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Some Geometries that are Almost Buildings 

WILLIAM M. KANTOR* 

1. INTRODUCTION 

Gf!ometries that are almost buildings (or GABs) were introduced by Tits [6]. They are 
Buekenhout-Tits geometries [1] in which all rank 2 residual geometries are generalized 
polygons, except that they need not satisfy the intersection property [1, §6]. Tits [7] has 
pointed out that these exist in great numbers, and that even finite ones are not rare. 
However, finite ones with large automorphism groups (other than those arising from 
buildings) appear to be quite rare. 

The purpose of this note is to describe briefly four finite GABs having flag-transitive 
groups. The only other known GAB with this property not arising from a building was 
constructed by Ronan and Smith [5] from the Suzuki sporadic group. The GABs described 
here also owe their existence to sporadic simple groups: one arises from the Lyons-Sims 
group, while the others are intimately related to Fischer's groups. 

The most significant result concerning GABs is Tits' covering theorem [6]: under very 
mild restrictions, every GAB is the image of a canonically defined building under a suitable 
type of morphism. (Throughout this paper, buildings will be identified with the corres­
ponding geometries [6].) The finite GABs constructed by Tits [7] are obtained by starting 
with buildings over local fields and constructing morphisms. The diagrams of the resulting 
GABs are extended Dynkin diagrams. The five GABs described here and by Ronan and 
Smith [5] also have extended Dynkin diagrams, namely. • • and 
• . By Tits' theorem, each arises as the image of a building. These buildings 
deserve further study: if any is of "known type", arising from a local field, then there 
would be important consequences for the theory of arithmetic groups of non-zero 
characteristic (Tits [7]). 

The first GAB described here was constructed group theoretically by M. Ronan and S. 
Smith [5]; the second was suggested by F. Buekenhout. I am indebted to them, and to J. 
Tits, for several stimulating conversations concerning GABs. I am also grateful to P. J. 
Cameron for providing his realization of the apartment of the fourth GAB. 

2. GENERALITIES AND TABLE OF GABs 

We will only be concerned with geometries having diagrams • or 
• • •. A GAB of type • consists of points, lines and planes. 
Lines and planes are sets of points. The points and lines in each plane. form a projective 
plane; the lines and planes through each point form a generalized hexagon. 

Similarly, a GAB oftype • • • consists of points, lines and quads. (Quads will 
be called "planes" or "spaces" in the first and third GABs, due to the embeddings involved 
in their construction.) Lines and quads are sets of points. The points and lines in a quad form a 
generalized quadrangle; the lines and quads through a point also form a generalized 
quadrangle. 
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Of course, suitable non-degeneracy conditions will also be required. The projective 
planes or generalized quadrangles or hexagons involved in the GABs are given in the 
diagrams, appearing above the appropriate rank 2 subdiagrams. 

Automorphism groups and polarities are defined in the obvious manner. The groups 
given in the Table are normal in the automorphism groups of the GABs; the full 
automorphism groups will be evident from the constructions (although a small amount of 
work is required to check that the obvious groups contain all automorphisms). 

TABLE 

5p(4. 2) 5p(4, 2) PO-(6, 3) P5U(4. 3) P5p(4. 3) 0(5, 3) PO(2. 5) O2(5)' 

Name • • • • • • • • • • 
Group PO-(6,3) PSU(6,2) 0+(8,2) LyS 
Polarity Yes Yes Yes No 
Intersection 

property Yes No No Yes 
Apartment Torus (8 points) Torus (8 points) Torus (12 points) 
Point stabilizer (Z2)5 XS6 PO-(6,3)'2 3·0(5,3)·2 G 2(5) 
Number of points 567 1408 1120 8835 156 
Rank on points 5 3 5 5 
Point diameter 3 2 2 2 

A GAB of type • • • or • has the intersection property 
if the intersection of any two distinct quads or planes is either empty, a point or a line. 

If it exists, an apartment .:1 will be required to have the following properties. There are 
automorphisms r, s, t of the GAB acting on .:1 such that ril, Sil and til satisfy the relations 
• • • or • while (r, s, t)il acts flag-transitively on .:1. If d is a 
point, plane or quad in .:1, then the elements of .:1 incident with d form an apartment of the 
generalized polygon induced at d. There is a covering projection onto .:1 from the 
tessellation of the Euclidean plane by squares or equilateral triangles; this produces an 
embedding of .:1 into an orientable 2-manifold, which in each of our cases will be a torus. 

The point-diameter is the diameter of the graph whose vertices are the points of the 
GAB, distinct points being joined if they are collinear. The point-rank is the number of 
point-orbits of the stabilizer of a point. 

3. FIRST GAB: • Sp(4.2) • Sp(4, 2) • 

Regard G = Pfr(6, 3) . 2 as a subgroup of PSU(6,2) generated by transvections 
(Fischer [2, § 16]; [3, §5]). G has exactly two orbits X126 and X S67 of points of the PSU(6, 2) 
space, of sizes 126 and 567. The 126 points correspond to the 126 transvections in G. If 
x E X S67 then Gx = (Z2)4 X S6 contains 30 transvections and induces Sp(4,2) on x-L / x. 

Exactly 15 totally isotropic lines on x meet X 126 , each containing three points of X S67 • 

Exactly 15 totally isotropic planes on x meet X 126 , each containing 15 points of X S67 • If E 
is one of these planes, then its 6 points in X 126 form a hyperoval of E, and GE = (Z2)s Xl A6 

indices A6 on E. (Note that both Gx and GE arise from groups of monomial trans­
formations with respect to suitable orthogonal bases of the 0-(6,3) space.) 

Define Points, Lines and Planes to be the points in X S67 and the lines and planes meeting 
X 126 • 

Aut Pfr(6, 3) interchanges (G')x and (G')E. This y'ields both the desired GAB and a 
polarity. Note that, in order to indu<:e Sp(4, 2) on both x-L/ x and E, it is necessary to 
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replace G by PO-(6, 3) (containing all reflections); this group is precisely N prU(6.2)(G), 
and is the automorphism group of the GAB. 

INTERSECTION PROPERTY. Let E and E' be distinct intersecting Planes, so that EnE' 
is a point or line. If it is a line, then it is a Line. For, there is a Point x E EnE' (since each 
line has only 0 or 2 points in X I26); thus, E and E' are lines of the 5p(4, 2) geometry 
induced at x, so EnE' is a point of that geometry and hence is a Line. 

0, 1 PROPERTY. If L is a Line and x is a Point not on it, then x is collinear with at most 
one Point of L. (For, if x were collinear with two Points of L, then (x, L) would be a Plane, 
and hence could not contain triangles of our GAB.) 

POINT-PLANE RELATIONSHIP. GE has exactly 3 Point-orbits: those x E E, those xe E 
such that x.L n E is a Line, and those x E E such that x.L n E consists of the 5 Points of a line. 

The point-rank and point-diameter follow easily from this. For, consider two Points x 
and y. Since G has just two orbits of triples (x, Z, y) with (x, z) and (y, z) distinct Lines, we 
may assume that no such z exists. In particular, we may assume that (x, y) is not in any 
Plane. Let E be a Plane on x. Then y.L n E contains 3 or 5 Points, while E has 3 Lines 
through x. There is then a Line (x, x') c E such that x' is a Point of y.L nE. Thus, 
d(x', y) ~ 2 and d(x, y) ~ 3. Consequently, the diameter is 3, and the rank is obtained 
similarly. 

PROOF. Let.:1 be a candidate for an apartment, and let N be its stabilizer in PO-(6, 3). 
Then N is flag-transitive on.:1, and N x and NE induce the Weyl group Ds on the geometries 
at x and E, for each x, E E.:1. (Thus, the group induced by N on .:1 is supposed to be a 
homomorphic image of the Coxeter group • • -.) Choose x E E, and consider 
N xE' 

Recall that E and x correspond to families {(ei)} and {(bi)} of 6 pairwise orthogonal 
I-spaces of an 0-(6,3) space, where we may assume that (ei' ei) = 1 and (bi, b;) = -1 for 
all i. The geometry at E is readily (and classically) reflected in properties of the 6-set {(ei)}' 
In particular, N~E is found to contain a transposition, say «(el), (e2)). Similarly, we may 
assume that NxE induces «(b l ), (b2)) on {(bi)}' 

Suppose first that N acts faithfully on .:1. Then NxE contains the reflections in (el + e2).L 
and in (b i + b2).L. But the latter hyperplanes cannot coincide (as el ± e2 and b i ± b2 have 
different "lengths"). 

Thus, N cannot be faithful on.:1. Let t be a non-trivial element of N inducing the identity 
on.:1. Then t fixes pointwise 4 planes on x which span x.Ljx. Thus, t fixes x.L pointwise 
for each point x of .:1. Since t,e 1, this is ridiculous. Consequently, no .:1 can exist. 

4 S GAB 
pn-(6, 3) PSU(4, 3) 

. ECOND : • • -

G = P5U(6, 2) has three classes of subgroups Pfr(6, 3) . 2, which are permuted as 53 
by prU(6, 2). Fix one of these classes, and c,all its members points. G has rank 3 on points, 
with the following parameters. 

840 

• 
488 

1 Q351 

3·280 

320 

520 0 
567 

If x is a point, and y is one of the corresponding 3 . 280 points, then there is a block B 
of imprimitivity of G x on the 3·280 points, of size 3, containing y, and such that G{x)uB 
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induces S4 on {x}uB (Fischer [2,(16.1.16)]). Call {x}uB a line. G x acts on the 280 lines 
through x as it does on the points of a generalized quadrangle for Gx == PSU(4, 3) . 2. 

Now fix a second class of subgroups p{r(6, 3)·2, and let R be one of its members. 
Then R has an orbit of 112 points, on which it acts as it does on the points of a p{r(6, 3) 
quadrangle [2,(16.1.14)]. Call such a set of 112 points a quad. We must show that lines 
of this quadrangle are just lines as defined above. 

If P E SyI3G, then P fixes some point x, some line L on x, and one of the 112 quads 0 
on x. Since 321567 and P has no orbit of size 3 of lines through x, it has exactly one 
point-orbit of size 3, namely L - {x}. Consequently, LeO, and L is a line of the 
quadrangle O. 

This yields the desired GAB. A field automorphism of PSU(6, 2) induces a polarity. 

INTERSECTION PROPERTY. This fails to hold. For, let x and z be two non-collinear 
points. There is a quad containing them. (For otherwise, 0 has any two of its points 
collinear in our geometry. Choose opposite points x and w of 0, and note that Go,x,w 
contains S6 whereas the stabilizer of two collinear points of our geometry does not.) Since 
Gxz = (Z2)4)q S6 does not fix any quad containing x and z, there are distinct quads 0, 0' 
containing x and z. Clearly, 0 n 0' is not a point or line of our geometry. (N.B. Clearly 
Gxz sends 0 to 16 quads. Dually, 10 n 0'1 = 16. Here Goo' = (Z2)4)q Sp(4, 2) acts in the 
obvious 2-transitive manner, and hence no two points of 0 n 0' are collinear.) 

Point-line 1 or 3 property: If L is a line, and w is a point not on L, then w is collinear 
with exactly 1 or 3 points of L. 

PROOF. If x and yare distinct points of a line L, then L - {x, y} contains 2 of the 
488 points collinear with x and y, leaving 486 = 2.35 points. But GXL has orbits of lengths 
1,36,35 on the 280 lines through x, and (Gxd" is transitive on these 35 lines; thus, so is 
GXY' Consequently, y must be collinear with exactly two points ,e x of each of these 35 

lines, and with no points ,e x of the remaining 36 lines. 
Now suppose that x and z are not collinear. Then Gxz = (Z2)4)q S6 acts on the 280 lines 

of an (r(6, 3) quadrangle (dual to the one at x), and is readily checked to have only two 
line-orbits there. These lines correspond to the lines on x. Thus, G has just three orbits 
of point-line pairs, and the 1 or 3 property follows immediately. (Dually, GL is transitive 
on the quads meeting L once, and on the quads missing L.) 

REMARK. This point-line geometry for PSU(6, 2)/ p{r(6, 3) . 2 is a subgeometry of 
geometries for F22/ fl(7, 3) and F23/ Pfl+(8, 3) . S3, which have the property that a point 
not on a line is collinear with 1,3 or all 4 points of the line. The latter geometries do not, 
however, arise from GABs. 

POINT-QUAD RELATIONSHIP. If 0 is a quad and w is a point not in 0, then G wo == S7, 
there are exactly 70 points of 0 collinear with w, and Gwo is transitive on these points. 

PROOF. Go has just two point-orbits, of lengths 112 and 1296 = 24 34
, and Gwo == S7 

[2,(16.1.21)]. By considering the pairs (x, w) with x E 0, we 0 andx, w collinear, we obtain 
the desired transitivity along with the desired number 112· (280-10)3/1296 = 70 of 
points. 

APARTMENTS. These have 8 points, 8 quads and 16 lines, and are embeddable in tori 
as indicated in Figure 1. 
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Quads 

abxy o'b'x'y' 

abxy' a'b' xy 
b 

ab 'x/ a'bx'y 

ab'x'y a'bx/ 

FIGURE 1. 

This is proved as follows. A split torus T of (OQ)'==PSU(4, 3) is cyclic of order 4. It 
fixes pointwise a unique quadrangle axby of Q, and hence a·quadrangle "at" each of 
a, x, b, y. Thus, T fixes exactly 4 points ,=X collinear with x. Each fixed point Ie Q is 
collinear with 1 or 3 points of the line ax, and hence is collinear with a or x. Moreover, I is 
not collinear with both a and x, since this would yield further fixed points on ax by the 1 or 
3 property. Thus, I is collinear with two opposite points of the quadrangle axby: either a 
and b, or x and y. The fixed points and lines thus form a graph of diameter 2, consisting of 
4 + (4·2)/2 = 8 points. If 0' is a fixed quad, then 10 n 0'1 ,= 1. The desired 8 quads can 
then be described as in Figure 1. 

Moreover, - • • is induced on this apartment, where r1 = (bb')(yy'), r2 = 

(ab)(a'b') and r3 = (ax)(by)(a'x')(b'y'). (Here, (r1, r2, r3) is the automorphism group of 
the apartment, of order 81Dsl = 64.) In fact, since T < Ox <prU(4, 3) and T has order 
4 and fixes exactly 4 points of the quadrangle at x, it is a split torus of PSU(4, 3). Thus, 
N(T)x induces Ds on the 4 fixed lines through x, as required. 

Note that the failure of the intersection property is already visible in Figure 1. 

5 T GAB 
PSp(4.3) 1](5.3) 

. HIRD :- •• 

This GAB uses all points of a pn+(8, 3)-space, all projective 3-spaces (or just spaces) 
of one type, and certain lines. Define an n+(8, 3)-space using the form I~ x~. The vectors 
of length 2 of the shape (± 1206

) and (± 1s) (the latter using an odd number of + signs) 
form a "root system", and exhibit an embedding of W = W(Es) into 0+(8, 3). The points 
of our space have the shape (± 1305

) or (± 1602
), and W is transitive on them. Set 

v =(11100000), x=(v), a =(-11000000) and M(x)=(v,a). Then M(x) contains all 
root vectors ~ such that ~ - v is again a root. Clearly, W va = Wa-v,v is W(E6 ) == 0-(6, 2) == 
n(5, 3) . 2. If r(3 denotes the reflection in ~.L, then W va = Cw(ra, ra-v», where (ra, ra-v) == 
S3. Moreover, W va induces n(5, 3)·2 on M(x).L/x, while Wv induces 0(5,3) on x.L/x 
with kernel generated by the 3-cycle (1,2, 3). 

Consequently, W has just two orbits of point-line flags, and is transitive on point-space 
flags. If we restrict to W' == n+(8, 2), then W' is transitive on the point-space flags for each 
type of spaces. If F is any space, then WF = W~ induces Sp(4, 3) . 2 on F, since Aut 
n+(8, 2) < Aut pn+(8, 3). 

Our Lines will be those lines fixed by Sylow 3-subgroups of W. The points and Lines 
in F form an Sp(4, 3) quadrangle. Dually, the Lines on x, together with all spaces on x 
having the same type, form an n(5, 3)-quadrangle. This defines the desired GAB. 

A polarity exists because Aut n+(8, 2) < Aut pn+(8, 3). 

INTERSECTION PROPERTY. This fails, since two of our spaces can meet at a line which 
is not a Line. 
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POINT-SPACE RELATIONSHIP. If F is a space of our geometry and x is a point not in F, 
then exactly 4 Lines on x meet F, and the 4 points of intersection form a hyperbolic line 
of the Sp(4, 3) space F. Moreover, WF is transitive on the points xe F, and WxF == 
(Z3 x SL(2, 3) x Z4)· 2. 

PROOF. The Lines on x meeting F are the Lines on x in the Sp (4, 3) geometry induced 
on F' = (x, x~ n F). This proves the first assertion, and hence the stated transitivity. 
Finally, ICw(F')1 = 3, and WxF/CW(F') is the stabilizer in Sp(4, 3)·2 of a hyperbolic line 
and two points in its orthogonal complement. 

0, 1 PROPERTY. If L is a Line, and x e L, then at most one Line on x meets L. (For 
each plane of the fl+(8, 3) space contains exactly four Lines, and these are concurrent.) 

The point diameter is 2. Let x and y be distinct points, and let F be a space containing 
y but not x. The 4 points of F collinear with x form a hyperbolic line of F, and hence 
y must be collinear with one of them. 

However, the rank on points is 5, with subdegrees 1, 120,270,81,648: W: is transitive 
on {x}, {YEx~l(x, y) is a Line}, {YEX~-{x}i(x, y) is not a Line}, {yex~l(x, y) contains a 
root} and {yex~l(x, y) does not contain a root}. For, if (x, y) is a line, it is contained in a 
space. On the other hand, if ye x ~ then there is a point z such that (z, x) and (z, y) are 
Lines, and hence belong to M(z)~. We may thus take x = (11100000), z = (00000111) and 
(y, z) = (z, 01110000), and then the desired transitivity is immediate. [N.B.-In terms of the 
usual fl+(8, 2) geometry, points are fl-(2, 2) subspaces while Lines are decompositions of 
8-space into four pairwise orthogonal fl-(2, 2) subspaces.] 

APARTMENTS. Write 

x = (11100000), y = (-11010000), a = (00000111), b = (0000101-1) 

x'=(11-100000), y'=(-110-10000), a'=(00000-111), b'=(0000-101-1). 

We may assume that F = (x, y) EB (a, b) is a space of our geometry. We will show that this 
produces the 8 point complex in Figure 1. 

Since (x, a) and (x, b) belong to M(x)~, they are Lines; so are (y, a) and (y, b). Note 
that the reflection in (00001100) acts as (aa')(bb'), so we obtain the further Lines (x, a') 
and (x, b'). 

Let T = (Z2)3 be generated by -1, diag( -1-1-1-1 1111) and the monomial transfor­
mation (1, -2)(3, -3)(6, -6)(7, -8). Then T fixes exactly 8 points, namely, those 
listed above. N(T)F induces Ds on {a, y, a, b} (since TF induces a split torus of G~). 
Similarly, N(T)x induces Ds on {(x, a), (x, b), (x, a'), (x, b')}. Since C(T)x = T, it follows 
that IN(T)/TI = 81Dsl = 64, and that the geometry induced on our 8 points is as 
asserted. 

6. FOURTH GAB: 
PG(2.5) G 2 (5)* 

• 
We will require detailed information concerning G = LyS, most of which is found in 

Lyons [4]. G has a subgroup H = (A, B) == G 2(5), where A and B are maximal parabolic 
subgroups of H [4, pp. 561, 563]. G has rank 5 on the set X of cosets of H, with non-trivial 
two-point stabilizers as follows: (extra spec 55). SL(2, 3) . 4, (SL(2, 5) 0 SL(2, 3» . 2, 
PSU(3, 3) and 3 ·PGL(2, 7)[4,(5.5), (5.6)]. Let r, r2, r3 and r4 denote the corresponding 
orbitals. Consider the graph determined by r. In view of the list of stabilizers: (*) the set 
of fixed points of a 5 -group of order ~ 52 is a clique. Let x E X and y E F(x), and set 
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H = Gx and R = Os(Hy). Then R' = Z(R) is the center of a Sylow 5-subgroup of H 
(compare [4, p. 564] with [4, p. 549]). Hence, if 7If denotes the usual G 2(5) generalized 
hexagon, then NH(R) is the stabilizer HA of some line A of 7If. (Here, NH(R) =A 
[4, p. 564].) Thus, R = Os(HA), and R fixes A pointwise. 

Set L={X}uyHA
• Then ILI=6, and L-{x} is an imprimitivity block for H on rex). 

Clearly, R fixes L pointwise, so that L is a clique by (*). Since R fixes exactly one line of 
'Je, it follows that L is its set of fixed points of X. Also, R E SylsGxy. Thus Na(R)L is 
2-transitive. Call L a line, and write L = xy. Lines on x correspond to lines of 7If, since 
HA=HL. 

Next, note that (#) if a 5-element fixes x and Yl E rex), then it induces the identity on 
both XYl and the corresponding line of 7If. (For, this is how R itself behaves.) 

We can now proceed to define planes. Let A' be a line of 7If meeting A just once. Then 
IR : RA,I = 5. By (#), RA, does not fix the line of X corresponding to A' pointwise. Let E 
denote the pointwise stabilizer of A' in R. Then lEI = 53. The set 7T' of fixed points of E is 
a clique by (*). Each line meeting 7T' twice is contained in 7T'. Note that E fixes exactly 6 
lines of 7If, at least two of which are fixed pointwise. By (#), 6 < 17T'1 ~ 1 + 6.5. Con­
sequently, 7T' is PG(2, 5) and E fixes all points of 7If collinear with p. From the action of 
Hp on 7If, it follows that E < Hp. 

Planes can now be defined as sets of the form 7T'g, g E G. 
Suppose that x E 7T'g. Then E g fixes 6 lines on x pointwise. By (#), E g also fixes 6 

lines of 7If pointwise. Since IEgl = 53, it follows that E g = Eh for some hE H, and hence 
that 7T'g = 7T'h. 

Moreover, H", = Hp (since NH(E) = Hp). Consequently, the lines and planes through x 
form the generalized hexagon 7If* dual to 7If. This proves that we have constructed a GAB 
having the desired diagram. 

STABILIZERS. We know that Gx = H. Also, G: is clearly point-transitive and contains 
a group R'" of order 52. Thus, G: ~PSL(3, 5). Using H p, we find that G",/ E is SL(3, 5). 
However, G", has no subgroup SL(3, 5). (If it did, then a Sylow 5-subgroup S of G would 
have the form S = E)<] F with IFI = 53. Then S would have class 3, whereas it is known to 
have class 5 [4,(2.14)]. I 

Consider GL. We already know that HL = NH(Z(R)) = R )<]SL(2, 5) '4, while 51HZI 

by (#). Also, Ca (Z(R))=R)<]SL(2,9) by [4,(2.10a)]. Hence, GL=Na(Z(R))= 
R )<] SL(2, 9) . 4 and GZ is the symmetric group of degree 6. 

DIAMETER. We will describe a few more properties of r without proof. The diameter 
is 2, while the rank of G on points is 5. The number of edges going from a point of one 
orbit of Gx to another orbit is indicated in Figure 2. 

FIGURE 2. 12978 
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Let xy and xz be distinct lines through x, with corresponding lines of ~ called A and 
AI. Then y is collinear with 3125 points of r2(x), 3750 points of r3(x) and 12500 points 
of r4(X). Here, lr(x)1 = 968750, Ir3(x)1 = 2034375 and Ir4(x)1 = 5812 500.) The lines A 
and A 1 are at distance 1 if yz is a line, at distance 2 if (y, z) E r 3 , and opposite if 
(y, z) E r 2 u r 4. (In the latter case, Ixz (l r 2 (y)1 = 1.) 

APARTMENTS. As with the second and third GABs, an apartment will be obtained as 
the set of fixed points of a split torus T of H. Here, T == Z4 X Z4. Let z be an involution 
in T. 

Set C=CG(z) and C=C/(z). Then C==A l1 • An involution in C pulls back to an 
involution in C if and only if it is a product of 4k disjoint transpositions for some k 
[4, p. 541]. Since all involutions in G are conjugate to z [4, 2.1b)], each element of order 
4 is conjugate to t, where r = (12)(34). Let e, U E C with e = (1324)(9, 10) and u = 
(1324)(5678). Since u2 = (12)(34)(57)(68), lui = 4. Also, e2 = t. Since u centralizes e, 
it centralizes e. Thus, (t, u) == Z4 x Z4; it is straightforward to check that any subgroup 
Z4 x Z4 of C is conjugate in C to (t, u). We may assume that T = (t, u). Set N = NG(T). 

Since G", contains a conjugate of T, all involutions of T are conjugate in N. Thus, 
IN: N (lCI = 3. Using C, one computes that N (l C/T==D8 xS3. Thus, INI =24 32 ITI. 

On the other hand, INxl = 121TI and IN", I = 61TI. Since T fixes a point and a plane, while 
Gx and G", have unique classes of subgroups isomorphic to T, it follows that T fixes 12 
points and 24 planes, which are permuted transitively by N. If T fixes 1T, it fixes exactly 
3 points of 1T; if T fixes x, it fixes exactly 6 planes on x. This uniquely determines the 
structure of the set of fixed points and planes. It produces the desired apartment. An 
elegant description (due to P. J. Cameron) is given in Figure 3. It is embeddable in a torus. 

a c b 

b.--------.--------__ -------.------~a 

a c 

FIGURE 3 

Another description is as follows. Points are the elements of {I, 2, 3,4}x {I', 2', 3' }; two 
are collinear if and only if they have different first coordinates and different second 
coordinates. Thus, N / T == S3 X S4. Two distinct points with the same first (second) coordin­
ate are in relation r 2 (or r3)' The permutations '1 = (12)(1'2'), '2 = (23)(2'3') and '3 = (34) 

'1 

• 
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Note added in proof. Tits has shown that the building of which the fourth GAB is an 
image is not of known type. I have proved the corresponding result for the first and third 
GABs. 
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