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In this note we will describe a recent approach to the study
of the following situation.
(*) G 1is a finite group generated by a family {Pl""’Pr} of
subgroups, r > 3, such that the following hold for some prime
p and all i, j for which 1 <i<j<r:
1) Op'(Pi/Op(Pi)) is a rank 1 Chevalley group of
characteristic p;
(2) B =N\P; projects onto a Borel subgroup of each group
in (1); and
(3) OP'(<Pi,Pj>/Op(<Pi,Pj>)) is either a rank 2 Chevalley
group of characteristic p, or the product of the projec-
tions of Op'(Pi) and Op'(Pj).
The main theorem concerning (*) is as follows.
Theorem 1 (Niles [9]). Assume (*) together with
(i) No Chevalley group in (1) is Al(2), A1(3), 2A2(4),
2B2(2) or 2G2(3),
(ii) No group in (3) is Ay (4), and
(iii) Each product arising in (3) is a direct product.
Then <Op'(Pi)|l <1 <r> is a normal subgroup of G having a rank r

BN-pair.

Clearly, the results of Tits [15] then determine G modulo
K = N{B8|g e G}, if the associated Dynkin diagram is connected.

While the assumptions in (*) are natural, the additional ones
in Theorem 1 are unfortunate, and even annoying. However, there are
examples showing that the groups P; in (*) do not necessarily produce
BN-pairs unless some kind of additional assumption is made. Before

describing these examples, we will need additional notation.

*
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The diagram of (*) is the obvious analogue of the Dynkin
diagram of a group with a BN-pair. Namely, its nodes can be identified
with the groups Py, and two nodes Py, Pj are joined by 0, 1, 2, 3 or 4
edges when the group in (3) corresponds to a rank 2 BN-pair with Weyl
group of order 4, 6, 8, 12 or 16, respectively. The groups P; are
regarded as "minimal parabolic subgroups'", while the r groups
Mi = <Pj|j #1i>, 1 <1 <r, are "maximal parabolic subgroups".

The following Table contains essentially all of the examples
of (*), other than those arising from BN-pairs, presently in print or at
least in preprints. (There are even more examples that have been
announced, some due to myself but most due to Kohler, Meixner and Wester.
Here, "essentially" refers to the omission of some extensions and homomor-
phic images. Examples of this are groups Qi(ﬁ,m) and §(5,7) 1in row 8.)
The Table only contains the groups Mi; in each case, the groups P; can
be determined using (2). When several M; are isomorphic, only one of
them is listed.

In row 1, the middle group M, has Mi/05<Mi) =
2(PSL(2,5)PSL(2,5))4 = 2Agh. This shows that hypothesis (iii) of Theoreml
is essential. On the other hand, the remaining examples in the Table show
that some of the groups Pi/Op(Pi) can be PSL(2,2) or PSL(2,3)
without {Pj,...,P,} arising from a BN-pair: at least part of hypothesis
(i) is essential.

The first 5 columns of the Table are self-explanatory. The
last column will be discussed later. The next-to-last column is headed by
an 'm", which is either definitely or seemingly irrelevant (denoted "-"")
or stands for all the indicated primes (e.g., all except 2 in the second
row). 1In the latter case, each m produces an example: there is then
an infinite family of examples, and for all but the first few values m
does not divide any order ]Mi|. Thus, Niles' theorem fails dramatically
when there is a parameter m. It should be noted that m actually does
not have to be a prime in any of these cases; for example, in the second
row m can be any odd integer > 1, and G then is PQ+(8,Z/(m)), which
is far from simple when m 1is composite.

The references in the Table provide constructions. We next
turn to the problem of classification. Here, the main results are due to
Timmesfeld. Before stating them, we will add one further assumption
to (¥*):

4) The diagram of {Pl,...,Pr} is connected.
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TABLE
Universal
Diagram G P Ref, Maximal parabolics m 2-cover
— s LyS 5 [5] G, (5),5 " 28,4,5%51.(3,5) - ?
>< p* (8,m) 2 [6] a*(8,2),50(2,3)%2° 42 Pt (8,0,)
o 2
[2] if m =3
" 6 2 2
>== Q(7,m) 2 2°A,,5p(6,2), (SL(2,3)"xa,)2 #2 PQ(7,0,)
>_. Q(7,m) 2 " 26A7,5p(6,2),m‘(6,3)2 # 2 77
-——3 A7 2 [8,2] A6,(A4X3)2,PSL(3,2) - Itself
+ 4 2.2
—x—» PR (6,m) 2 [6] 2 A6,SL(2,3) 2 # 2 PQ(Qz,f)
[11,5,2]
ifm=3
—— 6, (m) 2 [6] ¢, (2),51(2,3%2,2%51.(3,2) 42 G, (@)
[4} if m =3
— P2 (6,m) 2 [7] A, 42 PO(Q,, )
7°0(5,7) if m = 7 [2] if m = 3
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Diagram

6

PSU(6,m)

PSU(5,m)

285u(4,2) 1fm =2

Suz
ats,2)

G,(2)

PSU(3,5)

TABLE (contd.)

(12}

[8,6]

Maximal parabolics

1+421+4S

PR (6,3)3 3

Q(S,B),31+221+43

24263A6,2228(s3xA5),psu(4,2)

(3xP5p(4,3>)2,3"23s4

G2(2),SL(2,3)22

4
2"A,,245,PSU(4,3)

18

Universal

2-cover

27

??
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Theorem 2 (Timmesfeld [14]). If r = 3 then the diagram has a pair of

nonadjacent vertices.

Theorem 3 (Timmesfeld [13]). If the diagram has no multiple edges, then

either {P ,...,P_} arises from a BN-pair, or else the diagram is
1 r
::><:: or [::I and the Mi are exactly as in the Table.

The remainder of this note is concerned with the problem of
going a bit further than Theorem 3.
Theorem 4. In Theorem 3, if G 1is simple then G = HQ+(8,m), Q2(5,7), or
Pﬂi(é,m) for some odd prime m. (Here, if m # 7 then Q+(6,m) occurs

if and only if m = 1, 2, or 4 (mod 7).)

However, we will only outline the proof. On the other hand
it will be clear that the ideas involved go far beyond Theorem 4.
Assume (*), and consider the set G/B. The groups Pi

determine natural equivalence relations on G/B (namely, Bg = Bh &=
i

Pig = Pih)' These turn G/B into a chamber system A (Tits [16]). 1In

[16] it is shown that there is a universal 2-cover A of this chamber

system, arising from a group G generated by a family {ﬁi,...,Pr} of
subgroups, such that there is an epimorphism 0:G > G mapping Pi
isomorphically onto Pi (with a similar statement for the groups
<Pi’Pj>)' Moreover, the map 0 has a standard type of universal
property. Tits [16] then goes on to show that the chamber system A
produced by ¢ and the Ei "is" a building, provided that each

subdiagram e—e—= of the chamber system G/B arises from a rank 3

Chevalley group.

Digression. The fourth, fifth, and last two rows of the Table
contain examples in which subdiagrams s—e== do not arise from Chevalley
groups. The corresponding chamber systems A cannot arise from
buildings; and in the fifth row, it is known that A=A (due to Ronan).

Now consider the case where A is a building and the diagram
of A (and 5) is an extended Dynkin diagram. In this case, the
building A is an affine building. If r > 4, then Tits [17] has
classified all of these: they arise (via [3]) from groups over complete
local fields (including the possibility of skew fields). Since

¢ < Aut Z, and the latter group is Aut G* for a suitable algebraic
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group G*, more information can be obtained concerning G.
Consider the case ::><:: of Theorem 3. Here, all of Tits'

results apply, and show that l arises from the affine building associated
to a group D4(F) for a complete local field F. Moreover, since
0:<§i,§j,§k> > <Pi’Pj’Pk> is 3 covef, it is an isomorphism. Thus, each

M, is isomorphic to a group Mi = <Pjij # i> < G < Aut DQ(F). Moreover,
the residue field of F must be GF(2).

Since we know that ﬁi = Q+(8,2) for 4 values of i, this
places restrictions on F. In fact, it is easy to show that F has
characteristic 0, and that ¢ E-DA(F)‘ It is only slightly harder to use
Ewo groups Mi to show that (with rispect to a suigab;e basis)

G <D, (@), and then even that G = PQ(Z[1/2], § xi). This is, in
fact, the situation encountered in [6].

Finally, G must be a finite simple homomorphic image of c.

In the course of his work on the Congruence Subgroup Problem, Prasad [10]

has shown that the only such finite images are PQ+(8,m) with m prime.
The case [::1 is similar. In fact, Theorem 3 can be

proved in this manner when r > 4 by first reducing to the case of
extended Dynkin diagrams. (The case r = 3 is fairly easy.) Moreover,
similar results can be proved for the case of all extended Dynkin diagrams
of rank r > 4, provided that all 33 subdiagrams arise from buildings;
In a rather different direction, Aschbacher [1] has classified all
situations (*) with K = 1 whose diagrams are diagrams of spherical
buildings: he showed that only BN-pairs and the A7 example (row 5) can
arise.

There are many open problems, some of which are implicit in
the above discussion. Others concern the last column of the Table. That
column involves the identification of the universal 2-cover of the example
or family of examples. In some cases, this cover is the building A
associated with a 2-adic group. The corresponding group 6 is then flag-

transitive on A, but is much smaller than Aut A (just as in the ::><::

situation discussed earlier). However, usually the universal 2-cover is
not known, in which case there is a question mark. Two question marks
indicate that the universal 2-cover is not a building (in all other cases

it is a building).
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