplus A_{d} \oplus \cdots \tag{2.11}
\end{equation*}
$$

where A_{d} is the vector space of homogeneous polynomials of degree d. Thus selecting the basis X of A_{1} produces a basis $\left\{x^{\alpha}\right\}$ of A_{d} consisting of the monomials $x^{\alpha}:=$ $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$, where $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ is a sequence of non-negative integers for which $d=\sum a_{i}$.
2.4.2 The substitution-transformation $\boldsymbol{\rho}_{\boldsymbol{d}}$. Let $f: A_{1} \rightarrow W$ be any linear transformation, where W is a K-vector space. Then f extends to a K-algebra homomorphism $\bar{f}: A[X] \rightarrow S(W)$ of graded algebras, by mapping any polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ to $p\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right)$, a "polynomial" in the algebra $S(W)$. By restriction of \bar{f}, we set

$$
\rho_{d}(f):=\left.\bar{f}\right|_{A_{d}}: A_{d} \rightarrow S(W)_{d}
$$

Its value at any monomial $x^{\alpha}=\prod x_{i}^{a_{i}}$ is $\prod f\left(x_{i}\right)^{a_{i}}$ in $S(W)_{d}$. Thus $\rho_{d}(f)$ is simply the linear morphism on A_{d} which results from substituting $f\left(x_{i}\right)$ for x_{i}.

Remark 2.12. Note that when $W \leq A_{1}, f$ has been extended to an endomorphism of the algebra $K[X]$.

Now what happens when we apply ρ_{d} to a functional $\lambda: A_{1} \rightarrow K$? Since $\bar{\rho}(\lambda)$ is defined by substitution of each x_{i} by the scalar $\lambda\left(x_{i}\right)$ in each polynomial of $K[X]$, it induces a functional $\rho_{d}(\lambda): A_{d} \rightarrow K$ of A_{d}.

Lemma 2.13. Some properties of ρ_{d} :
(1) ρ_{d} transforms any linear transformation $A_{1} \rightarrow A_{1}$ to a linear transformation of A_{d} into itself. If T is the identity transformation of A_{1}, then $\rho_{d}(T)$ is the identity transformation of A_{d}.
(2) If T is in the group $\mathrm{GL}\left(A_{1}\right)$, then $\rho_{d}(T)$ is an invertible transformation of A_{d}.
(3) If $\lambda: A_{1} \rightarrow K$ is a functional of A_{1}, then $\rho_{d}(\lambda)$ is a functional of A_{d}.
(4) If $S: A_{1} \rightarrow A_{1}$ is a linear transformation and if $T: A_{1} \rightarrow W$, where W is either the K-vector space A_{1} or the K-algebra K itself, then

$$
\begin{equation*}
\rho_{d}(T \circ S)=\rho_{d}(T) \circ \rho_{d}(S), \tag{2.14}
\end{equation*}
$$

and is also K-linear.
(5) Suppose R, S are linear transformations $A_{1} \rightarrow A_{1}$ while $T: A_{1} \rightarrow W$ is also K-linear, where W is as in (4). Then

$$
\begin{equation*}
\rho_{d}(T \circ S \circ R)=\rho_{d}(T) \circ \rho_{d}(S) \circ \rho_{d}(R) . \tag{2.15}
\end{equation*}
$$

Proof. The first part of (1) follows from the fact that $\rho_{d}(T)$ is defined by substituting $T\left(x_{i}\right)$ for x_{i} in any homogeneous polynomial of degree d. If T is the identity map on A_{1}, then substitution of x_{i} for x_{i}, does not change anything - that is, $\rho_{d}(T)$ is the identity transformation of A_{d}.

Statement (3) was explained in the paragraph preceding the lemma.
Statement (4) is also a consequence of $\rho_{d}(T)$ being defined by "substitution". Since S is a linear transformation of A_{1} into itself, we may utilize the basis $X=\left\{x_{1}, \ldots, x_{n}\right\}$ to write

$$
S\left(x_{i}\right)=\sum_{j=1}^{n} c_{i j} x_{j}, \text { where } c_{i j} \in K, i \in[1, n] .
$$

Then $\rho_{d}(S)$ takes a monomial $x^{\alpha}=\Pi x_{i}^{a_{i}}$ to $\Pi\left(\sum_{j} c_{i j} x_{j}\right)^{a_{i}}$. Since $\rho_{d}(T)$ takes any monomial $\prod x_{j}^{b_{j}}$ of degree d to $\prod T\left(x_{j}\right)^{b_{j}}$, we see that

$$
\begin{equation*}
\rho_{d}(T) \circ \rho_{d}(S): x^{\alpha}=\prod x_{i}^{a_{i}} \mapsto \prod_{i}\left(\sum c_{i j} T\left(x_{j}\right)\right)^{a_{i}} . \tag{2.16}
\end{equation*}
$$

But since $T \circ S$ takes x_{i} to $\sum_{j} c_{i j} T\left(x_{j}\right)$ we see that it also takes the monomial x^{α} to the right side of Equation (2.16). Thus we have

$$
\rho_{d}(T \circ S)=\rho_{d}(T) \circ \rho_{d}(S),
$$

establishing statement (4).
Remembering that W is permitted to be A_{1} in statement (4), statement (5) follows from applying Equation (2.14) several times.

For statement (2) suppose T is invertible, so there exists a $T^{-1}: A_{1} \rightarrow A_{1}$ such that $T \circ T^{-1}=\operatorname{id}_{1}$, the identity transformation of A_{1}. Now by (1) and (2.14), the identity transformation id_{d} of A_{d} can be written as

$$
\operatorname{id}_{d}=\rho_{d}\left(\operatorname{id}_{1}\right)=\rho_{d}\left(T \circ T^{-1}\right)=\rho_{d}(T) \circ \rho_{d}\left(T^{-1}\right)
$$

proving that $\rho_{d}(T)$ is invertible.
2.4.3 Veronesean functionals. Suppose $\lambda \in A_{1}^{*}$ is the functional $A_{1} \rightarrow K$ that takes the basis element x_{i} to the scalar t_{i}. Then $\rho_{d}(\lambda)$ is the functional of A_{d} that takes the basis element x^{α} to $t^{\alpha} \in K$. We call a functional of this type (that is, one that maps x^{α} to t^{α} where $t=\left(t_{1}, \ldots, t_{n}\right)$) a Veronesean functional of A_{d}. These are very special elements of A_{d}^{*}.

Theorem 2.17. The group $\rho_{d}\left(\mathrm{GL}\left(A_{1}\right)\right)$ induces an action on A_{d}^{*} that stabilizes the set of non-zero Veronesean functionals in A_{d}^{*} and induces on this set an action that is per-mutation-equivalent to the action of $\mathrm{GL}\left(A_{1}\right)$ on the non-zero vectors of A_{1}^{*}. Explicitly, if $T \in \mathrm{GL}\left(A_{1}\right)$ acts on A_{1}^{*} by sending the functional λ to $\lambda \circ T$, then $\rho_{d}(T)$ acts on $\rho_{d}(\lambda)$, the corresponding Veronesean functional, by sending it to $\rho_{d}(\lambda) \circ \rho_{d}(T)=\rho_{d}(\lambda \circ T)$, another Veronesean functional.

Proof. If $\lambda \in A_{1}^{*}$ and S and T are elements of GL $\left(A_{1}\right)$, then by Lemma 2.13

$$
\begin{equation*}
\rho_{d}(\lambda \circ S \circ T)=\rho_{d}(\lambda) \circ \rho_{d}(S \circ T)=\rho_{d}(\lambda) \circ \rho_{d}(S) \circ \rho_{d}(T) \tag{2.18}
\end{equation*}
$$

for any $\lambda \in A_{1}^{*}$.
By (2.18), we have a right action of $\rho_{d}\left(\mathrm{GL}\left(A_{1}\right)\right)$ on the set of Veronesean functionals. Since these functionals are in one-to-one correspondence with the elements of A_{1}^{*}, the equation

$$
\rho_{d}(\lambda \circ T)=\rho_{d}(\lambda) \circ \rho_{d}(T)
$$

exhibits the permutation-equivalence of the action of $\mathrm{GL}\left(A_{1}\right)$ on A_{1}^{*} and the action of its isomorphic copy $\rho_{d}\left(\mathrm{GL}\left(A_{1}\right)\right)$ on the Veronesean functionals of A_{d}^{*}.

2.4.4 The Veronesean action.

Corollary 2.19. There is an action of $\mathrm{GL}\left(A_{1}\right)$ on the non-zero Veronesean vectors of K^{N} that is permutation equivalent to its action on the non-zero vectors of A_{1}^{*}, or, equivalently, its action as $\mathrm{GL}\left(K^{n}\right)$ on K^{n}.

Proof. As before, $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ is a sequence of non-negative integers summing to d, so that $x^{\alpha}=\prod x_{i}^{a_{i}}$ is a monomial of degree d. We define the scalar $t^{\alpha}=\prod t_{i}^{a_{i}}$ whenever $t=\left(t_{1}, \ldots, t_{n}\right) \in K^{n}$. If N is the number of monomials of degree d in n indeterminates, then the classical Veronesean vectors are the N-tuples of the form $\left(t^{\alpha}\right)$. Define the action of $\mathrm{GL}\left(A_{1}\right)$ on A_{d}^{*} by $f^{T}:=f \circ \rho_{d}(T)$, for every functional $f \in A_{d}^{*}$ and $T \in \operatorname{GL}\left(A_{1}\right)$. Equation (2.14) shows that this meets the definition of a group action. By Theorem 2.17, this action stabilizes the set of Veronesean functionals.

The vector space isomorphism $\tau: K^{N} \rightarrow A_{d}^{*}$ which maps $\left(y_{\alpha}\right)$ to the functional of A_{d} whose value on x^{α} is y_{α}, bijectively maps the set $v_{d}\left(K^{n}\right)$ of Veronesean vectors of K^{N} to the set of Veronesean functionals of A_{d}^{*}. Conjugation by τ then transports this action of $\mathrm{GL}\left(A_{1}\right)$ on non-zero Veronesean functionals described in the previous paragraph to an equivalent action on the non-zero Veronesean vectors.

Similarly, let $\mu: K^{n} \rightarrow A_{1}^{*}$ be the vector space isomorphism which maps an n tuple $\left(t_{i}\right)$ to the functional on A_{1}^{*} whose value at x_{i} is t_{i}. Then conjugation by μ^{-1}
transports the action of $\mathrm{GL}\left(A_{1}\right)$ on A_{1} to an action as the full linear group on K^{n}. One can express this in terms of the (vector) Veronesean mapping introduced in (2.1). Thus, setting $t=\left(t_{i}\right) \in K^{n}$,

$$
\tau\left(v_{d}(t)\right)=\rho_{d}(\mu(t))
$$

Then for any $S \in \operatorname{GL}\left(A_{1}\right)$, we have

$$
v_{d}(t)^{S}:=\tau^{-1} \rho_{d}(\mu(t)) \circ \rho_{d}(g) \circ \tau=v_{d}\left(\mu^{-1} \circ g \circ \mu\right):=v_{d}\left(\left(t^{S}\right)\right) .
$$

Equality of the extremal members of this equation justifies the last remark of the corollary.

See [7, (2.3)] and [3, Theorem 2.10] for other approaches to this corollary.

3 Powerpoints

For the rest of this paper, x_{1}, \ldots, x_{n} will denote indeterminates over K, and $A:=$ $K\left[x_{1}, \ldots, x_{n}\right]$ is the graded algebra (2.11), so that $A_{i} A_{j} \subseteq A_{i+j}$ for all non-negative integers i, j. (If P and Q are sets of polynomials then $P Q$ will denote the set of all products $p q, p \in P, q \in Q$. In general, it is not a subspace even if P and Q are.) If we replace $\left\{x_{1}, \ldots, x_{n}\right\}$ by any other basis of A_{1} then we still obtain the same subspaces A_{d} (cf. Section 2.4).

In this and the next two sections we will be concerned with powers U^{d} of subspaces U of A_{1}. For now we will consider the set $P_{d}\left(A_{1}\right)$ of powerpoints U^{d} : the case in which U has dimension 1, in which case so does U^{d}.
3.1 Powerpoints and Veronesean points. It is elementary and standard that these two types of points are closely related for suitable characteristics:

Theorem 3.1. If char $K>d$ or $\operatorname{char} K=0$, then there is a linear isomorphism $\sigma: A_{d} \rightarrow$ $K^{N}, N=\binom{d+n-1}{d}$, such that
(a) σ sends the set of powerpoints in A_{d} to the set $v_{d}\left(\boldsymbol{P}\left(K^{n}\right)\right)$ of Veronesean points in K^{N}, and
(b) $\sigma\left(\left[\eta\left(\left(t_{i}\right)\right)\right]^{d}\right)=\left(t^{\alpha}\right)$ if $\eta: K^{n} \rightarrow A_{1}$ sends $\left(t_{i}\right) \mapsto \sum_{i} t_{i} x_{i}$.

Here $\left(t^{\alpha}\right)$ was defined in the preceding section.
Proof. By the Multinomial Theorem, each powerpoint is spanned by a polynomial of the form

$$
\left(t_{1} x_{1}+\cdots+t_{n} x_{n}\right)^{d}=\sum_{\alpha} c(\alpha) t^{\alpha} x^{\alpha}
$$

with $t_{i} \in K$ and multinomial coefficients $c(\alpha)$. All $c(\alpha)$ are non-zero in view of the assumed characteristic. Hence, the map σ defined by $\sigma: \sum_{\alpha} c(\alpha) k_{\alpha} x^{\alpha} \mapsto\left(k_{\alpha}\right), k_{\alpha} \in$ K, behaves as required.

Proof of Theorem 1.3. Theorem 3.1 shows that linear independence of powerpoints corresponds to linear independence of Veronesean points. Now use Theorem 1.1.
3.2 Small characteristic. We now use Remark 2.12 to prove additional independence results in small characteristics, a situation excluded in Theorem 1.3:

Theorem 3.2. Assume that r is such that $|K|>(r+1)^{2} / 2$ and $\binom{d}{i} \neq 0$ in K for $0 \leq i \leq r$. Then any $r+1$ powerpoints of A_{d} are independent.

Proof. If $n=2$ then all powerpoints are spanned either by x_{1}^{d} or

$$
\left(x_{2}+t x_{1}\right)^{d}=\sum_{0}^{r}\binom{d}{i} t^{i} x_{2}^{d-i} x_{1}^{i}+\sum_{r+1}^{d}\binom{d}{i} t^{i} x_{2}^{d-i} x_{1}^{i}
$$

for some $t \in K$. Since $\binom{d}{i} \neq 0$ for $0 \leq i \leq r$, it suffices to note that the Vandermonde determinant $\operatorname{det}\left(t_{j}^{i}\right)_{0}^{r} \neq 0$ for any $r+1$ different elements $t_{j} \in K$.

If $n>2$, assume that the result holds for $n-1$ indeterminates x_{i}. Consider $r+1$ distinct powerpoints $\left\langle f_{1}^{d}\right\rangle, \ldots,\left\langle f_{r+1}^{d}\right\rangle$ and a linear dependence relation $\sum_{1}^{r+1} k_{i} f_{i}^{d}=0$, $k_{i} \in K$. Apply the endomorphism T of A fixing x_{1}, \ldots, x_{n-1} and sending x_{n} to an arbitrarily chosen linear combination f of x_{1}, \ldots, x_{n-1} (cf. Remark 2.12). This produces an identity $\sum_{1}^{r+1} k_{i} T\left(f_{i}\right)^{d}=0$ in the ring $T(A)=K\left[x_{1}, \ldots, x_{n-1}\right]$. If the powerpoints $\left\langle T\left(f_{i}\right)^{d}\right\rangle, 1 \leq i \leq r+1$, are distinct then induction implies that all k_{i} are 0 .

If $\left\langle T\left(f_{i}\right)^{d}\right\rangle=\left\langle T\left(f_{j}\right)^{d}\right\rangle$ for some $i \neq j$ then $T\left\langle f_{i}\right\rangle=T\left\langle f_{j}\right\rangle$, so that $\left\langle f_{i}\right\rangle$ and $\left\langle f_{j}\right\rangle$ are congruent modulo $\operatorname{ker} T=\left\langle x_{n}-f\right\rangle$. Therefore, we only need to choose f so that the point $\left\langle x_{n}-f\right\rangle$ of A_{1} does not lie on the line joining any two of our points $\left\langle f_{i}\right\rangle$. Assume that $|K|=q$ is finite. The union of those lines has size at most $\binom{r+1}{2}(q-1)+r+1$. There are q^{n-1} points $\left\langle x_{n}-f\right\rangle$ as f varies. Since we have assumed that $q>(r+1)^{2} / 2$, it follows that $q^{n-1}>\binom{r+1}{2}(q-1)+r+1$ and a suitable f exists. When K is infinite the argument is even easier.

A variant of the previous argument can be used in characteristic 2:
Theorem 3.3. Let $K=\operatorname{GF}\left(2^{m}\right)$ and $d=2^{i}+1$ with $(i, m)=1$ and $m \geq 3$. Then any 4 powerpoints of A_{d} are independent.

Proof. If $n=2$ and $d=2^{i}+1=s+1$, then each powerpoint is spanned by x_{1}^{d} or $\left(x_{2}+t x_{1}\right)^{d}=x_{2}^{d}+t x_{2}^{s} x_{1}+t^{s} x_{2} x_{1}^{s}+t^{d} x_{1}^{d}$ for some $t \in K$. By [8, Lemma 21.3.14], the points $\langle(0,0,0,1)\rangle$ and $\left\langle\left(1, t, t^{s}, t^{s+1}\right)\right\rangle, t \in K$, form a 4 -independent set. (NB: By contrast, in odd characteristic p, using $s=p^{i}$ the analogous set of points always has 4 dependent members, so that the analogue of the theorem does not hold.)

Now suppose that $n>2$. We are given 4 distinct powerpoints $\left\langle f_{1}^{d}\right\rangle, \ldots,\left\langle f_{4}^{d}\right\rangle$, and we will assume a linear dependence relation $\sum_{1}^{4} k_{i} f_{i}^{d}=0$ for scalars k_{i}. Apply the endomorphism T of A fixing x_{1}, \ldots, x_{n-1} and sending x_{n} to an arbitrarily chosen linear combination f of x_{1}, \ldots, x_{n-1} (cf. Remark 2.12) in order to obtain an identity $\sum_{1}^{4} k_{i} T\left(f_{i}\right)^{d}=0$ in the ring $K\left[x_{1}, \ldots, x_{n-1}\right]$. If the powerpoints $\left\langle T\left(f_{i}\right)^{d}\right\rangle$ are distinct then we will have reduced the number of indeterminates x_{i}, as desired: the k_{i} are all 0 .

As in the proof of the preceding theorem, we only need to choose f so that the point $\operatorname{ker} T=\left\langle x_{n}-f\right\rangle$ does not lie on the line joining any two of the points $\left\langle T\left(f_{i}\right)\right\rangle$. The union
of those lines has size at most $\binom{4}{2}(q-1)+4$, where $q=2^{m}$. There are q^{n-1} points $\left\langle x_{n}-f\right\rangle$ as f varies. Then a suitable f exists since $m \geq 3$ implies that $q^{n-1}>6(q-1)+4$.

We emphasize that the preceding theorem is a higher-dimensional generalization of a standard result in $\operatorname{PG}(3, q)$ [8, Lemma 21.3.14]. In fact, since this is only a question of four points an approach that is easier than the above simply plays with the space spanned by the f_{i}. As in Remark 2.4 there is an associated code that may be worth some study. For example, an elementary examination of possible dependence relations among the polynomials f_{i}^{d} shows that all minimum weight codewords arise from 2-spaces of K^{n}.

4 Independence of power subspaces

Let A be as in (2.11). Recall that, if T is a subspace of A_{1}, then $\left\langle T^{d}\right\rangle$ is the subspace of A_{d} spanned by all d-fold products of linear polynomials in T. Note that $\operatorname{dim}\left\langle T^{d}\right\rangle=$ $\binom{d+\operatorname{dim}}{d-1}$ since the monomials of degree d in a basis of T form a basis of $\left\langle T^{d}\right\rangle$.

Before we can prove Theorem 1.4 we need a few algebraic preliminaries. In this section we will use the uncommon notation $V^{(d)}$ to denote a cartesian power, in order to distinguish it from powers in rings.
4.1 The universal nature of symmetric tensors. For a K-vector space V and a commutative K-algebra B, we will need an almost-basic property of symmetric d-multilinear K-forms $V^{(d)} \rightarrow B$; that is, multilinear forms $f\left(v_{1}, \ldots, v_{d}\right)$ assuming values in B and invariant under all permutations of the $v_{i} \in V$.

As in Section 2.4, we view the algebra $S(V)$ of symmetric tensors as the polynomial algebra $A=K[X]$ for a basis X of V, viewing V as A_{1} and the subspace $S(V)_{d}$ spanned by the d-fold symmetric tensors as A_{d}. A standard and elementary universal property of symmetric tensors is the case $B=K$ of the following

Theorem 4.1. Let $f: V^{(d)} \rightarrow B$ be a symmetric d-multilinear K-form with values in a commutative K-algebra B without zero divisors. Then there is a K-linear mapping $\bar{f}: A_{d}=S(V)_{d} \rightarrow B$ such that, for every $\left(v_{1}, \ldots, v_{d}\right) \in V^{(d)}$,

$$
f\left(v_{1}, \ldots, v_{d}\right)=\bar{f}\left(v_{1} \cdot v_{2} \cdots v_{d}\right)
$$

Proof. Let K^{\prime} be the field of fractions of B. Then $K^{\prime} \otimes_{K} A=K^{\prime}[X]$ and $K^{\prime} \otimes_{K} A_{d}=$ $K^{\prime}[X]_{d}$.

Let $V^{\prime}=K^{\prime} \otimes_{K} V$. There is a symmetric multilinear K^{\prime}-form f^{\prime} determined by f together with a K-basis $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ of A_{1} : for $v_{i}^{\prime}=\sum_{j} \beta_{i j} x_{j} \in V^{\prime}, i=$ $1, \ldots, d, \beta_{i j} \in K^{\prime}$, define

$$
f^{\prime}\left(v_{1}^{\prime}, \ldots, v_{d}^{\prime}\right):=\sum_{\sigma}\left[\prod_{i=1}^{d} \beta_{i \sigma(i)}\right] f\left(x_{\sigma(1)}, \ldots, x_{\sigma(d)}\right)
$$

where the above sum is over all sequences $\sigma=(\sigma(1), \ldots, \sigma(d))$ with entries in $\{1, \ldots$, $n\}$. This definition is forced by multilinearity and the requirement that $f^{\prime}\left(v_{1}^{\prime}, \ldots, v_{d}^{\prime}\right)=$ $f\left(v_{1}^{\prime}, \ldots, v_{d}^{\prime}\right)$ if all $v_{i}^{\prime} \in V$.

By the field case of the theorem there is a K^{\prime}-linear mapping $\bar{f}^{\prime}: K^{\prime} \otimes_{K} A_{d}=$ $K^{\prime}[X]_{d} \rightarrow K^{\prime}$ such that, for all $v_{i}^{\prime} \in V^{\prime}$,

$$
\bar{f}^{\prime}\left(v_{1}^{\prime} v_{2}^{\prime} \cdots v_{d}^{\prime}\right)=f^{\prime}\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{d}^{\prime}\right)
$$

If all $v_{i}^{\prime}=v_{i} \in V=A_{1}$ then the right side is just $f\left(v_{1}, v_{2}, \ldots, v_{d}\right) \in B$. Hence, the desired K-linear mapping is $\bar{f}:=\left.\bar{f}^{\prime}\right|_{A_{d}}: A_{d}=K[X]_{d} \rightarrow B$, since $f\left(v_{1}, \ldots, v_{d}\right)=$ $f^{\prime}\left(v_{1}, \ldots, v_{d}\right)=\bar{f}^{\prime}\left(v_{1} \cdots v_{n}\right)$ for every $\left(v_{1}, \ldots, v_{d}\right) \in V^{(d)}$.

4.2 Proof of Theorem 1.4. We begin with the analogue of Lemma 2.7:

Lemma 4.2. Suppose that $1 \leq r \leq d$ with $d!/(d-r)!\neq 0$ in K. If T_{0} is a subspace of A_{1} intersecting each of r subspaces T_{1}, \ldots, T_{r} of A_{1} only in 0 , then $\left\langle T_{0}^{d}\right\rangle \cap\left\langle T_{1}^{d}, \ldots, T_{r}^{d}\right\rangle=0$. Proof. It suffices to prove that there is a subspace N_{0} of A_{d} such that N_{0} contains T_{j}^{d} for all $j \geq 1$ and $N_{0} \cap\left\langle T_{0}^{d}\right\rangle=0$. Change coordinates in A_{1} so that x_{1}, \ldots, x_{k} is a basis of T_{0}. Let $B:=K\left[x_{1}, \ldots, x_{k}\right]$, so that $B_{d}:=B \cap A_{d}$ is $\left\langle T_{0}^{d}\right\rangle$.

If $1 \leq j \leq r$ then $T_{0} \oplus T_{j}$ is a direct summand of A_{1}, so that there is a linear transformation $\lambda_{j}: A_{1} \rightarrow A_{1}$ such that $\lambda_{j}\left(x_{i}\right)=x_{i}, i=1, \ldots, k$, and $\lambda_{j}\left(T_{j}\right)=0$. (The behavior of λ_{j} on a complement to $T_{0} \oplus T_{j}$ in A_{1} is irrelevant to the proof.)

If $r<j \leq d$ then $\lambda_{j}: A_{1} \rightarrow A_{1}$ will be the identity map.
Let Θ be a (left) transversal for the pointwise stabilizer S_{d-r} of $1, \ldots, r$ in the symmetric group S_{d} on $\{1, \ldots, d\}$, so that $|\Theta|=d!/(d-r)$!. Define a d-multilinear K-form $L_{0}: A_{1}^{(d)} \rightarrow A_{d}$ by

$$
\begin{equation*}
L_{0}\left(v_{1}, \ldots, v_{d}\right):=\sum_{\pi \in \Theta} \prod_{j=1}^{d} \lambda_{j}\left(v_{\pi(j)}\right) \tag{4.3}
\end{equation*}
$$

We claim that L_{0} is symmetric. For, let $\pi \in \Theta, \rho \in S_{d}$, and write $\rho \pi=\pi^{\prime} \sigma$ with $\pi^{\prime} \in \Theta, \sigma \in S_{d-r}$. Then

$$
\begin{aligned}
\prod_{j=1}^{r} \lambda_{j}\left(v_{\rho \pi(j)}\right) \prod_{j=r+1}^{d} \lambda_{j}\left(v_{\rho \pi(j)}\right) & =\prod_{j=1}^{r} \lambda_{j}\left(v_{\pi^{\prime} \sigma(j)}\right) \prod_{j=r+1}^{d} v_{\pi^{\prime} \sigma(j)} \\
& =\prod_{j=1}^{r} \lambda_{j}\left(v_{\pi^{\prime}(j)}\right) \prod_{j=r+1}^{d} v_{\pi^{\prime}(j)}
\end{aligned}
$$

since $\left\{\pi^{\prime} \sigma(j) \mid r+1 \leq j \leq d\right\}$ is the complement in $\{1, \ldots, d\}$ of $\left\{\pi^{\prime} \sigma(j) \mid 1 \leq j \leq r\right\}$ $=\left\{\pi^{\prime}(j) \mid 1 \leq j \leq r\right\}$, and hence is $\left\{\pi^{\prime}(j) \mid r+1 \leq j \leq d\right\}$. Consequently, ρ permutes the summands that define L_{0}, which proves the claim.

By Theorem 4.1, there is a linear transformation $\bar{L}_{0}: A_{d} \rightarrow B$ such that

$$
\begin{equation*}
\bar{L}_{0}\left(v_{1} \cdots v_{d}\right)=L_{0}\left(v_{1}, \ldots, v_{d}\right)=\sum_{\pi \in \Theta} \prod_{j=1}^{d} \lambda_{j}\left(v_{\pi(j)}\right) \tag{4.4}
\end{equation*}
$$

for all $v_{i} \in A_{1}$. Clearly $\bar{L}_{0}\left(A_{d}\right) \subseteq A_{d}$. We will show that $N_{0}:=\operatorname{ker} \bar{L}_{0}$ behaves as required at the start of this proof.

Consider $j \geq 1$. If all $v_{i} \in T_{j}$, then $v_{\pi(j)} \in T_{j} \subseteq \operatorname{ker} \lambda_{j}$, and each summand on the right side of (4.4) is 0 . Thus, $\bar{L}_{0}\left(T_{j}^{d}\right)=0$.

It remains to determine the action of \bar{L}_{0} on $\left\langle T_{0}^{d}\right\rangle$. We first calculate \bar{L}_{0} on each mono$\operatorname{mial} x^{\alpha}=x_{1}^{a_{1}} \cdots x_{k}^{a_{k}}, \sum_{i} a_{i}=d$. Since $\lambda_{j}\left(x_{i}\right)=x_{i}$ for all $i \leq k$ and all j, (4.4) gives

$$
\begin{equation*}
\bar{L}_{0}\left(x^{\alpha}\right)=|\Theta| x_{1}^{a_{1}} \cdots x_{k}^{a_{k}} . \tag{4.5}
\end{equation*}
$$

Here $|\Theta|=d!/(d-r)!\neq 0$ by hypothesis.
Thus, as x^{α} ranges over all monomials of degree d in x_{1}, \ldots, x_{k}, their \bar{L}_{0}-images form a K-basis for B_{d}. Consequently, \bar{L}_{0} restricted to $\left\langle T_{0}^{d}\right\rangle$ is a surjection $\left\langle T_{0}^{d}\right\rangle \rightarrow B_{d}$, and hence an isomorphism since $\operatorname{dim}\left\langle T_{0}^{d}\right\rangle=\operatorname{dim} B_{d}$. Thus, $N_{0} \cap\left\langle T_{0}^{d}\right\rangle=\operatorname{ker} \bar{L}_{0} \cap\left\langle T_{0}^{d}\right\rangle=0$, as required.

Proof of Theorem 1.4. The case $e=1$ of Theorem 1.4 follows immediately from the preceding lemma. The general case is obtained exactly as in the proof of Theorem 1.2 near the end of Section 2.3.

When $r=d$, an entirely different proof of Theorem 1.4 is obtained by combining Theorems 2.6 and 3.1. Theorem 1.4 clearly contains Theorem 1.3 as a special case, but it does not quite contain Theorem 3.2: the requirements on r are less stringent in the latter result. (For example, if $d=5$ and the characteristic is $r=3$, then 3 divides $5!/(5-3)$! but none of the binomial coefficients $\binom{5}{i}$.)

$5 r$-independence of power subspaces

In this section we will use subspaces of polynomials to prove a (weak) variation on the results in the preceding section:

Theorem 5.1. Let $r \geq 1$. If $d>1$ is not a power of char K and if \mathcal{T} is any r-independent set of subspaces of A_{1}, then $\left\{\left\langle T^{d}\right\rangle \mid T \in \mathcal{T}\right\}$ is an $r+1$-independent set in A_{d}.
5.1 Calculating with spaces of polynomials. We will make frequent use of the following elementary observation and its consequences.

Proposition 5.2. In (2.11) let U_{1} and U_{2} be subspaces of A_{1} such that $U_{1} \cap U_{2}=0$. If $d>1$, then

$$
\begin{align*}
\left\langle A_{d-1} U_{1}\right\rangle \cap\left\langle A_{d-1} U_{2}\right\rangle & =\left\langle A_{d-2} U_{1} U_{2}\right\rangle \tag{5.3}\\
\left\langle\left(U_{1}+U_{2}\right)^{d}\right\rangle & =\bigoplus_{k=0}^{d}\left\langle U_{1}^{k} U_{2}^{d-k}\right\rangle \tag{5.4}\\
\left\langle U_{1}^{d}\right\rangle \cap\left\langle A_{d-1} U_{2}\right\rangle & =0 . \tag{5.5}
\end{align*}
$$

Proof. Let $X_{1}:=\left\{x_{1}, \ldots, x_{\ell}\right\}$ and $X_{2}:=\left\{x_{\ell+1}, \ldots, x_{m}\right\}$ be respective bases for U_{1} and U_{2}. Let $X \supseteq X_{1} \dot{\cup} X_{2}$ be a basis of V.

Both sides of each of the above equations are subspaces of A_{d}. The left side of (5.4) is the subspace of A_{d} spanned by all monomials of degree d with factors chosen from $X_{1} \dot{\cup} X_{2}$. Partitioning these monomials according to the number of factors of X_{1} they contain proves (5.4).

For (5.5) note that $\left\langle U_{1}^{d}\right\rangle$ is spanned by monomials in X_{1} of degree d, while $\left\langle A_{d-1} U_{2}\right\rangle$ is spanned by monomials containing at least one factor from X_{2}.

For (5.3), consider the following pairwise disjoint sets of monomials in X :

- $Y_{i} \subset A_{d-1} X_{i}$ is the set of monomials in X with at least one factor from X_{i} and no factor from X_{3-i}, for $i=1,2$, and
- $Y_{12} \subset A_{d-2} X_{1} X_{2}$ is the set of all monomials in X having at least one factor from X_{1} and at least one from X_{2}.
It follows that $\left\langle Y_{1}\right\rangle \cap\left\langle Y_{2}\right\rangle=0$ and $\left\langle A_{d-1} U_{i}\right\rangle=\left\langle Y_{i}\right\rangle \oplus\left\langle Y_{12}\right\rangle$ for $i=1,2$. Consequently, $\left\langle A_{d-1} U_{1}\right\rangle \cap\left\langle A_{d-1} U_{2}\right\rangle=\left\langle Y_{12}\right\rangle=\left\langle A_{d-2} U_{1} U_{2}\right\rangle$.

We can now show that the d th power operator commutes with intersections:

Corollary 5.6. For any subspaces B and C of A_{1},

$$
\begin{equation*}
\left\langle B^{d}\right\rangle \cap\left\langle C^{d}\right\rangle=\left\langle(B \cap C)^{d}\right\rangle \tag{5.7}
\end{equation*}
$$

Proof. We may assume that $d>1$. Set $C_{1}:=B \cap C$, and choose a subspace C_{2} such that $C=C_{1} \oplus C_{2}$. Since $d>1$, (5.4) yields

$$
\begin{equation*}
\left\langle C^{d}\right\rangle=\bigoplus_{j=0}^{d}\left\langle C_{1}^{j} C_{2}^{d-j}\right\rangle=\left\langle C_{1}^{d}\right\rangle \oplus\left\langle C_{2} C^{d-1}\right\rangle \tag{5.8}
\end{equation*}
$$

Since $B \cap C_{2}=B \cap\left(C \cap C_{2}\right)=C_{1} \cap C_{2}=0$, (5.5) forces $\left\langle B^{d}\right\rangle \cap\left\langle C^{d-1} C_{2}\right\rangle=0$. On the other hand, $\left\langle B^{d}\right\rangle$ contains $\left\langle C_{1}^{d}\right\rangle$, the first summand at the end of (5.8). Thus,

$$
\left\langle B^{d}\right\rangle \cap\left\langle C^{d}\right\rangle=\left\langle C_{1}^{d}\right\rangle=\left\langle(B \cap C)^{d}\right\rangle
$$

5.2 Proof of Theorem 5.1. We begin with a special case:

Proposition 5.9. Suppose that $A_{1}=T_{1} \oplus \cdots \oplus T_{r}$ with $\operatorname{dim} T_{i}=s$, and that T_{r+1} is an s-space in A_{1} such that the set $\left\{T_{1}, \ldots, T_{r+1}\right\}$ is r-independent. Then $\left\langle T_{1}^{d}, \ldots, T_{r}^{d}\right\rangle=$ $\left\langle T_{1}^{d}\right\rangle \oplus \cdots \oplus\left\langle T_{r}^{d}\right\rangle$, and one of the following holds:
(1) $\left\langle T_{r+1}^{d}\right\rangle \cap\left(\left\langle T_{1}^{d}\right\rangle \oplus \cdots \oplus\left\langle T_{r}^{d}\right\rangle\right)=0$, or
(2) char K is a prime p, d is a power of p, and $\operatorname{dim}\left[\left\langle T_{r+1}^{d}\right\rangle \cap\left(\left\langle T_{1}^{d}\right\rangle \oplus \cdots \oplus\left\langle T_{r}^{d}\right\rangle\right)\right]=s$.

Proof. Let $\left\{y_{1}, \ldots, y_{s}\right\}$ be a basis of T_{r+1}. If $x_{i j}$ is the projection of y_{j} into $T_{i}, 1 \leq i \leq r$, then $y_{j}=\sum_{i} x_{i j}$ with each $x_{i j} \neq 0$ due to r-independence, and $X_{i}:=\left\{x_{i j} \mid 1 \leq j \leq s\right\}$ is a basis of T_{i} for $i \leq r$. Then $\left\langle T_{1}^{d}, \ldots, T_{r}^{d}\right\rangle=\left\langle T_{1}^{d}\right\rangle \oplus \cdots \oplus\left\langle T_{r}^{d}\right\rangle$ since $\left\langle T_{i}^{d}\right\rangle$ is spanned by monomials in X_{i}.

If $0 \neq f \in\left\langle T_{r+1}^{d}\right\rangle \cap\left(\left\langle T_{1}^{d}\right\rangle \oplus \cdots \oplus\left\langle T_{r}^{d}\right\rangle\right)$, then

$$
\begin{equation*}
f=\sum_{\alpha} k_{\alpha} \prod_{j=1}^{s} y_{j}^{a_{j}} \tag{5.10}
\end{equation*}
$$

where $k_{\alpha} \in K$ and the sum is indexed by all $\alpha=\left(a_{1}, \ldots, a_{s}\right)$ with all $a_{i} \geq 0$ and $\sum_{i} a_{i}=d$. Since $f \in\left\langle T_{1}^{d}\right\rangle \oplus \cdots \oplus\left\langle T_{r}^{d}\right\rangle$, when expanded as a linear combination of monomials in $\bigcup_{i} X_{i}$ of degree d the coefficients of the monomials in (5.10) with "mixed terms" - i.e., monomials containing members of $X_{i} X_{j}$ with $i \neq j$ - must be zero.

Let $\alpha=\left(a_{1}, \ldots, a_{s}\right)$ be as above and suppose that (at least) two of the numbers a_{ℓ} and a_{m} are positive $(\ell \neq m)$. Then the product $\prod_{j=1}^{s} x_{* j}^{a_{j}}$, where $*=1$ except that $*=2$ when $j=m$, contains a term in $X_{\ell} X_{m}$, and this product occurs only once in (5.10). Since $f \in\left\langle T_{1}^{d}\right\rangle \oplus \cdots \oplus\left\langle T_{r}^{d}\right\rangle$, it follows that the coefficient k_{α} in (5.10) is zero for all $\alpha=\left(a_{1}, \ldots, a_{s}\right)$ having at least two non-zero terms.

Now (5.10) reduces to

$$
\begin{equation*}
f=\sum_{i} k_{i} y_{i}^{d} \tag{5.11}
\end{equation*}
$$

By the Binomial Theorem, f involves a non-zero mixed term containing a member of $X_{1} X_{2}$ unless K has characteristic $p>0$ and $d=p^{e}$ for some e. Then $y_{i}^{d}=\left(\sum_{i} x_{i j}\right)^{d}=$ $\sum_{i} x_{i j}^{d} \in\left\langle T_{1}^{d}\right\rangle \oplus \cdots \oplus\left\langle T_{r}^{d}\right\rangle$, and (2) holds.
Proof of Theorem 5.1. It suffices to prove that, if T_{1}, \ldots, T_{r+1} are distinct members of \mathcal{T}, then

$$
\begin{equation*}
\left\langle T_{r+1}^{d}\right\rangle \cap\left\langle T_{1}^{d}, \ldots, T_{r}^{d}\right\rangle=0 \tag{5.12}
\end{equation*}
$$

(compare Lemma 4.2). Set $T:=\left\langle T_{1}, \ldots, T_{r}\right\rangle=\left\langle T_{1}\right\rangle \oplus \cdots \oplus\left\langle T_{r}\right\rangle$ (by r-independence) with corresponding projections $\pi_{i}: T \rightarrow T_{i}$.

Let $U_{r+1}:=T_{r+1} \cap T$. We may assume that $U_{r+1} \neq 0$, as otherwise $\left\langle T_{1}, \ldots, T_{r+1}\right\rangle$ $=T_{1} \oplus \cdots \oplus T_{r+1}$ and (5.12) is clear (use Corollary 5.6 with $C=T$).

Once again let $\left\{y_{1}, \ldots, y_{s}\right\}$ be a basis for U_{r+1} and $x_{i j}:=\pi_{i}\left(y_{j}\right), 1 \leq j \leq s$, $1 \leq i \leq r$. If, for some $i,\left\{x_{i j} \mid 1 \leq j \leq s\right\}$ is linearly dependent, then some $y \neq 0$ in U_{r+1} satisfies $\pi_{i}(y)=0$, and r-independence produces the contradiction $y \in U_{r+1} \cap$ $\operatorname{ker} \pi_{i} \leq T_{r+1} \cap \oplus_{j \neq i} T_{j}=0$.

Thus, $U_{i}:=\left\langle x_{i j} \mid 1 \leq j \leq s\right\rangle$ is an s-subspace of T_{i} for each i. Since $y_{j} \in T$ we have $y_{j} \in\left\langle\pi_{i}\left(y_{j}\right) \mid 1 \leq i \leq r\right\rangle$ and hence $U_{r+1} \leq U:=\left\langle U_{1}, \ldots, U_{r}\right\rangle$. Since $U_{i} \leq T_{i}$ and $\left\{T_{1}, \ldots, T_{r+1}\right\}$ is an r-independent family, so is the family $\left\{U_{1}, \ldots, U_{r+1}\right\}$ of subspaces of T. Apply Proposition 5.9 to this family with U_{i} and U in the roles of T_{i} and A_{1} :

$$
\begin{equation*}
\left\langle U_{r+1}^{d}\right\rangle \cap\left\langle U_{1}^{d}, \ldots, U_{r}^{d}\right\rangle=0 \tag{5.13}
\end{equation*}
$$

which resembles our goal (5.12).
We claim that

$$
\begin{equation*}
\left\langle T_{r+1}^{d}\right\rangle \cap\left\langle T_{1}^{d}, \ldots, T_{r}^{d}\right\rangle \leq\left\langle U_{r+1}^{d}\right\rangle \cap\left\langle T_{1}^{d}, \ldots, T_{r}^{d}\right\rangle \tag{5.14}
\end{equation*}
$$

(and later we will show that the right hand side is 0). For, select a complement W_{i} to U_{i} in T_{i} for $i=1, \ldots, r+1$, and let $W:=\left\langle W_{1}, \ldots, W_{r}\right\rangle$. Then $T=U \oplus W$ and $\left\langle T_{1}, \ldots, T_{r+1}\right\rangle=U \oplus W \oplus W_{r+1}$. By Corollary 5.6, $\left\langle T_{r+1}^{d}\right\rangle \cap\left\langle T_{1}^{d}, \ldots, T_{r}^{d}\right\rangle \leq$ $\left\langle T_{r+1}^{d}\right\rangle \cap\left\langle T^{d}\right\rangle=\left\langle\left(T_{r+1} \cap T\right)^{d}\right\rangle=\left\langle U_{r+1}^{d}\right\rangle$, which proves (5.14).

By (5.5), $\left\langle U^{d}\right\rangle \cap\left\langle A_{d-1} W\right\rangle=0$. Since $\left\langle U_{1}^{d}, \ldots, U_{r}^{d}\right\rangle \leq\left\langle U^{d}\right\rangle$, by the modular law

$$
\begin{aligned}
\left.\left\langle U^{d}\right\rangle \cap\left[\left\langle U_{1}^{d}, \ldots, U_{r}^{d}\right\rangle\right) \oplus\left\langle A_{d-1} W\right\rangle\right] & =\left\langle U_{1}^{d}, \ldots, U_{r}^{d}\right\rangle \oplus\left(\left\langle U^{d}\right\rangle \cap\left\langle A_{d-1} W\right\rangle\right) \\
& =\left\langle U_{1}^{d}, \ldots, U_{r}^{d}\right\rangle
\end{aligned}
$$

and hence $\left(\right.$ since $T_{i}^{d}=\left(U_{i} \oplus W_{i}\right)^{d} \leq U_{i}^{d} \oplus A_{d-1} W_{i}$ by (5.4))

$$
\begin{aligned}
\left\langle U^{d}\right\rangle \cap\left\langle T_{1}^{d}, \ldots, T_{r}^{d}\right\rangle & \leq\left\langle U^{d}\right\rangle \cap\left[\left\langle U_{1}^{d}, \ldots, U_{r}^{d}\right\rangle+\left\langle A_{d-1} W_{1}, \ldots, A_{d-1} W_{k}\right\rangle\right] \\
& =\left\langle U^{d}\right\rangle \cap\left[\left\langle U_{1}^{d}, \ldots, U_{r}^{d}\right\rangle+\left\langle A_{d-1} W\right\rangle\right]=\left\langle U_{1}^{d}, \ldots, U_{r}^{d}\right\rangle
\end{aligned}
$$

Since $\left\langle U_{r+1}^{d}\right\rangle \leq\left\langle U^{d}\right\rangle$, (5.13) yields

$$
\begin{aligned}
\left\langle U_{r+1}^{d}\right\rangle \cap\left\langle T_{1}^{d}, \ldots, T_{r}^{d}\right\rangle & =\left\langle U_{r+1}^{d}\right\rangle \cap\left[\left\langle U^{d}\right\rangle \cap\left\langle T_{1}^{d}, \ldots, T_{r}^{d}\right\rangle\right] \\
& \leq\left\langle U_{r+1}^{d}\right\rangle \cap\left\langle U_{1}^{d}, \ldots, U_{r}^{d}\right\rangle=0
\end{aligned}
$$

Now (5.14) implies (5.12), as required.

6 Generalized dual arcs and polynomial rings

6.1 Definitions. A generalized dual arc of $V=K^{n}$ with vector dimensions $\left(n, n_{1}, \ldots\right.$, $\left.n_{d}\right)$ is a set \mathcal{D} of n_{1}-subspaces of V such that the intersection of any j of them has dimension $n_{j}>0, j=2, \ldots, d$, and the intersection of any $d+1$ of them is 0 . This notion was introduced in [10, 11], but using projective dimension instead of vector space dimension. When $d=2$ and $n_{d}=1, \mathcal{D}$ is a dual arc.

Suppose \mathcal{D} is a generalized dual arc with vector dimensions $\left(n, n_{1}, \ldots, n_{d}\right)$. If $D \in$ \mathcal{D}, then $\mathcal{D}^{\prime}:=\left\{D \cap D^{\prime} \mid D^{\prime} \in \mathcal{D}-\{D\}\right\}$ is a generalized dual arc with vector dimensions $\left(n_{1}, \ldots, n_{d}\right)$. In general, this procedure can be iterated.

For any subset Δ of a sublattice \mathbf{L} of the lattice $\mathbf{L}(V)$ of all subspaces of V, let $\mathbf{L}(\Delta)$ denote the sublattice generated by Δ (the smallest sublattice containing Δ), and let $\mathbf{I}(\Delta)$ denote the ideal generated by Δ (the set of all elements of $\mathbf{L}(\Delta)$ that are bounded above by at least one element of Δ). We call Δ regular if $V=\langle\Delta\rangle$, and, for each intersection U of finitely many members of Δ,

$$
\begin{equation*}
U=\langle U \cap D \mid D \in \Delta, D \nsubseteq U\rangle \tag{6.1}
\end{equation*}
$$

We call Δ strongly regular if it is regular and

$$
\begin{equation*}
U \cap\left\langle D_{1}, \ldots, D_{\ell}\right\rangle=\left\langle U \cap D_{i} \mid 1 \leq i \leq \ell\right\rangle \tag{6.2}
\end{equation*}
$$

for any $D_{1}, \ldots, D_{\ell} \in \Delta$ and any subspace U that is an intersection of finitely many members of Δ. There are many stronger versions of this concept possible ${ }^{2}$, but this definition is geared to conform to the definitions appearing in [10,11].

[^1]6.2 An elementary construction. Consider (2.11), fix $d \geq 2$, and let \mathcal{D} be the following set of K-subspaces of A_{d} :
\[

$$
\begin{equation*}
\mathcal{D}:=\left\{A_{d-1} y \mid 0 \neq y \in A_{1}\right\} \tag{6.3}
\end{equation*}
$$

\]

If $z=\alpha y, \alpha \in K^{*}$, then $A_{d-1} y=A_{d-1} z$, so \mathcal{D} is parametrized by the 1 -spaces of A_{1}. If $D_{j}:=A_{d-1} y_{j}, 1 \leq j \leq d$, are distinct elements of \mathcal{D}, we claim that

$$
\begin{equation*}
D_{1} \cap D_{2} \cap \cdots \cap D_{j}=A_{d-j} y_{1} \cdots y_{j} \tag{6.4}
\end{equation*}
$$

Clearly the right side of (6.4) is contained in the left. The left side is precisely all homogeneous polynomials of degree d that are divisible by all of the polynomials y_{1}, \ldots, y_{j}. Since the polynomials y_{i} are primes of the unique factorization domain A no two of which are associates, each polynomial on the left side of (6.4) is a multiple of $y_{1} \cdots y_{j}$ and so lies in the right side, as claimed.

The dimension of the subspace in (6.4) is $\operatorname{dim} A_{d-j}$. This proves
Theorem 6.5. \mathcal{D} is a generalized dual arc in A_{d} with vector dimensions

$$
\left(\binom{n+d-1}{d},\binom{n+d-2}{d-1}, \ldots, n_{d-1}=\binom{n}{1}=n, n_{d}=1\right)
$$

In [11] there are objects with similar properties constructed without the use of polynomials. Note that $\langle\mathcal{D}\rangle=A_{d}$.

6.3 Regularity properties of this construction: Examples.

Example 6.6. Strong regularity can fail for (6.3). Suppose $n=\operatorname{dim} A_{1} \geq 3$ and $d=2$. We will see in the next Example that \mathcal{D} in (6.3) is regular since d is small. However, \mathcal{D} is not strongly regular. For, consider the subspaces $D_{i}:=A_{1} x_{i}, i=1,2$, and $U:=$ $A_{1}\left(x_{1}+x_{2}\right)<\left\langle D_{1}, D_{2}\right\rangle$ belonging to \mathcal{D}.

Since $U \cap D_{i}=\left\langle x_{i}\left(x_{1}+x_{2}\right)\right\rangle, i=1,2, \operatorname{dim}\left\langle U \cap D_{1}, U \cap D_{2}\right\rangle=2<n=\operatorname{dim} U=$ $\operatorname{dim}\left(U \cap\left\langle D_{1}, D_{2}\right\rangle\right)$, so that $U \cap\left\langle D_{1}, D_{2}\right\rangle \neq\left\langle U \cap D_{1}, D_{2} \cap D^{\prime}\right\rangle$ and (6.2) fails, as required.

Example 6.7. Even regularity can fail for (6.3), but only for finite K and enormous d. Since $\langle\mathcal{D}\rangle=A_{d}$, in order to see this we must examine (6.1).

Each $U \neq 0$ in (6.1) has the form $U:=\bigcap_{i=1}^{k}\left(A_{d-1} y_{i}\right)=A_{d-k} \pi$ for distinct $\left\langle y_{1}\right\rangle, \ldots,\left\langle y_{k}\right\rangle$ in A_{1} and $\pi:=y_{1} \cdots y_{k}$, where $d \geq k$. Regularity asserts that each such U is spanned by the subspaces $U \cap\left(A_{d-1} y\right)$ where y ranges over the set Y^{\prime} of linear polynomials not in $\left\langle y_{1}\right\rangle \cup \cdots \cup\left\langle y_{k}\right\rangle$.

By (6.4),

$$
\left\langle U \cap\left(A_{d-1} y\right) \mid y \in Y^{\prime}\right\rangle=\left\langle A_{d-k-1} y \pi \mid y \in Y^{\prime}\right\rangle=\left\langle A_{d-k-1} Y^{\prime}\right\rangle \pi
$$

In particular, if $A_{1}=\left\langle Y^{\prime}\right\rangle$ then $\left\langle U \cap\left(A_{d-1} y\right) \mid y \in Y^{\prime}\right\rangle=A_{d-k} \pi=U$.
Thus, if \mathcal{D} is not regular then, for some U, the corresponding set Y^{\prime} must span a proper subspace H of A_{1}. Then the k-set $\left\{\left\langle y_{1}\right\rangle, \ldots,\left\langle y_{k}\right\rangle\right\}$ must contain all 1-spaces of
A_{1} not in H. Thus, K is finite and $k \geq|K|^{n-1}$, the number of points not in a hyperplane of $\mathbf{P}\left(A_{1}\right)$. Then $d \geq k \geq|K|^{n-1}$.

Conversely, if $d \geq|K|^{n-1}$ choose $U:=\bigcap_{i=1}^{k}\left(A_{d-1} y_{i}\right)$, where $\left\{\left\langle y_{1}\right\rangle, \ldots,\left\langle y_{k}\right\rangle\right\}$ consists of all $k=|K|^{n-1}$ points outside the hyperplane $H=\left\langle x_{1}, \ldots, x_{n-1}\right\rangle$ of A_{1}. Then the previous argument produces a subspace

$$
\left\langle U \cap\left(A_{d-1} y\right) \mid y \in Y^{\prime}\right\rangle=\left\langle A_{d-k-1} H\right\rangle \pi
$$

of dimension smaller than that of $U=A_{d-k} \pi$, which proves nonregularity.
Thus, we have proved
Proposition 6.8. A generalized dual arc \mathcal{D} in (6.3) need not be strongly regular.
Moreover, \mathcal{D} is not regular if and only if K is a finite field $\mathrm{GF}(q)$ and $d \geq q^{n-1}$.
6.4 A generalization of the construction. Let I_{k} denote the set of 1 -spaces spanned by the various homogeneous polynomials of degree k that are powers of irreducible polynomials (the degrees of these irreducible polynomials are allowed to vary). If $d \geq k$, then

$$
\mathcal{D}:=\left\{A_{d-k} y \mid y \in I_{k}\right\}
$$

is a set of $\left|I_{k}\right|$ subspaces of A_{d}, each of dimension $\operatorname{dim} A_{d-k}$. Choose the positive integer c such that $0 \leq d-k c<k$. By unique factorization in A, if $2 \leq m \leq c$ then the intersection of any m members of \mathcal{D} is a subspace of dimension $\operatorname{dim} A_{d-m k}$, and the intersection of any $c+1$ members of \mathcal{D} is 0 . Thus,

Theorem 6.9. \mathcal{D} is a generalized dual arc with vector dimensions

$$
\left(\operatorname{dim} A_{d}, \operatorname{dim} A_{d-k}, \ldots, \operatorname{dim} A_{d-c k}\right) .
$$

Theorem 6.5 is the special case $k=1$. This time, \mathcal{D} need not span A_{d} (e.g., if $k=\operatorname{char} K$).

6.5 Further variations.

6.5.1 An example leading to a 3-independent family.

Lemma 6.10. If $\operatorname{dim}_{K} A_{1}=n$ and H is a k-space in A_{1}, then $A_{1} H$ is a subspace of A_{2} of dimension $k n-\binom{k}{2}$.

Proof. Clearly

$$
\begin{equation*}
\left\langle A_{1} H\right\rangle=A_{1} x_{1}+A_{1} x_{2}+\cdots+A_{1} x_{k}, \tag{6.11}
\end{equation*}
$$

assuming that $\left\{x_{1}, \ldots, x_{k}\right\}$ is a basis of H. The intersection of any two summands on the right side of (6.11) is a 1 -space while the intersection of any three is 0 . Consequently, by elementary linear algebra and inclusion-exclusion,

$$
\operatorname{dim}\left(\sum_{i=1}^{k} A_{1} x_{i}\right)=\sum_{i=1}^{k} \operatorname{dim} A_{1} x_{i}-\sum_{1 \leq i<j \leq k} \operatorname{dim}\left(A_{1} x_{i} \cap A_{1} x_{j}\right)=k n-\binom{k}{2} .
$$

Lemma 6.12. Let \mathcal{S} be a partial spread of k-subspaces of A_{1}, where $\operatorname{dim} A_{1}=2 k$.
(1) If $H \in \mathcal{S}$ then $\operatorname{dim}\left\langle A_{1} H\right\rangle=k(3 k+1) / 2$.
(2) For any distinct $H_{1}, H_{2} \in \mathcal{S},\left\langle A_{1} H_{1}\right\rangle \cap\left\langle A_{1} H_{2}\right\rangle=\left\langle H_{1} H_{2}\right\rangle$ has dimension k^{2}.
(3) For any distinct $H_{1}, H_{2}, H_{3} \in \mathcal{S}$, $\operatorname{dim}\left(\bigcap_{i=1}^{3}\left\langle A_{1} H_{i}\right\rangle\right)=\binom{k}{2}$.

Proof. (1) follows from Lemma 6.10 with $n=2 k$.
(2) follows from (5.3).
(3) We may assume that $X_{1}=\left\{x_{1}, \ldots, x_{k}\right\}$ and $X_{2}=\left\{x_{k+1}, \ldots, x_{2 k}\right\}$ are bases of H_{1} and H_{2}, respectively, such that $\left\{x_{i}+x_{k+i} \mid 1 \leq i \leq k\right\}$ is a basis of H_{3}. Using (2), if $y \in\left\langle A_{1} H_{1}\right\rangle \cap\left\langle A_{1} H_{2}\right\rangle \cap\left\langle A_{1} H_{3}\right\rangle=\left\langle H_{1} H_{2}\right\rangle \cap\left\langle A_{1} H_{3}\right\rangle$ then we can write

$$
\begin{equation*}
y=\sum_{i=1}^{k} y_{i}\left(x_{i}+x_{k+i}\right) \tag{6.13}
\end{equation*}
$$

where $y_{i}=\sum_{j=1}^{k}\left(\alpha_{i j} x_{j}+\beta_{i j} x_{k+j}\right)$. Since $X_{1} X_{2}$ is a basis of $\left\langle H_{1} H_{2}\right\rangle$, for $1 \leq i, j \leq k$ the coefficients of $x_{i}^{2}, x_{i} x_{j}$ and $x_{k+i} x_{k+j}$ in the polynomial y must be 0 :

$$
\begin{equation*}
\alpha_{i i}=\beta_{i i}=0, \quad \alpha_{i j}=-\alpha_{j i}, \quad \text { and } \quad \beta_{i j}=-\beta_{j i}, \quad 1 \leq i, j \leq k \tag{6.14}
\end{equation*}
$$

The coefficient of $x_{i} x_{k+j}$ in (6.13) is $\beta_{i j}+\alpha_{j i}=\beta_{i j}-\alpha_{i j}$, by (6.14). Similarly, the coefficient of $x_{j} x_{k+i}$ is $\alpha_{i j}-\beta_{i j}$. Then

$$
\begin{equation*}
y=\sum_{1 \leq i<j \leq k}\left(\beta_{i j}-\alpha_{i j}\right)\left(x_{i} x_{k+j}-x_{j} x_{k+i}\right) \tag{6.15}
\end{equation*}
$$

Conversely, by reversing the steps, it is clear that any y as in (6.15) lies in $\left\langle H_{1} H_{2}\right\rangle=$ $\left\langle A_{1} H_{1}\right\rangle \cap\left\langle A_{1} H_{2}\right\rangle$ and also in $\left\langle A_{1} H_{3}\right\rangle$. It follows that the desired dimension is the number of pairs i, j such that $1 \leq i<j \leq k$.

Again consider a partial spread \mathcal{S} and $\mathcal{D}=\left\{A_{1} H \mid H \in \mathcal{S}\right\}$ in Lemma 6.12: a set of subspaces of the $\binom{2 k+1}{2}$-space A_{2} of dimension $k(3 k+1) / 2$, any two meeting in a space of dimension k^{2} and any three meeting in a subspace of dimension $k(k-1) / 2$. Subtracting these numbers from $\operatorname{dim} A_{2}$, we see that these intersections have codimensions $\binom{k+1}{2}$, $2\binom{k+1}{2}$, and $3\binom{k+1}{2}$, respectively. This implies the following:

Proposition 6.16. Let \mathcal{S} be a partial spread of k-spaces of the $2 k$-space A_{1}, and consider the set $\mathcal{D}=\left\{A_{1} H \mid H \in \mathcal{S}\right\}$ of subspaces of A_{2}. The dual set \mathcal{D}^{*} is a 3-independent family of $\binom{k+1}{2}$-spaces in the dual $\binom{2 k+1}{2}$-space A_{2}^{*}.

Intersection dimensions of four members of the preceding set \mathcal{D} are not, in general, constant.

6.5.2 Three 4-space structures in dimension 10. Let $K=\mathrm{GF}(q)$.

Example 6.17. Let $n=\operatorname{dim} A_{1}=3$ and $\mathcal{D}_{1}=\left\{A_{2} f \mid 0 \neq f \in A_{1}\right\}$. Then \mathcal{D}_{1} is a set of $1+q+q^{2} 6$-subspaces of the 10 -space A_{3}. Any two members of \mathcal{D}_{1} meet at a 3 -space and so generate a 9 -space. Since the intersection of any three is a 1 -space, any three span a space of dimension $6+6+6-3-3-3+1=10$, hence the entire space. Then in the dual space A_{3}^{*} we obtain a set \mathcal{D}_{1}^{*} of $1+q+q^{2}$ 4-spaces, any two of which meet at a 1 -space, and any three of which meet at 0 . Thus, \mathcal{D}_{1}^{*} is a dual arc in $A_{3}\left(K^{(3)}\right)^{*}$ with vector dimensions ($10,4,1$).

Example 6.18. If $n=4$ then $\mathcal{D}_{2}:=\left\{A_{1} f \mid 0 \neq f \in A_{1}\right\}$ consists of $1+q+q^{2}+q^{3}$ 4 -spaces of the 10 -space A_{2}. Any two members of \mathcal{D}_{2} intersect at a 1 -space, so \mathcal{D}_{2} is another dual arc in $A_{2}\left(K^{(4)}\right)$ with vector dimensions $(10,4,1)$, but it has more members than \mathcal{D}_{1}^{*}.

Example 6.19. Let V be any vector space over K of dimension n. The exterior algebra $\wedge V=K \oplus V \oplus(V \wedge V) \oplus(V \wedge V \wedge V) \oplus \cdots$ is a graded algebra that can replace the polynomial ring in the construction in Section 6.2. While we obtain a set of subspaces of a graded component of this algebra with good pairwise intersections, triple intersections show that it is no longer a generalized dual arc.

Suppose $\operatorname{dim} V=5$. Then $\mathcal{D}_{3}:=\{V \wedge\langle v\rangle \mid 0 \neq v \in V\}$ is a set of $1+q+q^{2}+q^{3}+q^{4}$ 4 -spaces of the 10 -space $V \wedge V$. The intersection of any two members of \mathcal{D}_{3} is a 1 -space. Any 1 -space that is the intersection of two members of \mathcal{D}_{3} in fact lies in $1+q$ members of \mathcal{D}_{3}, so this is not a dual arc.

Besides illustrating a use both of duals and exterior algebra, these last three examples possess a numerology that raises a question. In view of the fact that the 10 -spaces $A_{3}\left(K^{3}\right)^{*}, A_{2}\left(K^{4}\right)$ and $K^{5} \wedge K^{5}$ are isomorphic, is there a relationship among the structures $\mathcal{D}_{1}^{*}, \mathcal{D}_{2}$ and \mathcal{D}_{3} ?

Acknowledgment. We are grateful to A. Maschietti and A. Polishchuk for helpful comments concerning Section 2.2.

References

[1] K. Baclawski, N. L. White, Higher order independence in matroids. J. London Math. Soc. (2) 19 (1979), 193-202. MR533317 (83c:05036) Zbl 0394.05013
[2] E. Ballico, A. Cossidente, Hermitian Veronesean schemes. Des. Codes Cryptogr. 25 (2002), 311-317. MR1900776 (2003c:14023) Zbl 1041.14005
[3] A. Cossidente, D. Labbate, A. Siciliano, Veronese varieties over finite fields and their projections. Des. Codes Cryptogr. 22 (2001), 19-32. MR1813033 (2002b:51008) Zbl 0980.51009
[4] M. Feinberg, On a generalization of linear independence in finite-dimensional vector spaces. J. Combin. Theory Ser. B $\mathbf{3 0}$ (1981), 61-69. MR609594 (82h:15001) Zbl 0387.15003
[5] D. Glynn, Permanent formulae from the Veronesean. In preparation.
[6] J. Harris, Algebraic geometry. Springer 1992. MR1182558 (93j:14001) Zbl 0779.14001
[7] A. Herzer, Die Schmieghyperebenen an die Veronese-Mannigfaltigkeit bei beliebiger Charakteristik. J. Geom. 18 (1982), 140-154. MR675003 (84g:51036) Zbl 0502.51012
[8] J. W. P. Hirschfeld, Finite projective spaces of three dimensions. Oxford Univ. Press 1985. MR840877 (87j:51013) Zbl 0574.51001
[9] J. W. P. Hirschfeld, J. A. Thas, General Galois geometries. Oxford Univ. Press 1991. MR1363259 (96m:51007) Zbl 0789.51001
[10] A. Klein, J. Schillewaert, L. Storme, Generalised dual arcs and Veronesean surfaces, with applications to cryptography. J. Combin. Theory Ser. A 116 (2009), 684-698. MR2500165 (2010b:51010) Zbl 1167.14015
[11] A. Klein, J. Schillewaert, L. Storme, Generalised Veroneseans. Adv. Geom. 12 (2012), 549569. MR2994640 Zbl 06148438
[12] G. Lunardon, Fibrazioni planari e sottovarietà algebriche della varietà di Grassmann. Geom. Dedicata 16 (1984), 291-313. MR765336 (86b:51008) Zbl 0552.51003
[13] I. R. Shafarevich, Basic algebraic geometry. Springer 1974. MR0366917 (51 \#3163) Zbl 0284.14001
[14] D. R. Woodall, Some notes on Feinberg's k-independence problem. J. Combin. Theory Ser. B 32 (1982), 350-352. MR672515 (84j:05046) Zbl 0496.05019

Received
W. M. Kantor, University of Oregon, Eugene, OR 97403, USA Email: kantor@uoregon.edu
E. E. Shult, Kansas State University, Manhattan, KS 66502, USA

Email: ernest_shult@yahoo.com

[^0]: *This research was supported in part by NSF grant DMS 0753640.
 ${ }^{1}$ Traditionally this map is defined sending the projective geometry $\mathbf{P}\left(K^{n}\right)$ on K^{n} to $\mathbf{P}\left(K^{N}\right)$. For our proofs it is preferable to deal with vectors, which still allows us to act on projective geometries.

[^1]: ${ }^{2}$ For example, U might be restricted to range over all elements of $\mathbf{L}(\Delta) \cap \mathbf{I}(\Delta)$.

