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Abstract 

Kantor, W.M., Kerdock codes and related planes, Discrete Mathematics 106/107 (1992) 
297-302. 

Among the many aspects of coding theory Jack van Lint has studied intensively are some 
generalizations of Preparata and Kerdock codes (see Baker et al. (1983), Cameron and Van 
Lint (1991) and Van Lint (1983)). There are still many open problems concerning these. This 
note is a brief discussion of problems and new results involving orthogonal spreads, translation 
planes and associated generalized Kerdock codes. 

1. Orthogonal spreads 

Let V be a vector space of dimension 4m over a finite field L of characteristic 2, 
where m 2 2. Assume that V is equipped with a quadratic form Q of Witt index 
2m; the associated bilinear form is denoted (u, u). Then the pair V, Q is 
equivalent to the pair L4m, Qdm, where 

Write the standard ordered basis of L4m as e,, . . . , ezm,fi, . . . ,hrn, so that 
Qdm(ei) = Q4,Jfi) = (ei, ej) = (5, fi) = 0 and (e,, fi) = 6, for 1 c i, i s 2m. We will 
be concerned with totally singular 2m-spaces. Examples of these are E = 

(e,, . . .,ezm) andF=(f,,.. . , hm). Each totally singular 2m-space having only 
0 in common with E looks like 

with M a skew-symmetric 2m x 2m matrix (1.1) 
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(where skew-symmetric matrices are always assumed to have zero diagonal). 
Note that the 4m X 4m matrix in (1.1) preserves the form Qdm. Two subspaces 
(1. l), arising from matrices it4 and M’, have only 0 in common if and only if 
M - M’ is nonsingular. 

A Kerdock set K is a family of )L]2”-’ skew-symmetric 2m X 2m matrices the 
difference of any two of which is nonsingular. When L = GF(2), K produces a 
generalized Kerdock code %(K) consisting of the zeros of the following functions 
L2”+ L: 

xMBx’ + l(x) + c 

where MO denotes the matrix obtained from M by replacing all below-diagonal 
entries with 0 (so that M = MO + MN), 1 ranges through all linear functionals on 

Lti, and c E L. Then V(K) is a code having length 2&, minimum distance 
2”“-’ - 2”, and size 24m, just as in the case of classical Kerdock codes. 

If V and L are as at the beginning of this section then a spread in the 
orthogonal space V is a family .X of ILj2m-1 + 1 totally singular 2m-spaces such 
that every nonzero singular vector is in a unique member of Z: A Kerdock set K 
of 2m x 2m matrices produces an orthogonal spread of L4” via (1.1)) namely, 

.Y(K)={E}“{F(ltg T)IME K}. (1.2) 

Conversely, each orthogonal spread of L4” that contains E and F produces a 
Kerdock set via (1.1) and (1.2). 

All of the above can be found in [2]. That book also discusses some of the 
other combinatorial objects arising from Kerdock sets: partial geometries and 
linked square designs. Strongly regular graphs also arise [7]. The remainder of 
this note focuses on the fact that orthogonal spreads produce many translation 
planes. 

Let ,Z be a spread in the orthogonal space V. If y is any nonsingular point of V, 
write 

Then ,Y,, partitions the nonzero vectors in y ’ /y : it is a spread in the classical sense 
of the term [3, p. 2191. Moreover, it is even a sympfectic spread: each of its 
members is a totally isotropic 2m - l-space of the symplectic space y l/y (with 
respect to the alternating form (U + y, v + y) = (u, v), U, v E y’). The translation 
plane &!(.Z,,) determined by E and y has y’ly as its set of points, the lines being 
the cosets of the members of ZY. 

Conversely, any symplectic spread in y ‘ly arises as Z; for an orthogonal spread 
_Z in V-and 2 is essentially unique [4]. In [4, (3.5), (3.6), (3.7)] it was shown that 
two planes arising in this manner from orthogonal spreads 2, 2:’ of V and 
nonsingular points y, y’, are isomorphic if and only if there is an automorphism 
of the underlying orthogonal space V sending Z to 2 and y to y’; and every 
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collineation of &(JY,,) is the product of a translation, a homology, and a 
semilinear transformation preserving the symplectic structure of y ‘/y. The 
determination of the collineation group of a plane &(ZY) can be achieved in three 
stages: determine the group G(Z) of all semilinear transformations of V that send 
2 to itself and preserve Q up to scalars (i.e., projectively); determine the 
stabilizer G(Z),; and determine the group of homologies of &(I,,) fixing 0. 

2. Examples 

Let F = GF(22m-’ ) and K be fields such that F 3 K 3 GF(2). Let T: F-+ K and 
T' : F-+ GF(2) be the corresponding trace maps. 

Example 1 (‘Desarguesiun spreads’). Consider the K-space F x K x F x K, 

equipped with the quadratic form Q defined by 

Q(a, a, P, b) = VLYP) + ab; 
the corresponding bilinear form is ((cy, a, p, b), (a’, a’, /3’, 6’)) = T(&S + 

a’@) + ab’ + a’b. The desarguesian spread in F x F ‘lifts’ to the orthogonal 
spread 2 consisting of the totally singular subspaces 

OxOxFxK 

and (2.1) 
{((~,a,s~a+sT(scu)+sa, T(~~~))ILYEF,uEK} forsEF. 

Note t/rat Z;,,, I ,(). I ) consists of the subspaces 

0x0xFx0+(0,1,0,1) and {((u, 0, s2a, 0) + (0, 1, 0, 1) j (Y E F} for s E F, 

and this evidently is the usual desarguesian spread producing the desarguesian 
plane ~(~~O,l,o,I~) = AG(2, 22”-‘). Th e orthogonal spread (2.1) is called the 
desarguesian spread in [5]. 

Example 2 (culled in [4, 5] the ‘third cousins of the desarguesian spread’). Fix 
k E K - GF(2), and consider the nonsingular point yk = (0, k + 1, 0, 1) in the 
space F X K X F X K appearing in Example 1. This produces a symplectic spread 
.X,, in the symplectic space y,$/yk, consisting of the following subspaces: 

OxOxFxO+y,, 

{(a, 0, s2a + ksT(scu), 0) + yk 1 (Y E F} for s E F. 
(2.2) 

Example 2’. The symplectic space y:lyk over K can also be viewed as a 
symplectic space over GF(2) by using the bilinear form (u, v)’ = T’((u, v)) for 
U, u ~yi/y~. Then (2.2) also is a symplectic spread of this space. 

Example 3. Now consider the GF(2)-space V = F x GF(2) x F x GF(2), 
equipped with the quadratic form Q’ defined by 

Q’(cu, a, p, b) = T’(@) + ab. 
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The subspaces F X GF(2) x 0 X 0 and 0 X 0 X F X GF(2) are totally singular. The 
spread (2.2), viewed as in Example 2’, lifts to the following orthogonal spread 
Zk (where we have written k* = 1 + JI%): 

0 x 0 x F x GF(2), 

{(a, a, S’CY + ksT(sa) + k*sT’(k*sa) (2.3) 

+ k*sa, T’(k*scu)) 1 cu~F,aeGF(2)} forseF. 

Namely, the members of Zk are totally singular subspaces intersecting pairwise 
only in 0, and the spread Z~o,l,O,l, consists of the subspaces 

0x0xFx0+(0,1,0,1), 

{((u, 0, s2a + ksT(sa), 0) + (0, 1, 0, 1) ) LYE F} for s E F, 

as in (2.2). The question of equivalence among the orthogonal spreads .Z” was 
studied in [6]. 

3. Some planes and Kerdock sets 

There are many possibilities for the behavior of the full collineation groups of 
planes of the form &(Z,,). The collineation group of any translation plane of 
order q must have order at least q2: there are always q* translations present. This 
lower bound can be achieved: 

Theorem 3.1. If 2m - 1 is composite and >9, then there is a translation plane of 
order 22m-1 whose full collineation group consists only of the 24m-2 translations of 
the underlying vector space. 

In particular, every point of each of these affine planes has the ‘boring’ 
property that its stabilizer in the full collineation group is the trivial group. There 
does not appear to be any published example of a finite projective plane having a 
point whose stabilizer in the full collineation group is trivial. 

More than 22”-’ .2-/4(2m - 1)2 pair-wise non-isomorphic planes of order 
22”-’ arise in (3.1). These planes are constructed as follows. Let 2m - 1 be 
composite and >9; let F = GF(22m-1) 2 K 2 GF(2), as above. Let Y be a 
generator of F such that T’(Y) = 1; there are more than 22m-2 - 2(2m-1)‘3 choices 
for Iv. Choose k E K - GF(2). Consider the space V and form Q’ defined in 
Example 3. The point ( Y, 0, 1, 0) is nonsingular since Q’( Y, 0, 1, 0) = 1, and it 
produces a symplectic spread 2: lv,O, l,D) in the symplectic GF(2)-space 
( Y, 0, 1,O) ‘I( Y, 0, 1,O). Then the full collineation group of the afine plane 
d($,,,,,,)) has order 24m-2. 

The proof [S] more or less follows the pattern indicated at the end of Section 1. 
Significant use is made of the isometries of V defined by (a, a, /3, b) I+ 
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(ccr, a, c-‘/3, b), where f E F - (0, l}. Each of these lies in the group G(Z”), 
fixes 2 = (0, l,O, 1) and hence acts on the plane .&(X$), but moves y = 

( Y, 0, 1,O) and hence does not act on the plane &(z;“). This is a somewhat 
surprising aspect of the proof of (3.1): the fact that a group G(Z:“) that is not a 
collineation group of a plane is somewhat large allows information to be obtained 
showing that the collineation group itself is small. Namely, it is easy to show that 
G(Xk),, = 1 by using the translation plane &!(Z$). The crucial step consists of 
employing properties of the above isometries in order to deduce that G(,Y’), = 1. 
Some group theory is used, but from the late 1960s rather than detailed 
information concerning simple groups. In addition, there is a final, highly 
computational step showing that the collineation group of .&!(_Z’,“) contains no 
nontrivial homologies. 

Theorem 3.2. If 2m - 1 is composite and ~9, then there is a Kerdock set K of 
2m x 2m matrices such that Aut S’(K) = 1. 

Such Kerdock sets K can be obtained as follows. Let s be a generator of F over 
GF(2), and let X, be the corresponding member of .Xk in (2.3). Use an orthogonal 
transformation to move the pair Zk, X, to a pair Z’, E with 2 an orthogonal 
spread containing E and F. Then K is the Kerdock set produced by .Y, E, F via 
(1.1). More than 23m pairwise inequivalent codes arise in this manner. 

4. Open problems 

After more than ten years there are still not many ways orthogonal or 
symplectic spreads have been constructed. Additional approaches seem essential 
in order to attempt to understand the nature of the projective planes and 
Kerdock sets arising from these spreads. 

Problem 1. Construct symplectic spreads admitting a transitive group. Such 
spreads will produce flag-transitive affine planes. Only one type of construction is 
known, very closely tied to desarguesian spreads [4, 44; 5, 951. 

Problem 2. Construct symplectic spreads such that the corresponding planes are 
semifield planes (i.e., planes coordinatized by non-associative division algebras). 
Once again, only one type of construction is known, very closely tied to 
desarguesian spreads [4, 04; 5, (571. 

Problem 3. All orthogonal spreads are known for which G(Z) acts 2-transitively 
on 2 [5, (3.1); 91. Determine all orthogonal spreads such that G(Z) fixes one 
member of 2 and acts sharply 2-transitively on the remaining ones. This occurs in 
the classical case, and corresponds to the fact that the classical Kerdock code 
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admits the l-dimensional affine group. It may be that there are other examples of 
this phenomenon. 

Problem 4. The planes in (3.1) have the property that no nontrivial linear 
transformation of the underlying GF(2)-space preserves their spreads. Undoubt- 
edly there are large numbers of orthogonal spreads ,Y such that G(Z) = 1, but no 
examples presently are known. They would produce large numbers of Kerdock 
codes having trivial automorphism group. 

Problem 5. What are the restrictions on the structure of automorphism groups of 
orthogonal spreads? Involutions are rather restricted. However, what are the 
restrictions on odd order groups acting on orthogonal spreads? 

Problem 6. What purely geometric properties of the planes So reflect that fact 
that they arise from symplectic spreads? This is the most intriguing, and the most 
important, question concerning these planes. 
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