A brief survey of generalized polygons™
Wwilliam M. Kantor
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Let "'=(V E) be a finite connected graph (undirected, without Toops and
multiple edges). Let d be its diameter and g its girth (the size of a smallest
circuit). Then g<2d (trivially: see below). In this survey we will consider
the case g=2d for bipartite graphs: existence, properties and
characterizations of such graphs.
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the treelike aspect can cease only if d(x,y)2g/2. Thus, d2g/2. Moreover, if
d=g/2 then I" is "locally treelike".
Example. g=2d for an ordinary 2d-gon.
Definition (Tits). A generalized d-gon is a connected bipartite graph
of diameter d and girth 2d in which all vertices have degree >2.
It is evident that generalized d-gons possess a certain amount of
“combinatorial symmetry™. Later we will discuss further symmetry imposed

by the automorphism groups of certain of these graphs.

*The preparation of this paper was supported in part by NSF Grant
DMS-83201489.
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Example. d=2.

Here d(x,y) is odd and <d=2. Thus, I" is a complete bipartite graph. The

converse is obvious.

Example. d=3.
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Call the members of the “halves™ of " “points” and "lines". Since there are no
circuits of length 4, two points are never both joined to two lines. Also,
d(x,y) is even and <3. Thus, any two distinct points are joined to a unique
line (and vice versa). It follows that generalized 3-gons are essentially the
same as projective planes. Moreover, 6-gons inI" correspond to triangles in

the plane.
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This translation from graph to point-line terminology occurs for all d23,
and accounts for the name “generalized d-gon™ -- in the sense that

projective planes generalize ordinary triangles (3-gons).

. Example. d=4, all vertices of degree 3. Consider the set {1,2,3,4,5,6}.
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This picture defines a bipartite graph I with 30 vertices. Clearly, Sg<Autl.
In fact, Aut T" = Aut Sg has elements interchanging the two “halves™.
The last two examples were reqular. Complete bipartite graphs are

not quite regular.

Proposition. I is left and right regular:
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for constants s and t depending only on whether a point is in the left or right
haif.

When d=3, s=t is just the order of the projective plane. This is one of
the reasons degrees are written in the above form (“1+s” rather than “k").
The proof of the proposition is not difficult, and relies on the fact that all
degrees are >2.

The main restriction on generalized polygons is the

Feit-Higman Theorem [S] d=2,3,4,6 or 8.

In addition, there are many restrictions on s and t, the foremost being as

follows:



d=6 = st is a square [5];
d=8 = 2st is a square [S], so that " cannot be regular;
d=4 or 8 = t<s? and s<t2[9];
d=6 = t<s3 and s<t3 [7].
The remaining types of restrictions when d>4 are divisibility conditions

satisfied by s and t. However, there is no Bruck-Ryser tupe of theorem

known when d>4.

The Tist of KNOWN generalized d-gons (d>4) is as follows (where q
always denotes a power of a prime p).

d s t KNOwN Remarks

4 q q 1 foreachq; many for even q[4, p. 304:14] reguiar graph
4 g+l g-1 " [1,8,14]

4 q q? >»lperq t=g2

many if q=pe>p is odd [12]

z2 per odd g>3 [10, 12; 6,18]

24 per q=228+12 [4 p. 304; 10, 15]
4 ¢ g2 1perq
6 q 9 1lperg
1perq t=g3
1 per q=2%e+1 t=s?
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Note that s and t need not be prime powers in the second row of the
table. When equality holds in the inequality t<s? or tes3, further
combinatorial regularity can be deduced [3,9]; but such regularity is

reasonably well understood only in the case d=d.
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We next turn to symmetry imposed by automorphism groups.

Example. d=3. The “best” projective planes are the desarguesian ones,

in which Aut T is highly transitive. Namely, each such plane arises from a
3-dimensional vector space V, with points being 1-spaces, lines 2-spaces,
and adjacence containment. Since GL(V) is transitive on the set of bases of

V, it is transitive on the set of figures

in the plane. Also, V=V* (the dual space), so that Aut I" interchanges points

and lines. Thus, Aut " is transitive on the set of figures

VAVAN

in the graph: it is 4-arc transitive.
Example. d=4, with 30 vertices as before. A typical S-arc (path of

length S without doubling back) is

15/23/46

It follows readily that this graph is S-arc transitive.
Digression. How much arc-transitivity is allowed in any connected
graph? Let d be the diameter, and let d(x,y)=d. The picture
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shows that d+1-arc transitivity is the best one can hope for. (Compare [2,
p. 1131)
Snag: In the case of generalized d-gons,

there exist 4-arc transitive generalized 3-gons, one per s=t=q,

there exist 5-arc transitive generalized 4-gons < s=t=2° (one per e),

there exist 7-arc transitive generalized 6-gons ¢ s=t=3¢ (one per e).
Thus, one cannot expect too much arc transitivity without severe additional
consequences. This phenomenon is already evident in the following classical

result (which is not specifically concerned with generalized polygons).

Theorem (Tutte [19; 2, p. 1241). If I" is a trivalent 2-arc transitive
graph then 2<5.

This theorem has been generalized as follows:

Theorem (weiss [20]). If I" is an R-arc transitive graph that is not
2+1-arc transitive, and if its degree is k23, then the following all hold:

R<50r 2=7;

if 224 then k-1 is a prime power;

if £=5 then k-1=22 (for some &); and

if 2=7 then k-1=3% (for some e).
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Here, I" need not be a generalized 2-1~gon. However, Weiss in a sense
"embeds” a generalized 2-1-gon into " (which explains, to some extent, the
restrictions occurring when 2=5 or 7). The main part of his proof uses the
classification of finite simpie groups in the following manner. If 222 then

Aut T is transitive on 2-arcs. This implies that the stabitizer
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of a vertex is 2-transitive on the set of adjacent vertices. Since all finite
2-transitive groups are now known, this provides the initial data for a
clever argument. ) |
The snag mentioned earlier concerning 2-arc transitivity of
generalized polygons can be avoided by introducing the following extension.
A LOCALLY 2-arc transitive graph is one in which, for each vertex x and
each pair of 2-arcs starting at x, there is an automorphism

NV \)
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fixing x and sending the first 2-arc to the second one. However, now £ can
be arbitrarily large, and hence d is no longer bounded. The study of special
classes of locally 2-arc transitive‘graphs is an active research area in
finite group theory.

The “nicest” locally R-arc transitive graphs are generalized
f-1-gons. These have been characterized completely. For exampie, the only
4-arc transitive generalized 3-gons are the desarquesian projective planes.
The complete list of all locally 2-arc transitive generalized 2-1-gons is as
follows.
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3 q q one per q (=prime power)
4 q q )

4 g ¢ "

4 e q? )

6 q q i

6 g g )

8 q q? one per g=22e*1

In each of the above generalized polygons, the full automorphism
group is also the automorphism group of a finite simple group.

Conjecture. Every edge-transitive generalized d-gon (d>3) is one of
the above ones, with just two exceptions (due to Marshall Hall) having d=4,
s=3, t=5 or d=4, s=15, t=17.

Other properties or occurrences of generalized polugons.

1. They occur as building blocks for tripartite, 4-partite,.., graphs
related to finite simple groups [11,13]. This is a very active area of
research for both geometers and group theorists.

2. They arise as extremal regular graphs of given degree k>2 and

girth g. Namely, for such a graph the number of vertices is

o~
f”(.

N
2 14+ K+ k(k=1) + ==+ + k(k-1)23-2 + (k-1)33-1. Equality holds iff the graph
is a generalized 1g-gon [2, p.1541.

3. Tanner has used them to construct codes [16] and expanders [17].

14

They provide good expanders: for any set Y of vertices,

(# vertices joined to at least one member of Y)/[Y|
is unusually large (see [17] for a precise statement). While this may not
seem surprising in view of the tree-like nature of these graphs, the proof is
matrix-theoretic, involving the eigenvalues of the adjacency matrix (using

information occurring in the proof of the Feit-Higman Theorem).
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