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Abstract 

Kantor, W.M., Some large trivalent graphs having small diameters, Discrete Applied Mathematics 
37/38 (1992) 353-357. 

If Iz 2 10, then there is a tnvalent Cayley graph for G =PSL (n. y) whose diameter is O(logla). 

This paper concerns an improvement of a result of Babai, Kantor and Lubotzky 
[ 11. In that paper it was shown that there is a constant C such that every non-Abelian 
finite simple group G has a set S of seven generators for which d(G, S) I C log 1 GI . 
Here, S was a carefully chosen generating set for G, and d(G,S) denotes the 
diameter of the corresponding undirected Cayley graph. This bound is best possible, 
since a simple count (the ‘Yvloore bound”) shows that d(G, S) + 1> log2 is/ (ICI>* 

In this paper we will decrease ISI so as to have ISI = 2 and ISU S-’ I = 3 in case 
G = PSL(n, q) with n 2 10: 

Theorem. If n 2 10, then there is a trivalent (undirected) Cayley graph for 
G = PSL(n, q) whose diameter is O(log ICI). 

Moreover, there is an algorithm which, when given g E G, finds a word in S 
representing g in O(log IGl) steps (i.e., multiplications and inversions of elements 
of S). Actually, we will onl;r need to assume that n 18 when q is even. There are 
analogous results obtainable by similar arguments for all the finite simple groups 
of Lie type, provided that the ranks are not too small. Steinberg [2] obtained two 
generators for each finite group of Lie type; but his generators do not include an 
involution, and hr ‘c argument does not produce the desired diameter bound. 

* This research was supported in part by NSF grant DMS 87-01794 and NSA grant MDA 
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Proof. Given a generating set S, the diam’eter d(G, S) of the corresponding Cayley 
graph can be interpreted group-theoretically as the maximum of the lengths of the 
elements of G as words in S U S -I. We will work inside of SL(n,q), where q is a 
power of a prime p. In order to obtain a trivalent graph we will find a set S= (s,g} 
consisting of two matrices, one of which has order 2, such that the corresponding 
diameter is O(log IGI). 

For 15 i, jsn with i# j let X&Y) be the matrix with l’s on the diagonal, (i, j)- 
entry CT E lFq, and O’S elsewhere. Then XU := {x~ (CT) 1 a E lFq} is isomorphic to the ad- 
ditive group of lFq, U := <Xii 1 1 s i< js n) is the group of all upper triangular 
matrices with l’s on the diagonal, and U= ni<i XU with the +n(n - 1) factors writ- 
ten in any order. If el, . . . . e,, is the standard basis of IF;, for 15 i< n let ri and s be 
the matrices of the transformations behaving as follows: 

and 
riZei*ei+r -)-Pi and ejri=ej for j#i, i+l, 

s:el~e2-,~~=-~2~~(-l)“+‘e,. 

Then ri+r =<I (where $ := h-‘gh ,in any group). If TV Et write 
h*(t) := diag(t-‘, t, 1, . . . , l), hi+l(t):=hl(t)‘and Hi:=(hi(t)I tEffg) for lsi<n, SO 

that H:= fli Hi is the group of .a11 diagonal matrices in SL(n,q). Also let 
d, :=diag(-1, l,..., 1) and di+r :=d”; note that det di=-1 and df= 1. 

Calculating with 2 x 2 matrices, we find t-hat (for any t # 0 and ar) 

Xi,i+l(a)hi”‘=Xi,i+l(crt2), hi(t)ri=hi(t)-l, r$=ri-’ and $4. 

Let 6 denote a generator of ffg. 

Case 1: qisoddandnr 12. Writeg := r,dl l h,(2)r,dj l hs(20)rjds l d, l x9, ro(l)dg = 
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-1 0 ( > 0 1 
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We will show that S:= (s,g) behaves as required. 
Clearly, det g = 1 and g* = 1. In particular, IS U 3-l I= 3. 

Claim 1. AII elements ofx&Fp) have length O(logp). 

For, 
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0 

-1 1 ( > 0 1 
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gf:=gg’2=r,4 l h3(2)= h&9.h,(2~)r;1.x9,10(l).x,,,,2(I)d,,, 

g” = h3(16)h5(~4)x~, ,&), 

[gl”, g4’]s-*g’ = [x9, ,o(Q x,6,1, (4)]s-8g’ =+, I,( 16)sV8g’= x13 (16)” 

=x13(16) 
W&h(2) 

=x23(@. 

Thus, x34(8) =x23(8)' has length O(l), while ~~~(8)~‘=x~~(8. 22). Now, as in [l], 
use Horner’s rule to express an arbitrary TV ll$ in the form 

t=8(t/8)=8 f bi22i=(...(8bm22+8b,_1)22+ **.)22+8bo 
i=O 

where m C logp and the bi are integers satisfying 0 I bit 22. Then 

x34(f) = (.* .((~34(8)~“)~x34(8)~~-‘)~‘...)~‘~34(8)~~ 

has length O(logp), as claimed. 

Claim 2. All elements of X5, =x5&$ and Xs5 have length O(log q). 

For, all elements of x56(5.3 =x~~(IFJ~ have length O(logp). If a E ffp, then 

x56(a)g’ - -xsa(ae2). By writing an arbitrary element of lFq in the form t = CE, ai 02i, 

where m <log, q and ai E IFP, we can proceed as above to see that each element of 
X56 looks like 

x56(f) = (...(xS6(a~)g’x56(%- ,))“‘...)“‘x56(%) 

for some t E Fq and hence has length O(log q). Now conjugate by g in order to ob- 
tain the claim. 

From this point on the arguments in [1] can be used, essentially verbatim. We will 
merely outline them; the reader is referred to that paper for the details. First one 
shows that all elements of ~5,~ := (X,2, X2,) E SL(2, q) have length O(log q), and 
hence in particular rl and all elements of H, do. Then so does z := sr, . Note that 
UC YYsYs2 .-. Y”-’ where Y:= Xl,Xf2X$.. X:,“-‘, and there are cancellations oc- 
curring in these products since s+$?+‘)-~ =s-’ and &z?)-~ =z-‘. It follows that 
each element of Y has length O(n l log q), so that each element of U has length 
O(n l n log q). Each element of H=H&... Hfne2 also has length O(n log q). 
Moreover, if N:= (H, ri 1 1 I i< n), then H&V, and each element of N/HZ S, has 
{riH 1 1 d i< n}-length O(n) since the involution riH (of S-length O(n log 4)) can be 
identified with the transposition (i, i + 1) E Sn. Then each element of N has S-length 
0(n2 log q) = O(log ICI), and hence so does each element of G = UNU. 

Case 2: q is odd and n = 10 or 11. This time write g := hl(8)rldl l h3(20)r3d3 l 
d5 l x7*( 1 )d, and S : = {s, g} , and calculate: 

gf:=ggS2=hl(0)rldl l h3(2). h5(29)r;’ l x78(1)*xg,,o(l)d9, 

f := k~2)41s-2 = h, (16)x&), 
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f 2 = h,(162)xd8), 
v := fs’ = h5( 16)x9, 1,,(4), 

f -‘f”=xS6(4= 162-4). 

Thus, x&b) has length O(1) for some 6~ ff; (i.e., b =4 l 162 -4 or 8), and hence 
so does x&) = x~&)~-~. Since xJ4(b)g’ =xJ&4b), as before it follows that all 

elements of xjq(ffP) have length O(logp). Then the same is true of xi,i+,(Fp) for 
each i, and hence also of [~~~[[~~~(ff,J,x~~(l)],x~~(l)], . . . ,xnl(l)] =x~~(IF,J (since n is 
bounded!). Now rl =xr2(l)x&l)xr2(1) has length O(logp), and then so does 
g H := grl , where x12(a)g” =x&z~~). Now proceed as before. 

Case 3: q is even. This time let g := rl l h&O)r4 l x78( 1) and S := {s, g) . Then 

Thus, x78(1) =x23(1)’ and gx7g(l) =rj l hq(0)rLl have length O(l), and hence so does 
U :=gx,g(l)(gxig(l))s=rl l h&J). h7(0)r7. SinCe Xq5(tZ)u=x45(d2) for all a, by 
using Horner’s rule we find that all elements of Xd5 have length O(log q), and 
hence so do all elements of X54 = (X&g. Now proceed as before. 0 

It should be noted that a major difference between the cases of odd and even q 
is that, in tile former, in order to use the Eornez’s rule argument from [l] we needed 
to have available ki(2) in addition to hi(O) for some i and j. Those elements were 
introduced by having the additiDna1 dimensions. 

A very crude estimate for the diameter obtained in the above argument is 
d(G,S)< 1O’log ICI. 

Remark. The analogue of the Theorem holds for the groups G =A, and Sn. We 
will only indicate this here with an example. It is straightforward to use the methods 
in [l] to modify this in order to handle the general case. 

Let G=S, with n=2k+r - 1 and k odd. Identify the set X= (91, . . . , 2k - 2) with 
Z2a_ I, and let X’= {xl 1 xc X} be another copy of X. Consider the n-set 
(a} U XU X’ and (letting x range over X) the permutations 

t:x++x’, 00 + 00, 

g:=(qO)(x+ax) (x’-) [ax+a-l]‘), 

where a := 2(1/2)(k+ i) so that a232 (mod 2k - I). (Note that x+ ax fixes 0.) We claim 
that S := (t,g} behl:ves as required: ISU S-’ ) = 3 and d(G, S) = O(log ICI>. First 

note that 

and 
g2=(x+2x) (x’-+ [2x+1]‘) 

(g2)’ = (x-, 2x+ 1) (x’“+ [2x]‘). 
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Every xeX is the image of 0 by a word w(x) in {g’, (g’)‘) of length 
O(k) = O(log n): using Horner’s rule we can write x= 1; ai2’ = O”‘(-‘I where 
w(x) : = (&9 )lUA (g2) f” ’ . . . (g2 )‘(I” with all aiE (91) (cf. [I]). Also, g” =(qO) since k 
is odd, so that (q0) has length O(log n). if XEX, then the transposition 
(a4 x) = (0% 0) w also has length O(lc; n). Then the same is true of every transposi- 
tion (00,x’) = (qx)‘, x&L ‘%ce each element of S,, is a word of length O(n) in the 
transpositions just constructed, this proves the claim. This time crude estimates 
Iyield that d(G, S) < 2% log n. 
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