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Given a '

'small” subset T of S,, what properties of G = <I'>
can be found efficiently? This question has been important for the
construction of sporadic groups, and for Cannon's Cayley [2], where
"efficient" meant "reasonably cheap to implement on a computer'". There is
another meaning of the word "efficient' within the context of theoretical
Computer Science: "'requiring polynomial time'". This note is a brief
survey of some recent work on polynomial-time group theoretic algorithms.

Consider G f_Sn = Sym(X), where IX] =n. We are concerned
with algorithms requiring at most p(n) steps, where p(n) is a poly-
nomial in n. (Here, we are assuming that |T'| is small: of polynomial
size.) TFor example, in n(n-1)/2 steps you can examine every 2-element
subset of X. On the other hand, it would take n! steps to examine
each element of S,» and many subgroups of S, also fail to have poly-
nomial orders. Thus, polynomial time (i.e., a polynomial number of steps)
imposes restrictions not normally encountered in ordinary group theory.

The most basic algorithm is that of Sims [9] (cf. [3]), which
finds IG| and generators for Gy» x € X, in polynomial time. More
generally, given Y& X, this algorithm finds the pointwise stabilizer of
Y in G in polynomial time. Moreover, Sims' algorithm produces a
generating set of size 5_n2 for G. (N.B. - We are dealing with
generating permutations, not with generators and relations: no relations
are available.)

The following can also be found in polynomial time, and the
proofs are all easy ([1], [3], [8]): all orbits of G; if G 1is transi-
tive, a complete system of imprimitivity Z such that [Z‘ > 1 and GZ
is primitive; <G> for any given subset S of G; the derived series

of G; and the center of G.

Centralizers present an enormous stumbling block. It is not
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difficult to show that, if a polynomial-time algorithm for finding
(generators for) CG(t), t € G, t2 = 1, were available, then there would
be a polynomial-time algorithm for the Graph Isomorphism problem ("Given
two n-vertex graphs, are they isomorphic?"). This is an important open
problem in Computer Science (cf. [7]). Therefore, centralizers cannot be
used, so that many of the familiar techniques of group theory must be
avoided. On the other hand, this prohibition also suggests that group
theoretic algorithms can lead to new results within Computer Science [7].
In any event, the restriction on time forces a rethinking of many group
theoretic methods and problems.

The classification of finite simple groups has entered into
this area. There is a polynomial-time algorithm for finding a composition
series of G [8]. The validity of this algorithm depends upon the truth
of Schreier's conjecture. There is also a polynomial-time algorithm for
finding an element of order p, given a prime P [5]. Here, one easily
reduces to the case in which G is simple and primitive on X, at which
point tedious use of the results of [4] and linear algebra produce the
desired element. Once again, the validity of the algorithm depends upon
the classification. (N.B. - The algorithm used by Cayley involves the
random selection of a few elements of G, each of which is checked to see
if p divides its order. This process requires exponential time, as does
Sims' centralizer algorithm used by Cayley.

Polynomial-time versions of Sylow's theorem have yet to be
found. (One cannot use the familiar approach involving centralizers.)
However, special cases have been obtained, when G 1is simple 51,
solvable [6], or has all its noncyclic composition factors suitably
restricted [6]. Specifically, assume that a bound b 1is given, and that
each noncyclic composition factor either has order < b, is an exceptional
Chevalley group, or is a classical group of dimension < b. Then the
following can be done in polynomial time (the polynomial depending on b)
[6]: any given p-subgroup can be embedded in a Sylow p-subgroup; and given
(generators for) two Sylow p-subgroups of G, an element of G can be
found conjugating the first to the second. In [6] there are also
polynomial-time versions of the standard results concerning Hall subgroups
of solvable groups, as well as versions of both parts of the Schur-
7assenhaus theorem when G is restricted as above.

It should be clear that the results just described primarily

concern algorithmic versions of undergraduate-level group theory (even
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though some proofs require the classification). But then, the subject of
this note is just in its infancy. In order to make this fact even clearer,
we conclude with some problems that are presently OPEN. (1) Prove Sylow's
theorem for arbitrary G (both finding Sylow subgroups and conjugating
them). (2) Given m, determine whether G has an element of order m.
(This is even open if m is a prime power.) (3) Find a minimal normal
subgroup of G. (4) If GD N and the extension splits, find a
complement. (5) If G 1is solvable, find a system normalizer and a
Carter subgroup. (6) If G, H f_Sn, find (generators for) GM H. (A
polynomial-time algorithm for this problem would, however, settle the

Graph Isomorphism problem.)

REFERENCES

1. Atkinson, M.D. (1975). An algorithm for finding the blocks of a
permutation group. Math. of Comp. 29, 911-913.

2. Cannon, J.J. (1980). Effective procedures for the recognition of
primitive groups. Proc. Symp. Pure Math. 37, 487-493,

3, Furst, M., Hopcroft, J. & Luks, E. (1980). Polynomial-time algorithms
for permutation groups. Proc. 21st IEEE Symp. Found. Comp.
Sci., 36-41.

4, Kantor, W.M. (1979). Permutation representations of the finite
classical groups of small degree or rank. J. Algebra. 60,
158-168.

5. Kantor, W.M. Polynomial-time algorithms for finding elements of prime
order and Sylow subgroups. (submitted)

6. Kantor, W.M. & Taylor, D.E. Polynomial-time versions of Sylow's
theorem. (in preparation)

7. Luks, E. (1982). Isomorphism of graphs of bounded valence can be
tested in polynomial time. J. Comp. Syst. Sci. 25, 42-65.

8. Luks, E. (unpublished)

9. Sims, C.C. (1978). Some group~theoretic algorithms. Springer Lecture
Notes in Math. 697, 108-124.






