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Abstract

Kantor, W.M., Some large trivalent graphs having small diameters, Discrete Applied Mathematics
37/38 (1992) 353-357.

If n = 10, then there is a trivalent Cayley graph for G =PSL (n, ) whose diameter is O(log|G)).

This paper concerns an improvement of a result of Babai, Kantor and Lubotzky
[1]. In that paper it was shown that there is a constant C such that every non-Abelian
finite simple group G has a set S of seven generators for which d(G,S)=<Clog |G|.
Here, S was a carefully chosen generating set for G, and d(G,S) denotes the
diazaeter of the corresponding undirected Cayley graph. This bound is best possible,
since a simple count (the ‘“Moore bound’’) shows that d(G,S)+1>log, g (G)).

In this paper we will decrease |S| so as to have |S|=2 and [SUS™'| =3 in case
G =PSL(n, q) with n=10:

Theorem. If n=10, then there is a trivalent (undirected) Cayley graph for
G =PSL(n, q) whose diameter is O(log |G|).

Moreover, there is an algorithm which, when given ge G, finds a word in §
representing g in O(log |G|) steps (i.e., multiplications and inversions of elements
of S). Actually, we will only need to assume that n=8 when q is even. There are
analogous results obtainable by similar arguments for all the finite simple groups
of Lie type, provided that the ranks are not too small. Steinberg [2] obtained two
generators for each finite group of Lie type; but his generators do not include an
involution, and hic argument does not produce the desired diameter bound.
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Proof. Given a generating set S, the diameter d(G, S) of the corresponding Cayley
graph can be interpreted group-theoreticaily as the maximum of the lengths of the
elements of G as words in SUS!. We will work inside of SL(#n,g), where g is a
power of a prime p. In order to obtain a trivalent graph we will find a set S= {s, g}
consisting of two matrices, one of which has order 2, such that the corresponding
diameter is O(log |G|).

For 1=i,j=n with i#j let x;(a) be the matrix with 1’s on the diagonal, (i/j)-
entry a€ F_, and 0’s elsewhere. Then X;:={x, (@) | @€ F,} is isomorphic to the ad-
ditive group of [F,, U:=(Xj | 1=i<j=n) is the group of all upper triangular
matrices with 1’s on the diagonal, and U=[];_; X;; with the 1n(n—1) factors writ-
ten in any order. If e, ..., e, is the standard basis of iF:, for 1=i<nlet r; and s be
the matrices of the transformations behaving as follows:

riieg—e——e and er;=e; forj#i,i+l,
and
sie ey e, (=1)" ey

Then r;y, =rfi (where g':=h"'gh in any group). If te Fq* write
hy(t):=diag(t 4,1, ..., 1), h,~+|(t):=h,(t)" and H;:= (h;(1) | te IFq*) for 1=<i<n, so
that H:=[]; H; is the group of all diagonal matrices in SL(n,g). Also let
d,:=diag(-1,1,...,1) and d;,, :=d}; note that detd;=~1 and d?=1.
Calculating with 2 X 2 matrices, we find that (for any ¢#0 and a)
Xn@"O=x,; (@?),  h@'=h@", rfi=r7' and rl=1.
Let 6 denote a generator of th*.

Case 1: gisodd and n= 12. Write g := ryd, - h3(2)ryds - hs(20)rsds - d; - xg 19(1)dy =

r(‘l’ (‘)) 0 0 0 0 ]
0 ;) 0 0 0 0
9 0 <209 1/029) 0 0
0 0 0 (‘0' ‘1’) 0
R

| 0 1

We will show that S:= {s,g} behaves as required.
Clearly, det g=1 and g?=1. In particular, |[SUS™!| =3.

Claim 1. All elements of x34(F,) have length O(log p).

For,
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g':=gg" =rd,- 3(2)- hs(8) b 20)r3" - X5, 10(1)- X1, (D,

g" =h3(16)h5(6*)xg,19(4),

[8%, 81 =[xy, 10(4)s X10, 11 ()] = 35,1, (16)° "% = x13(16)F
=x13(16)" 53 = x5 (8).

Thus, x34(8) =x,3(8)° has length O(1), while x;,(8)% = x34(8 - 22). Now, as in [1],
use Horner’s rule to express an arbitrary e[, in the form

m
t=8(t/8)=8 ¥ b;2% =(--+(80,,2%+8b,,_)22 +--)22+ 8b,
i=0

where m<log p and the b; are integers satisfying 0<b;< 22, Then
%34(1) = (- (X34 (B)°m)F x34(8) 1) ) x5 (8)"

has length O(log p), as claimed.

Claim 2. All elements of Xsq=xs¢(F,) and X¢s have length O(log g).

For, all elements of xs5(F,) =x34(IF,,)‘2 have length O(logp). If a€F,, then
x56(@)% = xs5(af?). By writing an arbitrary element of [, in the form = ¥, a; 6%,
where m<log, g and a;e F,, we can proceed as above to see that each element of
X looks like

x56(8) = (- (X56(@m) ¥ X56(@m - 1))5 -+ ) X56(a0)

for some ¢ € [, and hence has length O(log g). Now conjugate by g in order to ob-
tain the claim.

From this point on the arguments in [1] can be used, essen:iaily verbatim. We will
merely outline them; the reader is referred to that paper for the details. First one
shows that all elements of L, :=(X};, X5;>=SL(2,4) have length O(log g), and
hence in particular r; and all elements of H; do. Then so does z:=sr;. Note that
UCYYSYS ... Y where YV:=X;,X5X, ... X%, and there are cancellations oc-
curring in these products since s*(s**')!=s7! and z*¥(z¥*!)"'=z"!. Ik follows that
each element of Y has length O(n - log q), so that each element of U has length
O(n-nloggq). Each element of H=H,H; ---H,""2 also has length O(nlog q).
Moreover, if N:=(H, r,-| 1<i<n), then H<N, and each element of N/H=S, has
{r;H | 1 =i<n}-length O(n) since the involution r; H (of S-length O( log g)) can be
identified with the transposition (i,i+1) € S,. Then each element of NV has S-length
O(n?log q) = O(log |G|), and hence so does each element of G=UNU.

Case 2: q is odd and n=10 or 11. This time write g:=h,(0)r,d, - h;(260)r3d;-
ds- x,5(1)d; and S:={s, g}, and calculate:

g :=gg" =h(O)rdy- h3(2)- hs(20)r5" - x75(1) - Xg,10(1)dy,
=1 T = h(16)x56(4),
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£2=hy(16%)x54(8),
pi=fS= hs(16)xg, 10(4),
FUo = xg6(4- 162 = 4).

Thus, xs¢(b) has length O(1) for some beF* (i.e., b=4-16"—4 or 8), and hence

so does x34(b)=x56(b)s‘z. Since X34(b)¢ =x34(4b), as before it follows that all

elements of x3,(F,) have length O(log p). Then the same is true of x;;,,(F,) for

each i, and hence also of [-+-[[Xy3(F,), X34(1)], Xas (D], -« s Xy (D] = X1 (F) (since 7 is

bounded!). Now r;=x;5(1)x5;(—1)x;2(1) has length O(logp), and then so does
“:=gr,, where x12(@)® =x;,(af?). Now proceed as before.

Case 3: q is even. This time let g:=r,- 24(0)rs- x:3(1) and S:={s,g}. Then
g =88 =1y hy(0)ryhs(0)rs - X15(1)xge(1),
(&%) 8 = Drrg (1), Xeo (DI & =X (1) 2 =x13(1)F =x3(1).

Thus, x75(1) =x23(l)‘5 and gx;5(1) =ry - h4(0)r, have length O(1), and hence so does
u:=gx78(l)(g,\'73(l))53 =r, - hy(0)- h,(0)r;. Since xys(a)’ =x45(a02) for all a, by
using Horner’s rule we find that all elements of X, have length O(log g), and
hence so do all elements of X5, =(X};5)%. Now proceed as before. [

It should be noted that a major difference between the cases of odd and even g
is that, in the former, in order to use the Horner’s rule argument from {1} we needed
to have available #;(2) in addition to &;(f) for some / and j. Those elements were
introduced by having the additivbnal dimensions.

A very crude estimate for the diameter obtained in the above argument is

d(G,S)< 10" log |G]|.

Remark. The analogue of the Theorem holds for the groups G=A, and S,. We
wili only indicate this here with an example. It is straightforward to use the methods
in [1] to modify this in order to handle the general case.

Let G=S, with n=2%*'_1 and k odd. Identify the set X=1{0, 1,...,2¥ -2} with
Zy_y, and let X'={x’'|xeX} be another copy of X. Consider the n-set
{o} UXU X’ and (letting x range over X) the permutations

t:xex, ow-o,
g:=(0,0)(x—=ax) (x' - [ax+a-1]),

where a:=2172%+D g0 that g?=2 (mod 2¢ —1). (Note that x — ax fixes 0.) We claim
that S:={t,g} beh:ves as required: |SUS™'|=3 and d(G,S)=0(log |G|). First
note that

gr=(x-2x) (x' - [2x+1])
and
(22 =(x>2x+1) (x> [2x]).
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Every xeX is the image of 0 by a word w(x) in {g%(g?)'} of length
O(k)=O(log n): using Horner’s rule we can write x= Y& ,2'=0"" where
wix) :=(g2)""(g?)"™ ' (g%)" with all g;€{0,1} (cf. [1]). Also, g =(c0,0) since k
is odd, so that (e,0) has length O(logn). if xe X, then the transposition
(00, x) = (00, 0)*™ also has length O(Ic_; n). Then the same is true of every transposi-
tion (o, x’) = (o0, x)', x € X. “ince each element of S, is a word of length O(n) in the
transpositions just constructed, this proves the claim. This time crude estimates
yield that d(G, S)<25nlog n.
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