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1. INTRODUCTION
The purpose of this paper is to prove the following result:

THEOREM 1.1. Let G be a finite group 2-transitive on a set 2. Suppose that
the stabilizer G5 of two distinct points a, B 2 is cychic, and that G has no
regular normal subgroup. Then G is one of the following groups in its usual
2-transitive representation: PSL(2, q), PGL(2, q), S2(q), PSU(3, g), PGU(3, ¢)
or a group of Ree type.

We note also that the converse of Theorem 1.1 is valid, i.e., in the usual
2-transitive representations of PSL(2,q), PGL(2,q), Sz(g), PSU(@3, q),
PGU(3, g), and the groups of Ree type, the stabilizer of two points is cyclic.

Herce Sx(g) is a Suzuki group [25]. Groups of Rec type will be defined in
Section 2.

As with the classification of Zassenhaus groups by Zassenhaus [30],
Feit [9], Ito [17], and Suzuki [25], this theorem characterizes several families
of 2-transitive groups, without regard for the parity of the characteristic.

! Presented to the American Mathematical Society in San Antonio, Texas, on
January 24, 1970.
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b 3

Instead, however, of placing restrictions on the action of G on £2, we have
specified the structure of the relatively small subgroup G,z of G. This is
analogous to the classification of 2-transitive groups G in which G,z has odd
order (Suzuki [26], Bender [2, 3]). These latter results are required in our
proof.

T'wo special cases of Theorem 1.1, needed in its proof, are due to Suzuki
[27] and O’Nan [20]. Their results characterize PGU(3, q) and PSU(3, g),
g odd, by requiring that the structure of G, be very much like that of the
corresponding subgroups of these 2-transitive groups.

Another very special case of Theorem 1.1 is due to Ito [18], who considered
2-transitive groups G in which | G4 | = 2. Although we have no comparable
hold on | G4 |, the arguments in cases A and C of Section 5 were motivated
by Ito’s methods.

Our arguments are surprisingly elementary, as a result of which the main
part of the proof of Theorem 1.1 (in Section 5) is reasonably self-contained.
The proof proceeds as follows. As already noted, by using results of Suzuki
[26] and Bender [2, 3], we may assume G,; has an involution #. Let 4 be the
set of fixed points of £. In Section 4 we observe that the permutation group
C(t)* induced by C(t) on 4 is a 2-transitive group in which the stabilizer of
two points is cyclic. Moreover, using a simple counting argument we obtain
an important and useful relationship betweenn = |2, |4 |, and G, .

By induction, C(£)* either has a regular normal subgroup or is one of the
groups we are characterizing. Also, 7 is either odd or even. Taking each of
these possibilities into account, we are led to four cases, which are dealt with
in Section 5. In the course of the proof we show that, since G has no regular
normal subgroup and | G, | is even, # cannot be odd.

In case A, we assume that #z is odd and that C(£)4 has a regular normal
elementary abelian p-subgroup, with p an odd prime number. By studying
p-subgroups and 2-subgroups of G, we obtain a contradiction.

In case B, 7 is odd and C(¢)4 has no regular normal subgroup, so that
C@)* is PSL(2, 2%), S=(2%), PSU(3,2), or PGU(3, 27), where 27 > 4. In
case C, # is even and C(#)? has a regular normal elementary abelian 2-sub-
group. In these cases, as C(¢)? has a relatively large elementary abelian
2-subgroup, we study the preimage in C(2) of this 2-group.

In case D we consider the situation where # is even and C(#)? has no
regular normal subgroup. We proceed in two steps. It is first shown that
either G is of Ree type or that G very closely resembles PSU(3, q) or
PGU(3, q), g odd: C(t)? is PGL(2, q), n = ¢® + 1, G, has a normal subgroup
regular on 2 — o, and the Sylow 2-subgroups of G are as they should be.
We then use an argument of Brauer [1, Chap. 6] to show that | G5 | = ¢%—~1
or (¢ — 1)/(g + 1, 3). The aforementioned results of Suzuki [27] and O’Nan
[20] now imply that G is PGU(3, ¢) or PSU(3, ¢).
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Scction 2 contains properties of PSL(2, q), Sz(q), PSU(3, ¢), and groups
of Ree type. The definition of groups of Ree type is based on a paper of Ree
[23]. ‘There is an error in that paper which has been corrected by Harada [15],
In Theorem 2.3 we observe that Theorem 1.1 also vields a correction to
Rec’s paper and a result even stronger than that of Ree and that of Iarada.

Notation. All groups will be finite. If G is a group and X C G, then
Ng(X) and Cg(X), or simply N(X) and C(X), are the normalizer and
centralizer of X, respectively. Aut(G) is the automorphism group of G, G
is the derived group of G, O(G) is the largest normal subgroup of G of odd
order, and G* == G — {1}. If G is a p-group 2,(G) — (x| xe Gand x? = 1)
and U,(G) = («? | x€ G).

We use Wiclandt’s notation for permutation groups [28]. If G is a permuta-
tion group on £ and « € £, then G, is the stabilizer of a. If XC G, 4C 2
and 4% == 4, then X4 denotes the set of permutations induced by X on 4.
G is said to be semiregular on 2 if only | € G fixes a point of Q.  is regular
on £ if it is transitive and semiregular on Q. An involution € G will be
called regular if <t} is semiregular on Q.

2. PrROPERTIES OF THE GROUPS

In this section we state those properties of the groups listed in Theorem 1.1
which will be needed in the proof.

Lemma 2.1. Let G be PSL(2,27), Sz(2), PSU(3,2) or PGU(3,2%),
S > 1, in its usual 2-transitive permutation representation on a set $2. Let
o, BeR, a 5+ B.

(i) G has a simple normal subgroup of index 1 or 3.

(1) If S is a Sylow 2-subgroup of (5, then S fixes some point o € 2,
S < G,, and S is regular on 2 — «.

(i) Z(S) = 8£,(S) has order 2/, and S has exponent 2 or 4.
(iv)y G, is cyclic and has a subgroup A of order 2/ —- 1 which is regular
on Z(S)*.

(v) A is the set of inverted elements of each involution (af)... inter-
changing « and 8.

(vi) If Gis PGU(3, 2') or PSU(3, 21), C(Z(S)).3 has order 2/ + 1 or
(2 + 1)/3, and fixes 27 + 1 points.

(vii) If te Z(S)*, then C(t) = C(Z(S)).
(viii) If G is S2(2"), f is odd.
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For ¢ odd, all of the properties of PGL(2, q) which will be nceded are
well-known. The following lemma will motivate much of Section 5, case D.

Lemma 2.2, Let G be PGUQ3, q), q odd, in its usual 2-transitive representa-
tion on a set 2. Let o, Be 2, o # B.

(i) G has a simple normal subgroup M = PSU(3, q) of index (¢ + 1, 3).
(1) All involutions of G are conjugate and fix ¢ + 1 points.
(i) G,g is cyclic of order g* — 1, and | M,; | = (¢ — 1){(g + 1, 3)-
(iv) G, has a normal subgroup Q of order g%, regular on 2 — «.
(v) Z(Q) = Q) has order q, and G,z is fixed-point-free on
QiP(Q)-
(vi) If tis an involution in G,z , then C,(t) has a normal subgroup Cy(t)
isomorphic to SL(2, q).
(vi))  Z(Q) = Col2).
(viity The Sylow 2-subgroups of G are quasi-dihedral if ¢ = | (mod 4)
or wreathed Zy \ Z, if ¢ —= 3 (mod 4).
In [23], Ree considered groups G satisfying the following conditions:

(R1) G is agroup 2-transitive on a finite set 2, [ 2] = n.

(R2) If o, 88, o« £ B, G,;5 has a unique element ¢ 5 | fixing more
than 2 points.

(R3) All involutions in G are conjugate.

A family of groups staisfying (R1)-(R3) were discovered carlier by Ree [22].
In its usual representation of degree 126, PSU(3, 5) also satisfies these
conditions. A group G will be said to be of Ree type if it satisfies (R1)-(R3)
together with

(R4) C(t) = PSL(2,q) x {t) for some odd prime power g¢.

Ree {23, Proposition 2.3] incorrectly showed that (R1)-(R3) imply (R4).
Harada [15] has proved that, when n is even, (R1)-(R3) imply that (R4)
holds or G is PSU(3, 5).

Rec also proved the following facts about groups of Ree type:

(R5) n = ¢® + 1, ¢ = 3%+ g a nonnegative integer;

(R6) 1t fixes ¢ + 1 points;

(R7) Gggis cyclic of order ¢ — 1;

(R8) The Sylow 2-subgroups of G are elementary abelian of order 8.

Groups of Rce type satisfy the conditions of Theorem 1.1. Conversely,
assuming Theorem 1.1, we can prove the following:
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TueoreM 2.3, Let G be a group 2-transitive on a finite set Q2. If «, B € 2,
o # B, suppose that G,z has a unique nontrivial element t fixing more than two
points. Then either

(i) G is of Ree type;
(i) Gis PSU(3, 5); or

(1) G has a regular normal subgroup, | G,z | = 2 and G has two classes
of involutions,

Proof. (R1) and (R2) clearly hold and |t} = 2. If 4 is the set of fixed
points of 2, then C(¢)4 is 2-transitive (Witt [29]) and only 1 € C(t)4 fixes three
points. Also, n =[] = | 4 | (mod 2).

If nis odd, C(t)Z is cyclic of odd order (Suzuki [25]), so that G4 is cyclic. By
Theorem 1.1, neither (i) nor (ii) holds, and G has a regular normal clementary
abelian p-subgroup for some odd prime p. Then G,; fixes at least p points of
0, so that } G,; | = 2 and G has two classes of involutions (Ito [18, p. 410]).

If n is cven, then as in [23, p. 799}, G, has a normul subgroup Q
regular on £ — a. Suppose that {t,u) is a Klein group in G,;. Then
O = Col(t) - Co(u) * Co(tu), and since neither u nor tu fixes points other
than « and B, Co(u) = Co(tu) = 1. Thus Q == Co(t) and ¢ fixes all
points of £2, which is not the case. Consequently, G4 has just one involution
and, as in [23, Proposition 1.25], G,, has a cyclic Sylow 2-subgroup. Then
C(t)3s is cyclic (Feit [9], Ito [17]), so that G, is cyclic. By Theorem 1.1, if
neither (i) nor (ii) holds then G has a rcgular normal elementary abelian
2-subgroup and (iii) holds.

3. PRELIMINARY RESULTS

It is well-known that the automorphism group of a cyclic group is abelian.
For future reference, we isolate one special situation.

Lemma 3.1, Let S = {x, y> be a 2-group of order 271 such that | x | = 2™
and |y | = 2. Then S is defined by one of the following additional relations:

(1) a¥ = x and S is abelian;
(1) av = x~land S is dihedral,;
2m—1

(i) &¥ =22 m > 2, and S is guasidihedral,
(vi) av = av®"" m > 2, and S is modular.

Levma 3.2, A group whose Sylow 2-subgroups are cyclic is solvable.
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Proof. 'This follows from Burnside’s transfer theorem [14, p. 203] and
the Feit-Thompson theorem [10].

LevMma 3.3, Let X be a 2-group and Y <1 X, where | X|Y | =k = 4.
Let A be a subgroup of Aut(X) of odd order centralizing Y and transitive on
(X|YY*. Then either

(i) There is a unique A-invariant subgroup X, of X suchthat X = X, X Y;
or

(i) &k = 4 and there is a unique A-tnvariant subgroup X, of X such that
X, is a quaternion group of order 8, X = X,Y, | X, N Y | =2and [X,,Y]= 1.

Proof. 'The proof is by induction on | X |. Suppose that k. >4 and Y 1.
Let Y, be a maximal subgroup of ¥ normal in X.

If Yy =1, then | X| = 2k. As £ > 4, X has an involution not in Y.
By the transitivity of 4, there is an involution in each coset of ¥ in X. As
Y C Z(X), X is elementary abelian. Maschke’s theorem now implies the
result.

Let Y, # 1,andset X = X/Y,, Y = Y/Y,. By induction X = X, X Y,
where ¥, C X, C X and X is invariant of order k. As 4 is transitive on X,*,
by induction X, = X; X ¥, with X, an A-invariant group such that 4 is
transitive on X;*. Then X = XY = X,Y and X, nY = 1. Moreover,
X, = [4, X,), so that ¥ normalizes X, . We thus have X = X, X Y, and X]
is unique becausc of the action of 4.

If 2 = 4 and (i) does not hold, the same argument shows that (ii) holds,
although here we must use the simple fact that the Schur multiplier of
SL(2, 3) has odd order.

LemMma 3.4, Let R be an elementary abelian group of order 27, and let B
be a solvable subgroup of Aut(R), primitive on R*. If t € R*, then |Cy(2)| | n.

Proof. A minimal normal subgroup 4 of B is regular on R*. Then 4 is
cyclic and Cg(t) acts faithfully as an automorphism group of GF(2%). Con-
sequently, |Cy(2)| | n.

Levma 3.5. If G is a group 2-transitive on 2, and if |Z(G,); is even for
some o€ 82, then G has a regular normal subgroup.

Proof. Let x be an involution in Z(G,). Since G, is transitive on 2 — «,
x fixes just the point a. Consequently, | £2 | is odd and we can choose a Sylow
2-subgroup S of G with xe SC G, . If x? € S, then x9 fixes only «, s0 g € G,
and ¥ = x. Now Glauberman’s Z*-theorem [13] implies that 0(G) # 1.
The result now follows from the Feit-Thompson theorem [10].
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Lemwma 3.6. Let G be a 2-transitive group on a set Q. If p is a prime dividing
: Q |, and if 0 is the permutation character of G, then 0 € By( p, G) (the principal
p-block of G).

Proof. It suffices to show that, for each x in G,

Gl 6 Gi
CEI 7 =1 = 1¢Gy ™edP)

where n = { 2. Since p|n, n == kp and (n — 1,p) == 1.

I'irst, suppose that C(x) contains a Sylow p-subgroup P of G. Then P fixes
no points of £, so that 8(x) = lp — 1 for some nonnegative integer /. Also
| G : C(x); ((6(x)/n — 1) — 1) is an algebraic intcger and n — [ is prime to p.
Thus

C)l ( G(x) _ 1) = |G: Cx) p (’ll_i_l;_) = 0 (mod p).

Now suppose that C(x) does not contain a Sylow p-subgroup of G. Then
?1|G : C(x)|, and again the result follows from the fact that (p,n — 1) =

4. BEGINNING OF THE PROOF
Let G be a counterexample to Theorem 1.1 of least order. Setn = [ 2.

LemmAa 4.1. Let 1 £ UC Gg, and let A be the set of fixed points of U.
Call a subset of 2 a line if it has the form 4°, g € G.
(i) N(U)? is 2-transitive, and N(U)% is cyclic.
() Two distinct points of 2 are on precisely one line.
(i) Each point is on (n — 1)/(k — 1) lines, where k = | 4 |.
(iv) There are n(n — 1)/k(k — 1) lines.
vy nz2RrR—k41.
Proof. As U is weakly closed in G,;, N(U) is 2-transitive and (ii) holds
(Witt [29]). N(U)% is clearly cyclic. There are n — | points 7o, each on a
unique line on a, proving (iii). Counting in two ways the ordered pairs (y, 45)

with y ¢ 49, g € G, we obtain (iv). If y ¢ 4 then each point of 4 is on a lire
through y. By (iii), (n — 1)/(k — 1) = k.

In particular, either N(U)4 satisfies thc hypothescs of Theorem 1.1, and
hence is known, or N(U)? has a regular normal subgroup.

Lemma 4.2. G, contains an involution t.
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Proof. Suppose that | G,4| is odd. By results of Bender {2, 3], G has a
normal subgroup M which acts on @ as PSL(2, 9). Sz(g), or PSU(3, g) inits
usual permutation representation. As G C Aut(M), G satisfies the conclusions
of Theorem 1.1, contrary to the fact that G is a counterexample of least order.

The following notation will be used throughout the proof of Theorem 1.1.
t is an involution in G4, 4 its set of fixed points, and W the pointwise
stabilizer of 4 in G. Set # = | 4 |. Clearly n = k (mod 2). Let ¢’ = (af)...
be a conjugate of ¢, and 4’, W’ the corresponding set of fixed points and
pointwise stabilizer. Note that all involutions fixing at least two points are
conjugate. Lines are defined as in Lemma 4.1 with U = {#).

Let ¢ be the number of involutions (&f)..., and 4 the number of involutions
(aB)... fixing at most one point of £2.

Lemma 4.3.
@ »==FK(c—d)k—1)+1).

(i) ¢ is the number of elements of G,z inverted by any involution
u = (of)... .
(ili) ¢ is even.
(iv) If n is odd, there are precisely ¢ — d conjugates of t in C(t), — {t},
and each of these is regular on 4 — o.
(v) If n is even, there are precisely (c — d)(k — 1) conjugates of t in
C(t) — {t} and each of these is regular on A.
(Vi) c—d=coric
(vil) c—d#1andd+# 1.
(viil) If mis odd, d is the number of involutions fixing just the point a.

Proof. We shall use the terminology of Lemma 4.1.

(i) There are ¢ — d conjugates of ¢ of the form (af)..., hence
(c — d)(n — 1) conjugates of ¢ moving o. That is, there are (¢ — d)(n — 1)
lines not on «. By Lemma 4.1 (iii) and (iv),

(c — d)n— 1) = n(n — Dk — 1) — (n — Df(k — 1),
¢ —d = (n— k)kk— 1)

(i) x = (&B)... is an involution if and only if % inverts ux, where
uxeG,p.

(iii) 'This is clear from (ii), since G, is cyclic of even order.

(iv) ¢ centralizes #9 if and only if ¢ fixes 4¢. As k is odd, if ¢ fixes 49,
then ¢ fixes a point of 49, Also, if 9* 5 y then ¢ fixes the line through vy
and y*. Thus, ¢ fixes (n — &)/(k — 1) lines =4, each of which meets 4. The
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number mceting 4 at « is, by Lemma 4.1 (i), (n — k)/(k — )k = ¢ — 4.
By Lemma 4.1 (ii), each such line meets 4 in a single point.

(v) In this case, ¢t fixes (n — k)k == (c — d)(k — 1) lines 3£4,
each of which does not mect 4.

(vi} Bv Lemma 3.1, {t') G,; — G,g has 1 or 2 classes of involutions
under G,y . If x == (aff)... is an involution then £'xe G, so that C(¢),; =
C(x),3- Thus, if d # 0, thenc —d =1 G3: C(t'),;| = 4.

(vii) If ¢ — d = 1, then n = k2 by (i). The points of £, together with
the lines 49, g € G, thus form a finite affine plane, and G is 2-transitive on
the points of the plane. By a result of Ostrom-Wagner [21, Theorem 1],
G has a regular normal subgroup, which is not the case. If ¢ = I, then
¢-—d =1by(vi).

(viii) d is the number of involutions interchanging a and 8 and fixing
a single point. Let » be the number of involutions fixing a single point,
We count in two ways the pairs (J, (A, u)), where j is an involution fixing
a single point and interchanging A and p.

Since the number of such involutions j is n7r and each interchanges
(n — 1);2 points, this number is (ar)(n — 1)/2. Since there are n(n — 1)/2
two eiement subsets of 2 and there are d such involutions j interchanging the

clements of a fixed two clement subset, this number is also (n(n — 1)/2)(d).
Thus d = r.

LEMyA 4.4, Let n be even.

(i) If I < W fixes more then two points, then t' ¢ C(U).
(it W is semivegular on 2 — A.

Pronf.

(1) Let U < Wand I'be the sct of fixed pointsof U. Let ! == | I'| > 2.
By Lemma 4.1 N(U)" is 2-transitive. As t7 fixes & points of I', [ is even. As
NU)YC(L) s abelian and [ > 2, C(U)" is transitive. Since G, < C(U),
IN(U)/C(U); (I — 1). The result follows since I — 1 is odd.

(it) Lct I' D 4 and supposc that U £ 1 is the pointwise stabilizer of /™.
Then | U | isodd. Set [ := | I"'|. If ¢ and 4 are as in Lemma 4.3, and ¢’ and d’
are the corresponding numbers for N(U)", then ¢’ — d’ = 1¢'. Each involu-
tion («f)... centralizes U, so that ¢ = ¢'. As in Lemma 4.3 (i), we have

l—k = —dYh(k—1) = dck(h — 1) = $c — d)R(k— 1)
=3(n—k) > in— k.

However, n 2 I2 — [ + | by Lemima 4.1 (v}, a contradiction.
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Levima 4.5. &k = 3.

Proof. Otherwise k == 2 and # is even. By Lemma 4.4 (iii), W = G4
is semiregular on 2 — {u, B8}. 'Thus, G is a Zassenhaus group of even degree,
and hence is PSL(2, q) or PGL(2, q) [30], which is not the case.

5. ProoF oF THEOREM 1.1

In view of Lemma 4.1 (i), there are four cases:

(A) nis odd and C(#)¢ has a regular normal subgroup;

(B) nisodd and C()¢ has no regular normal subgroup;
(C) nis even and C(¢)4 has a regular normal subgroup;
(D) mn is cven and C(¢)? has no regular normal subgroup.

We recall also that G is a counterexample to Theorem 1.1 of least order.

Case A. Here n is odd and C(¢)4 has a regular normal elementary abelian
p-subgroup L4 of order &, where L2 W and p is an odd prime. Since
N(W)/C(W) is abelian, and L4 is the unique minimal normal subgroup of
C(¢y4, L C C(W), and hence L has a normal Sylow p-subgroup P. Thus,
C(#) € N(P). Let P* be a Sylow p-subgroup of C(2) containing P.

Let t* be an involution in C(2), — {t} (Lemma 4.3 (iv)), 4* its set of fixed
points and W* the pointwise stabilizer of 4% Then t*4 e Z(C()?) by
Lemma 4.3 (iv).

LemMma Al n = k(c(k — 1) 4 1) and all involutions in G are conjugate.

Proof. By Lemma4.3 (i), we must show that d = 0. Let x be an involution
fixing only a. If y 5 @, then x fixes the line through y and »%, hence fixes
a point of this line, since & is odd. Thus x fixes cach line 47 on o. If ¥’ is also
an involution fixing only «, then & also fixes each such line 49, o« € 49, and
x and x' agrec on 479. (They both invert the regular normal subgroup of
C(t9y°.) Thus x = x'. It follows that d = 1, contradicting Lemma 4.3 (vii).
{Alternatively, Lemma 3.5 can be used to obtain a contradiction.)

Lemva A2, If the Sylow 2-subgroup R of G; is not contained in W, then
¢ =2andt*e C(W).

Proof. Let x€ G,z be a 2-element such that x4 is an involution. Then
{t*, x>4 is a Klein group acting on P4, and t*4 inverts P4, Thus (£*x)
centralizes an element 71 of P4 not centralized by x4. In particular, (£*x)4
fixes distinct points y, 8 € 4 — {a, 8}, where we may assume »** == §. Then
t*xe G ,W = G, C C(W) and x € G,zn C C(W) imply that t* ¢ C(W).
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If ¥ is another involution fixing 4 and only « on 4, then t*4 = y4, so
ye<{W, t*>. Since t*e C(W), there are only two possibilities for y. By
Lemma 4.3 (iv), ¢ —d = 2. Since d = 0, ¢ = 2.

Levma A3, N(P¥) = C(P)(C(£) N N(P¥)).

Proof. By definition t € C(P*). Let S be a Sylow 2-subgroup of P*C(P*)
containing z. As  is odd, S fixes a point y. Since £ € S, y € 4. Then S C C(P)
fixes at least 2 points of 4, and hence is cyclic. Since P*C(P*) <1 N(P*),
the Frattini argument implies that

N(P*) == PAC(PX)(C(t) 0 N(P*)) = C(P*)(C(E) 0 N(P¥)).

Lemma A4, ¢ £ 2.

Proof. Let ¢ =2, so0thatt* centralizes O(//). By Lemma A.1,n = k(2k- 1)
and % is the highest power of p dividing #. It follows that P* is a Sylow
p-subgroup of G.

If N(P*)C C@), then [G:C@)] = |G: NPH/|C@E): N(P¥)| =1
(mod p). However, |G : C(t)| == n(n — 1)/k(k — 1) = 2k + D2k — 1), a
contradiction.

Thus, N(P*) € C(t). By Lemma A.3, C(P*)  C(¢), so that C(P){ C(2).
Also, as in Lemma A.3, C(P) has a cyclic Sylow 2-subgroup S containing ¢,
so that PC(P) = O(PC(P))S.

Let P, be a Sylow p-subgroup of O(PC(P)). As P* C N(P), we may assume
that Py C P*, However, Cp«(P) C P. For otherwise, P* D P, P¥ — P has an
clement g fixing a point of 4 centralizing P, and then g € P* N W C P, Thus
P, = P is a Sylow p-subgroup of O(PC(P)).

It follows that O(PC(P)) = P X U, where (| U |, 2p) =1.Set Uy=U N C(z).
As C(P)L C(t), U, CU. Also, U,C W. Since PC C(W), it follows that
OW)=(PNnW)x U,. The Klein group {t*, 2> acts on U, so that
U = Cu(t) Cp(t*) Cptt*). Moreover, U, CO(W)C C(<t, %), so that for
some involution #; = ¢ of {¢, t*> we have U, = Cy(£,) D U, .

Let g be a prime dividing | U, : U, | and let Q be a Sylow g-subgroup of
U, . Then Q acts on the set 4, of fixed points of ¢, . As ¢ % p, Q fixes some
point & € 4, . If & is the only fixed point of Q, then P C C(U) C C(U,) implies
that P fixes 8. Since p | n, P must fixed at least 2 points, and hence P is cyclic.
However, P4 is elementary abelian, so that & = p and W contains a Sylow
p-subgroup of G,5. Thus, | P ]| W |, whereas P D P n W. This contradic-
tion shows that O fixcs at least 2 points, so that O is cyclic.

As ¢t acts on Cy(t,) = U, , ¢ normalizes a conjugate of O, which we may
assume to be Q. Then ¢ inverts Q/Q N U, , and since Q is cyclic, ¢ inverts Q.
The group {t,0)> acts on 4, . Let ¢, = t9, g € G, and let L¢] W7 be the regular
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normal subgroup of C(¢2)4°. Then tL? is in Z(C(9)/L?), so that Q = [t, Q] CL¢.
As (1Q1,p) =1, QC W9 However, since ¢ :=2, t centralizes Q(9),
a contradiction.

Let M be a minimal normal subgroup of G.

Levma A5, M is a simple group whose Sylow 2-subgroups are not dikedral.

Proof. Missimple and C(M) = 1 by results of Burnside [8, pp. 200-202].
If M has a dihedral Sylow 2-subgroup, then M =~ 4, or PSL(2, q) for some
odd g (Gorenstein and Walter [12]). Then G C Aut(M). As G,; is cyclic, this
is impossible by a result of Liineburg [19, p. 422].

Lemva A.6.  Let R be the Sylow 2-subgroup of G,z and S a Sylow 2-subgroup
of C(t), containing R - {t*).
(1) RCW.
iy Sy = SN Misa Sylow 2-subgroup of M.
(i) Sy is eyclic.
(iv) 1S > 4.

(v) S, is nonabelian.
Proof.

(i) Lemmas A.2 and A4.
(i) n—1=(k— 1)ck-4 1) by Lemma A.l, and ¢ is even by
Lemma 4.3 (jii). It follows that S is a Sylow 2-subgroup of G.
(iif) Otherwise, S$¢ is a generalized quaternion group by (i). As
N(W)|C(W) is abelian, t*4 e C(W)4, so that t* € C(W). Precisely as in the
proof of Lemma A.2, ¢ = 2, a contradiction.

(iv) By Lemma A.l, M contains all involutions of G. Moreover,
[Ca(t), and | W N M | are independent of the involution 2.

Suppose that | Sp4| << 4. Then S, = {#*> Ry, where R, == RN M.
If S, is abelian then N(S;) controls fusion in S, , so that .S; is a Klcin group,
contradicting Lemma A.S. If S, is modular (Lemina 3.1), then t* centralizes
the subgroup R, of index 2 in Ry. Then R, acts faithfully on 4%, so that
| R, | = 2 and S, is dihedral of order 8, again contradicting Lemma A.5.

Thus, S; is quasi-dihedral. By a theorem of Griin [14, p. 214],

Sy = Se N MY = (S, N Ny(Sp)®, Sy N SO | g e M. (1)

Nos(So) = SoCr(Sy) implies that S, N NpSp)® C SP. If S, N S has
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order 2, it lies in the dihedral group {t*> S{V. If | S, N SP?| = 4, then
te S, N SM, so that ¢ == 1. However, S’ C R, C W, so that S{M7 = S{V.
Thus, S, N M® C (*y S§¥, a contradiction.

(v) Otherwise, as Sy? and S, N W are cyclic, we have Sy = 5] X S,
with .S, , S, cyclic. By Lemma A.1 and the fact that V,(S,) controls fusion
in S, [14, p-203], | Sy | =: | S;|. Now a resuit of Brauer [5, p. 317] shows
that S, is a Klein group, contradicting (iv).

We can now complete case A. Once again we use (1).

By Lemma A.6, 1 # S{P C R, so that N,,(S,) C Cy(t). Also, by Burnside’s
transfer theorem, Cy ()2 = 0(Cy(£)?) Sy2. Thus, S, N Ny (S)P C R, .

LetL = S, N SM? # 1, where ge M. Then L C S{V? implies that 2 € L.
By (1), we may assume that for some g, R,L == S, since Sy/R, is cyclic.

19 -/ t, as otherwise L C S{V9 == W SPPCRy. Thus, RyNL := 1. If
[Ry| = 27and | Sy | = 27%5, then |L | = 2% Since s > 1 (Lemma A.6 (iv)),
either t* & Cp(R,) or t* is a square in Ny (Ry)/Cr(R,). In cither case, z*
centralizes the subgroup R, of index 2 in R, . Then R, acts faithfully on 4%,
so that 271 = | R, | < [ Sp? | = 25

Thus, 'L} =2¢> 21 However, LC S CRy? It follows that

[L! == 271 As L is cyclic and Aut(R,) is abelian of exponent 272, ¢ must
centralize Ry . However, R, then acts faithfully on 49, and we have 2" =
IRy | << | 842 | = 2° = 271, a final contradiction.

Case B. As n is odd and C(¢)4 has no regular normal subgroup, by
Lemma 4.1 C(t¥ is PSL(2,2/), Sx(2), PSU(3, 2) or PGU(3, 2/), where
f = 2and £ — 1 is some power of 2.

LemMa Bl | W | =2 or 4, and | W| = 2 if C(t)* is PSL(2, 2).

Proof. As N(W) = C(@tY¥, INW):C(W)| =1 or 3 (Lemma 2.1 (i)).
In particular, if t* £ ¢ is a conjugate of ¢ in C(f), (I.emma 4.3 (iv)), then
W C C(t%). Let 4* be the set of fixed points of £*, so that 4 N 4* - {a}.

The Sylow 2-subgroup of W acts semiregularly on £2 — 4, and, in
particular, on 4* — «. By Lemma 2.1 (iii), the Sylow 2-subgroup of W has
order 2 or 4, 2 if C(¢)4 is PSL(2, 2/).

Suppose that U is a subgroup of O(W) of prime order. Then U fixes a point
of 4* — «. Let I be the set of fixed points of U. Then I"D 4 and t acts on [,
so that | I"| is odd. By Lemma 4.1 (i), N(U)" is 2-transitive. As C(¢) nor-
malizes U, the minimality of G implies that N(U)" has a regular normal
subgroup E. Then E N C(¢)4 is a regular normal subgroup of C(¢)4, a
contradiction. ‘

Levva B2, C(t)? is neither PSU(3, 27) nor PGU(3, 2/).
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Proof. Otherwise let S; be a Sylow 2-subgroup of C(z),. Let S/W =
£,(So/W) = Z(S,jW), so that S contains each involution in C(2),
(Lemma 2.1). S'is centralized by a group 1/ C Gz of order 27 -+ 1 or (2/4-1)/3,
so that II C C(t*), and H fixes points of 4% — o (Lemma 2.1 (vi)). The set I’
of fixed points of If is not contained in 4 and ¢ fixes 2 4 1 points. Then
| I'| is odd. By Lemma 4.1 (i) and the minimality of G, N(H)" has a regular
normal subgroup. However, N(H) N C(z) acts on both I" and 4 N I', and
(N(H) N C(£))2°T does not have a regular normal subgroup, a contradiction.

LevmMa B.3.  Let S, be a Sylow 2-subgroup of C(t), . Then £,(S;) = Rx ()
is elementary abelian of order 2741, where C(t), acts transitively on R¥, Either Rt
is the set of all involutions in S, conjugate to t, or 2/ == 4 and all involutions in
S, are conjugate to t.

Proof. Set S|W = y(So/W) = Z(Sp/W). Then all involutions in C(z),
are in S. There is a group A C C(¢), of order 2/ — 1 transitive on (S/W)*,
If 27 > 8, then, by Lemma 3.3, S is abelian and 2,(S;) = R X <{#> has
order 27! with R A-invariant. If 2/ = 4, then C(t)?is PSL(2,4)and | W | =2
(Lemma B.1). Since t*€ S, — W and 4 is irreducible on S/W, we again
have S, = R X {t) elementary abelian.

Now £2,(S,) C C(2), © C(¢*), , so that £,(S,) contains all the involutions
in both C(¢?), and C(t*),. Thus, N = N(£,(S,)) 2 {C(t)., C(¢%),». Also,
Cy(?) has orbits on £2,(Sg) — <&> of length 2/ — 1 or 2(2/ — 1). Thus,
either £,(S,) consists entirely of conjugates of ¢, or 2/ conjugates of £ lie in
£2,(Sy)- In the latter case, the conjugates of ¢ in £,(S,) consist of R* U {t}
or Rt

Suppose that d = 0 and 27 > 8. Then all involutions in £,(S,) are con-
jugate to ¢. Moreover, S, is a Sylow 2-subgroup of G and £,(S,) is weakly
closed in S,, so that N is transitive on £2,(Sg)*. Also, £,(S,) fixes just «,
so that N < G, and Cy(t) << C(2), . Consider N/Cy(£2,(S,)) as a transitive
permutation group on £2,(.Sy)* and apply Burnside’s p-complement theorem
to first the odd prime divisors of |Cy(t)/Cy($2,(Sy))| and then to p = 2.
It follows that NJCy(§2,(S,)) contains a regular normal subgroup and acts
as a primitive solvable group on £2,(S,)#. This contradicts Lemma 3.4.

We may then assume that d £ 0 and £2,(S;) has 27 conjugates of ¢, and
16 M 2(S,) = R* U {t} or Rt. Suppose that 19 € R, g € G. As £,(.S) contains
all involutions in C(#9),, we have £2,(S,)? == £2,(S,). Then R? is contained
in R U {}, and it follows that RY = R. Then g € N(R), whereas t € R and
t ¢ R, a contradiction. Thus, Rt is the set of all conjugates of ¢ in £2,(.S,).

Levmma B4, C(t)4 is not PSL(2, 2/).
Proof. Suppose that C(t)4 = PSL(2, 2/) with 2/ > 8. By Lemma 4.3,
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¢-—d =2 —1.Then n — 1 -= 2% by Lemma 4.3 (i). Let O be a Sylow
2-subgroup of G, containing .

Let P be a p-subgroup of G, for an odd prime p. We claim that C; {P) =
G, = Ng (P). Wefirst note that G, = G, * O, so that N (P) -= B(IVQ(P))
Thus, N O(P) is transitive on the fixed points of P other than o, so that either P
fixes just « and B8 or P fixes an odd number of points. Also, ¢ fixes just «
and § in its action on the fixed points of P. Consequently, P must fix just
the points « and $3, and since Nyo(P)C G, , No(£) & G5 . This proves the
claim.

If P is chosen to be a Sylow p-subgroup of G4, then, since — 1 =.. 2% P
is a Sylow p-subgroup of G, and by the above, G, has a normal p-complement.
It follows that G, has a normal Sylow 2-subgroup, so that @ <3 G, . Moreover,
if x € (G,g)" has odd order, then Cy(x) = {t).

In the notation of Lemma B.3, R* consists of all 2/ — 1 involutions in
C(t), fixing only 1 point of £2. By Lemma 4.3 (vi) and (vii), R contains all
d = ¢-—d =2/ — | involutions of G fixing only «. Thus, R <1 G, . Also,
RCQ «G,.

Let R;/R be a minimal normal subgroup of G;R with R; Q. Then
RJ/RC /(O’R) so that either Ry .= R(¢), or t ¢ R, , G5 is irreducible on

R/R and | R|JR | == 27,

Suppose that R, = R(t>. Then Q permutes the 2/ involutions Rt. Since
|Q/Ry | = 2¥, we have 9 =1, with t;e Rt and geQ — R;, so that
C(t), 2 (R, , g>. However, t and ¢, are conjugate, so that R, is a Syvlow
2-subgroup of C(t) (Lemma B.1), a contradiction. Thus, | R}/R | = 2/,

Let R,/R,; be 2 minimal normal subgroup of G,/R, with R, C Q. As before,
either R, == R,{#> or t¢ R, and | Ry/R, | == 2/, Suppose that R, = R,{(&).
Then | O/R, | = 27 and (G,) is transitive on (Q/R,)*. Since we are assuming
that 2/ == 8, we can apply Lemma 3.3 to O/R; in order to obtain a group
R, <1 Q normalized by 0(G,;) and such that Q = Ry(t)> and t ¢ R, .

We may thus assume that Q = Ry(t)> with R, <1 G, and 1¢ R,. Then
R,Gs -: G,and R, N G5 = 1. Since R, <1 G, t is conjugate to no element
of R, . By considering the image of ¢t under the transfer map G — Q/R,,
we find that G has a normal subgroup G such that G = G - (>, t ¢ G, and
R,CG.

Since R, is transitive on 2 — «, G is 2-transitive on 2. Also, G, = 0(G,).
We have scen that all elements of 0(G,g)* fix just « and 8. Moreover, the
involutions in G, are precisely the 2/ — | involutions in R, By the minimality
of G, G is PSL(2, 2%) or Sz(2%). In either casc, the Sylow 2-subgroup of G
has order <<2%, a contradiction. Consequently, we must have 2/ = 4.

Then C(¢)4 = PSL(2,4), k = 5, and ¢ — d == 3 or 6. By Lemma 4.3 (i),
n = 5+ 13 or 5% Suppose first that ¢ — d = 6. In the notation of Lemma B.3,
Sy == £21(S,) is elementary abelian of order 8 and all involutions are con-
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jugate. Then N(S,) is transitive on Sy?. It follows that 7 | | G | which is not
the case,

Thus,c —d =3andn = 5-13. Here, | G| = | W || C(t)5| =2 - 3,
|G| ==(5-13)2%(2 - 3). The centralizer of a Sylow 13-subgroup P has
order 13 or 5 - 13, and it is easy to check that | G : N(P)! = 1 (mod 13),
contradicting Sylow’s Theorem.

Lemma B.5.  C(t)4 is not S2(2).

Proof. Suppose that C(t) is Sz(2/), so that 2/ > 8 and & == 2% - 1.
By Lemma B.3, C(t), — {t} has precisely 2 — 1 conjugates of ¢, so that
c—d=2—1 and n—1 = 2¥2% — 27 - 1). Since 0(G,z) has order
2/ — 1, it is a Hall subgroup of G, .

Let x € 0(G,5)*, so that x fixes just 2 points of 4. If I' is the set of fixed
points of x, then £ fixes just 2 points of I so that if x does not fix just @ and B,
then by Lemma 4.1 (i), N((x))" = PSL(2, q) or PGL(2, q) with ¢ odd.
As (x> is cyclic, N(Kx))/C({x>) is abelian, and since |I'| > 2 and
|I'n 4} = 2, no involution fixes each point of I'. It follows that there is
a Klein group <#, #) centralizing (x>. Then #? centralizes x4, which is
impossible. Thus, x fixes just the points « and B.

Now, as in the proof of Lemma B.4, G, has a normal subgroup O with
O - 0(G,) =G, and Q NO(Gyg) = 1. Moreover, if xe0(G,z)*, then
Colx) = W.

Let P be a Sylow p-subgroup for p a prime dividing 2% — 2/ + 1. As
(10(Gsp)l, 1 Q1) = 1, we may assume that 0(G,5) C N¢ (P), so that 0(G,p) is
fixed-point-free on P. If P, is a minimal normal subgroup of P - 0(G,,) with
PyC P, then (27 — 1) |(| Pyl — 1), so that | Py| = 2/, If PyCP, then
| P/Py! = 2f and | P| = 2%/ > 2% — 27 4 1, which is impossible. Then
P, = P. Similarly, | P| = 2% — 2/ + 1. For otherwise, let L be a Sylow
I-subgroup for a prime [ # p, dividing 2 — 2/ 4 1. Then2¥ — 2/ 4+ 1 >
|P|-|L| =2 -2, a contradiction.

Now f is odd, so that 3[(2¥ — 2/ - 1) and P is a 3-group of order
227 — 27 L 1, Let 3% == 2% — 27 4 1. Then 3% = 1 (mod 4) implies a is
even, Write @ = 2b. Then (3 -}- 1)(3* — 1) = 2/(2 — 1). Since (3°* = 1,
3% — 1) == 2, we have 2/-1| (3% — ¢),e = 4-1. Also, 3% — 1 < 2% — |, s0
that 3° << 2/, Then 3% — e << 27, as otherwise 3> -1 == 2f and 3* — | =
27 — 1. Thus, 21| (3> —¢) and (3 — €) << 2/, so that 2/1 =30 — e
Now 271  2¢ = 3% -+ ¢ = 2(27 — 1). This contradiction completes case B.

Case C. Here n is even and C(t)? has a regular normal elementary
abelian 2-subgroup L4, where L2 W. Since N(W)/C(W) is abelian,
LC CW). Then L =8 x O(W) with S a Sylow 2-subgroup of L and
Sn WC Z(S).
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Since & is even, C(2)? has cyclic Sylow 2-subgroups. Then C(¢)4 is solvable
(Lemma 3.2). By a result of Huppert [16], C(¢)4 can be regarded as a sub-
group of the group of [-dimensional affine semilinear mappings on GF(k).
In such groups, all regular involutions are in the regular normal subgroup,
namely, S4.

By Lemma 4.3 (v), S contains each of the (¢ — d)(k — 1) involutions in
C(t) — {t} conjugate in G to .

Lemma Cl. ¢:=2,d:=0, and n == k(2k — 1).

Proof. By Burnside’s transfer theorem [14, p. 203], C(#), has a normal
2-complement 4. Clearly, 4 is transitive on (SIS N W) . Ast'e S - SN W
and S N W C Z(S), each coset of S N W in S contains precisely 2 involutions.
Thus, S — {t} contains just 2(k — 1) involutions. It follows that ¢ — d .= 2.
By Lemma 4.3 (iii) and (1), we have d = 0 and n = &Q2(k — 1) - 1).

Levva C2. k=4,

Proof. Suppose that & # 4. Since % is even and £ > 2, £ > 4. Now
SN W Z(S)and 4 is transitive on (S/Z(S))*. By Lemma 3.3, S is abelian,
Then R = £,(S) is clementary abclian of order 2%. All elements of R* arc
conjugate. Let 2e R, ge G. Then R7-1C ((t), whereas R contains all the
involutions in C(¢). It follows that g € N(R).

Thus, N(R) is transitive on R#. Also, N(R) N C(t) is transitive on (R/{t))*
and hence has orbits on R — (#> of length kK — 1 or 2(k - 1). Since
i N(R) : N(R) n C(2)] is odd, the Sylow 2-subgroups of H = N(R)/C(R) are
cyclic. By Lemma 3.2, H is solvable. Also, H is primitive on R*, and
(2% — 1)2 — 1) || H{. However, if 2& — 2/=1, then | | | 2k — I)(f+ 1)
by Lemma 3.4. Then (2/ — 1) { (f 4+ 1), contradicting the fact that f > 2.

We now complete case C. By Lemmas C.1 and C.2, n =4 - 7 = 28 and
C(t)* is Ay or S,. Since O(W)C C(t'), Lemma 4.4 implies that O(W) -= 1.
Also, 14" % 1,sothat | W | =2 or 4.

Since | C(1)%| <2, |Gy = 2,4, or 8. If | G,3 | = 2, then G is of Ree
type [23, 18]. If | G5 == 8, then G is PSU(3, 3) [27]. Thus, we must have
|Gpi==4, G| =28-27-4. Since d = 0, a Sylow 7-subgroup of G is
self-centralizing, and it is easy to check that !G:N(S)! =1 (mod 7),
contradicting Sylow’s theorem.

Case D. Now n is even and C(¢)¢ has no regular normal subgroup. Thus,
C(t)y?is PSL(2, q), PGL(2, g), for some odd prime power ¢ > 3, or PSU(3, ¢),
PGU(3, g), with g an odd prime power, or a group of Ree type. By Lemma 4.3
(v), the involution (') is regular. By Lemma 2.2 (ii) and (R6) of Section 2, the
latter possibilities for C(¢)4 cannot occur, so C(¢)4 is PSL(2, g) or PGL(2, ¢), q

481/21/1-3
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an odd power, ¢ > 3. By Lemma 4.4 (i),  C(t)? : C(W)?| < 2. Since
G,; C C(W), it follows that C(W) = C(¢).
Clearly, & == ¢ 5~ 1.

Lemva D.l. ¢ == q¢— 1, and either
(1) n=g%4{1andd =0, or
(i) n=1+4 g(¢®+ 1)2andd —= (g — 1)/2.

Proof. By definition, ¢ is the number of involutions x = (af)... . Such
an involution x normalizes G4, so centralizes ¢ and fixes 4. Moreover, x4 is
regular.

In its usual permutation representation, PGL(2, ¢) has precisely g(g — 1)/2
regular involutions, all of which are conjugate under PSL(2, g). Thus, there
are (¢ — 1){2 involutions in C(¢)4 which interchange o« and § and are conjugate
to '4. Morcover, with x as in the previous paragraph, ¢4 and x4 arc conjugate.
If we have x4 .= ¢4, then xt' € WC C(t') implies that xet'(¢). Thus,
c=q-1.

By Lemma 4.3 (iv) and (ii)y ¢ —d =¢—lor(g—1)2,and n — ] ==
(k= 1)((c — d)k + 1) — ¢* or glg® + /2.

Lemya 2.
(1) G,gis semiregular on 2 — 4.
(i) |Wli(g+1)and | Gygll(g®— 1)
(i) If 1 5= UC W, then N(U) = C(U) = C(2).
vy If1 = UCGand UNW =: 1, then N(U), = C(U),.

Proof. (i) By Lemmad4.4 (ii), W is semiregular on £ — 4. Suppose that
G,; is not semiregular on 2 -- 4 and U is G,,, for some y € 2 — 4, such
that G5, 7 |. Then UN W = 1, and so | U | is odd. Take x any element
interchanging « and B. Now | U4 | = | U | and x4 inverts U4, so x inverts U.

Now let I' be the fixed point sct of U. Then 4 N I" = {o, B}, as C(2)? is
a Zassenhaus group. Also, ¢ fixes just « and B, so that | I'| is even and
N(UY is PSL(2, ¢') or PGL(2, ¢"). Since Aut(U) is abelian, C(U)" contains
PSL(2, ¢"). Thus, some element intcrchanging o and 8 centralizes U, in
contradiction to the previous paragraph.

(i) We know that W C C(#'). Thus, Wactson 4". Since d N 4" = &,
W4 is semiregular by (i).

(iii) Since W is semiregular on £ — 4, the fixed point set of U is 4.
Thus N(U) C C@x) = C(W)C C(U).

(iv) By (i), U fixes only « and 8. Thus, N(U), fixes § and N(U),C
G, C C(U).
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Lemva D.3. G, has a normal subgroup Q of order n — 1 such that Q is
regular on Q2 — o, Also, (10, | G ) = 1.

Proof. By Lemmas D.1 and D.2 (1), G,; is a Hall subgroup of G, . If
P £ 1is a Sylow p-subgroup of G5, then, by Lemma D.2, N(P), = C(P),.
By repcated use of Burnside’s transfer theorem, we find that G, has a normal
subgroup Q such that G, == Q - G,y and O N G5 == 1. Then |Q ! =n — 1
and Q is regular on £ - o,

Lemva D.4. G is simple.

Proof. If G is not simple, let M be a proper normal subgroup of G.
‘Then M is transitive and G =M - G, == M - Q - G,;. Thus, MQ << G,
and (MQ) G5 = G. Therefore, MQ is 2-transitive on £2.

Suppose first that MQ = G. Then |G : M | 1Ql,and ( G, ., , Q1) = 1,
by Lemma D.3, so G,z C M. Thus, teM and [t,0] .0 N M, so that
Q = (MNQ)Co(t). Thus, G — M - Cyt). Since t'e M, C, ()4 1.
Since C(2)? is PSL(2, q) or PGL(2,4q), Cy(t)? <1 C(t)?, and G ;T Cyy(2),
we have C(t) C C,(2). Thus, G -- M, a contradiction.

Consequently, L == MQ <3 G, with L 2-transitive on 2. As L C G, either L
has a regular normal subgroup, or L is PSL(2, ¢'), PGL(2, ¢"), PSU(3, ¢'),
PGU(3, q'), or a group of Ree type. L has no regular normal subgroup, as G
does not. If I is PSL(2, ¢') or PGL(2, ¢), then G C PFL(2, q). Since G,y is
cyclic, G == PSL(2, ¢') or PGL(2, ¢'), which is not the case. I L is PSU(3, ¢')
or PGU(3,¢),thenq¢ -1 =14 =g+ land| G,y ==L, =(g?-1)/3.
By Lemma D.2 (i), the results of Suzuki [25] and O’Nan [20] imply that &
is PSU(3, ¢) or PGU(3, ¢), which is again not the case.

Finally, suppose that L is of Ree type. By Section 2, Ci{t) - H x {1},
where H == PSL(2, ¢"). Then g —: ¢', n = ¢ - 1 and d == 0 (L.emma D.1).
Consequently, all involutions of G arc in L. Let IV be a Sylow 2-subgroup of
C,(t) such that ¢’ € V and let {(x) be the Sylow 2-subgroup of G,; . We claim
that x == 2. If x € W, then L{x) has Sylow 2-subgroups of type (2,2, ]| x )
and all involutions of L{x> are conjugate in G. Thus |x' =2 and x == L
Suppose now that x¢ W, so that Cy(t)? — C(#)(x>4 and x2e W. As
above x? := 2. Now Co(V) = V x O(W) and (Ng(V) N C(2))? is isomorphic
to Sy . As all involutions of V" are conjugate in N (V'), 7| [N (V)|. It follows
that ! No(V)/Ce(V)i =2 -3 -7 and N (V)/C,(V) contains a subgroup
isomorphic to Sy . This is impossible, hence x == ¢ as claimed. Thus V' is
a Sylow 2-subgroup of G.

Now C(V) == ¥V x O(W). Since V is also a Sylow 2-subgroup of C(t")
containing (¥, ), C(V) =: V X O(W’). Therefore, O(W) == O(W’). Thus,
O(W) fixes 4 U 4’ pointwise, and by Lemma 1.2, (W) = 1. It follows that
W =- (t3, so that L = G, contrary to hypothesis.
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Levmma D.5. n = ¢ 4 1 and all involutions of G are conjugate.

Proof. 1fn =+ ¢*+ 1,by LemmaD.l we have |Q | =n~1 = q(¢® + 1)/2.
The proof will be divided into three parts,

(i) Wefirstshow thatQ = Q,L, whereQy = Cy(t) and L are elementary
abelian groups of order ¢ and (¢ - 1)/2, respectivcly. Moreover, G,
normalizes both Q, and L, and G, is fixed-point-free and irreducible on L.

By Lemma D.3, (Q|, | G, 1) = 1. Taking Q, == Co(z), we see that O,
is an clementary abelian group of order ¢ such that G,; acts irreducibly on
O, - Moreover, if / is some prime divisor of (¢ - 1)/2, then G,z normalizes
a Sylow l-subgroup L of Q.

I1dentifying O with 2 — «, where 1 €Q corresponds to S € £ — a (as we
may by Lemma D.3), we see, using Lemma D.2 (i), that all fixed points of
elements of G% lie in Oy, which corresponds to 4. Thus, G, is fixed-
point-frec on L.

Since G, is fixed-point free on L, and | G| =2 | G%| =g — 1, we
have | L | > q. However, | Q : Q, | = (¢? - 1)/2, so that [ is the only prime
divisor of (g2 + 1)/2,L is elementary abelian of order (¢* + 1)/2, and G4
acts irreducibly on L.

(i) We next show that Q == Q, X L is abelian.

Now No(Qp) = Q,L’, with L’ = N (Q,). Since G,; normalizes L and
0O, , Gy normalizes L'. Since G,z acts irreducibly on L,L' =1 or L. If
L= 1,[Q : No(Q0)] = [ : 0] = (¢ + 1)/2. But (¢ + 1)/2 # I(mod p),
contradicting Sylow’s theorem. Therefore, O, <t Q.

Now LG,g is a Frobenius group with Frobenius kerncl L and Frobenius
complement G,; by (i). Since LG,; normalizes Q; and W C G, centralizes
0O, , L centralizes Q, . Thus, (it) follows.

(iii) We now derive a contradiction using an argument of Suzuki
[27, Lemma 12].

There are g(3(¢2 + 1) — 1) = g(¢* — 1)/2 linear characters { of Q) not
having L in their kernels. Each induced character {% is irreducible since G.g
is fixed-point free on L. In this manner we obtain s = g(g® — 1)/2| G|
irreducible characters ¢; , g ,..., ¢, of G, each of degree | G4 |, and these
exhaust the irreducible characters of G, not having L in their kernels,

Let x;, X2 »---» Xs D€ the exceptional characters of G corresponding to
¢4 5oy s [11, pp. 146, 147]. Thesc are all of the irreducible characters of G

* whose restrictions to G, do not contain all the ¢; with the same multiplicity.

There is a linear character A # 1 of G, , having Q in its kernel, such that
At and A agree on G,5. (For example, the lincar character of G, whose
kernel is the product of Q and the subgroup of index 2 in G,5.) Then
X6 := ¢ 1 { with o and { distinct non-principal irreducible characters of G.
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If 16 =14 6, then 0 # o, {, as otherwise either o or { would be linear,
contradicting Lemma D 4.

For each 7 and j, we have (I — A)%, x; — %) = =((1 — )%, (¢; — 6,)¢) =
+{1 —XA¢d; —¢,) =0, since I - A =0 on Q. Suppose that (1 — A)S
contains an exceptional character y; . It follows then that ((1 — A)%, x;) =
((1 — A)C, x;) # O for each j, so that (1 — A)? contains each of the s excep-
tional characters. Then 3 2 s =g(¢? — 1)/2| G,;| whereas ¢ = 5§ and
[ Gys | | (g% - 1) (Lemma D.2 (ii)), a contradiction.

In particular, neither ¢ nor { is an exceptional character. Suppose that the
restrictions of both ¢ and { to G, contain a character ¢, . Then these restric-
tions contain each of the s characters ¢;, and we have 1 + ¢g(¢® + 1)i2 =
o(1) -+ {(1) = s¢y(1) + sy(1) = 25| G,5| = g(¢®> — 1), a contradiction.

We may thus assume that the restriction of ¢ to G, contains no ¢, , and
hence has L in its kernel. It follows that the kernel of ¢ contains ., con-
tradicting the simplicity of G (Lemma D.4).

Levva D.6.  C(¢) has a unique normal subgroup Cy(t), having the properties:
WG Cyt), Co(t)? = PSL(2, q), and Cy(t)V = PSL(2, q) or SL(2, g).

Proof. As C(t)* = PSL(2,q) or PGL(2,q), therc is a unique Cy(i)
satisfying the first two conditions. Since W C Z(C(t)), a result of Schur {24]
implies that either Co(£)V == PSL(2, g)or SL(2, g),0orq : = 9and C(1)V N W
is cyclic of order dividing 6. Suppose then g == 9 and that 3 1| Co(t)V N W'
and let L. be a Sylow 3-subgroup of Cy(#)). Then L is a nonabelian group of
order 27 and exponent 3. On the other hand, Cy(t) is an elementary abelian
group of order 9, contained in Co{t)®, with Cp(2) N W == 1, contradicting
the structure of L.

Lemya D7, C(2)? is not PSL(2, q).

Proof. If C(t)? = PSL(2, g), then C(t) == Cy(t) and C()'¥ = PSL(2, q)
or SL(2, ¢) be Lemma D.6.

(i) Supposc that C(t)® = PSL(2, q). Since C(¢)* = PSL(2,q) and
C(t)* contains the regular involution t'4, ¢ = 3 (mod 4). Also, ¢ + 1 > 4.
Since C(t) = C(t)Y x W, Ct)n C{E) = (CEHM N C(t"Y)) X W, where
C(5) N C(t') is dihedral of order ¢ + 1. Thus, Z(C(t) N C(¢)) = {&'> x W.
Interchanging ¢t and ¢', Z(C(t) N C(¥")) = {t) X W'.Since W W’ == 1,
W’ == {t'). By Section 2, G is of Ree type, in contradiction to the minimality
of G.

(i) Suppose that C(2)®V == SI(2, q). Let {x)> be the Sylow 2-subgroup
of W, (x> a Sylow 2-subgroup of W". Since ¢’ centralizes W, W C C(#') =
C(W’), by Lemma 1.2 (iii). Thus, {x, x> is abelian of exponent | x |,
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Since C(¢')4" is PSL(2, g), ¥’ is inverted by an involution ¥4’ of C(¢')*".
Since all involutions of C(t')?" are conjugate, we may suppose ¥ is an involu-
tion. Then x¥ = x~lw, with w € {x"). Therefore |w| < |x].

We note first that x # 2. For if x = ¢, C(t) = C(t)V X O(W), and the
Sylow 2-subgroup of C(t) is generalized quaternion, contradicting the fact
that <z, 1>, a Klein group, is contained in C(¢).

Suppose next that {w | < {x|. Then t = ¢, so ye C(t) = C(x). Then
¥ =wcW and x*€ W, so 22 = 1, and x == ¢, in contradiction to the
previous paragraph.

Thus, |w| = | x|, and (xy)? = w, where w generates <{x>. But any
Sylow 2-subgroup of C(¢') is the central product of {w) and a generalized
quaternion group. Therefore, % cannot be a square in C('), a contradiction.

Levma D.8.  If g= 1(mod 4), then G has quasi-dikedral Sylow 2-sub-groups.

Proof. By Lemma D.5, C() contains a Sylow 2-subgroup S of G. We
may assume that S = {¢'> S,5. Here, S¢ is dihedral of order > 8, by
Lemma D.7. Thus, if S is not quasi-dihedral, then S must be dihedral.
However, if S is dihedral, then C(¢) has a normal 2-complement [12, p. 260],
which is not the case.

Levma D.9. If g == 3 (mod 4), then a Sylow 2-subgroup of G is a wreathed
group Zy: \_ 2, , where 27 is the largest power of 2 dividing q 4 1.

Proof. Let S be a Sylow 2-subgroup of C(t) such that S contains the
Sylow 2-subgroup <{x'> of W' If Cyt) is as in Lemma D.6, then
|C(2) : Co(?)| = 2, and Cy(t)¥ = PSL(2, q) or SL(2, q).

(1) Suppose that Cy(t)® = PSL(2, q), so that Cy(t) = Co(t)V x W.
Then we may assume that S = DR, where D is a dihcdral Sylow 2-sub-
group of Cy(t)V, R is a cyclic Sylow 2-subgroup of G4, and ' € Z(S) N D.

Then, since ¢’ € Z(S), S acts on 4”. Now the kernel of restriction map is W7,
so SNW < 8. Since N(SN W)= C(SN W) by Lemma D.2 (iii),
S W' CZ(S). Also, Z(S)C<R, t'y, so SNIW C(RN W, t"). Since R
is a Sylow 2-subgroup of G,g,{e, 8} Cd, and 4’' N4 = g, RN W' = L.
Therefore, S N W' = {¢'>. Thus, the Sylow 2-subgroup of W is of order 2.

Since the Sylow 2-subgroup of the two-point stabilizer of PGL(2, g),
g =3 (mod 4), is cyclic of order 2, |R| = 4. Now, D4 < §4 and
R4 N D4 = 1. On the other hand, R¥ is a cyclic subgroup of order 4 of
the dihedral group S4'. Therefore, R4 <1 S4'. Thus, R¥ N D4 2 Z(S%),
a contradiction.

(i) Suppose that Cy(#)¥ = SL(2, q). Define »,y, and w as in the
proof of Lemma D.7, part (ii). We may assumc that y < Cy(t'). Then,
&Y = x 'w, with y an involution, we (x>, and | | < [ % |.
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If x = ¢, then Cyft) == Cy(2)? X O(w) contains only one involution, ¢.
On the other hand, since ¢ = 3 (mod 4), t' € Cy(?), a contradiction. As
before, we have | x| == |w .

Suppose that | x | << 27, Then, x%" e Cy(t')’, so that both x and y are in
Co(t). As (xy)* = w and all involutions in Cy(t')?" are conjugatc to 14, we
have xyu = w, € W’ for some element ue C(t') = C(W’') with «* = 1.
Then @ = (xy)? = (uw,)? = w,% whereas (w) is the Sylow 2-subgroup of
W', a contradiction.

Thus, | x| == 27, The group {¥,w,y) is a Sylow 2-subgroup of C(¢),
and thercfore, of G. Since x and w commute, & and ¥ commute. Moreover,
x> Ny = (x> N {x1w)> and the involution of (x~'w) is tt". Thus,
(x> N {x?> = |, and {x, w, y) is wreathed, as asserted.

At this stage, G is a simple group of order (1 +- ¢%) ¢*%(g — 1) | W |, where
[ W{i(g-+1) (Lemma D.2 (it)). If |W| =g+ 1or (¢-+ )/(g+1,3),
then the results of Suzuki [27] or O’Nan [20] will complete the proof. It
follows that we must build up the order of W. In doing this, we modify an
argument of Brauer [1, Chap. 6]. Brauer carried out the process of building
up | W in the case where the Sylow 2-subgroups of G are quasi-dihedral.
In the following argument, we will treat the cases of quasi-dihedral and
wreathed Sylow 2-subgroups simultaneously.

Lemma D.10. Let p be an odd prime divisor of q -\- 1. Then there is
a Sylow p-subgroup P of C(t) such that P C C(t) N\ C(t'). There are involutions
yyin C(t) and v, in C(t') such that (t')¥+ = tt', t¥2 = tt', y, and y, normalize P,
and { ¥y, ys» induces on {t, "> a group of automorphisms isomorphic to Sy .
Moreover, y,4 inverts P4 and y¢ inverts P4'. Finally, if p > 3, P is a Sylow
p-subgroup of G. '

Proof. Since C(t}4 = PGL(2, q), there is a dihedral group L4 of order
2q+ 1)in C(t)" Since ¢’ fixes no points of 4, we may choose this dihedral
group so that ¢ is central in it. Let P be a Sylow p- subgroup of C(t) such
that P? is the Sylow p-subgroup of L4. As |G| == (¢* + 1) ¢®(¢ — 1) | W |,
if p > 3, then P is a Sylow p-subgroup of G. Since W C Z(C(?)), P C C(¢').

Assume that ¢ == 3 (mod 4). Then all involutions in PSL(2, ¢) are regular.
It follows that there is an involution y in C(t)“ which fixes no point of 4,
with the property that y centralizes ' and 4 inverts P4,

Now suppose that ¢ == 1 (mod 4). Then in the d1hcdral group L4, there is
an involution y4 inverting P4 and centralizing #“. As " fixes no point of 4,
either y4 or (y¢')4 is an involution fixing no point of 4.

Thus there always is an involution ¥4 e C(2)? such that 4 centralizes
t ,y-4 fixes no point of 4, and y4 inverts P4 \Tovs 4 is regular and all
regular involutions of C(¢)4 are conjugate to ¢, Therefore, there is an
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involution y; € C(¢) with y,4 := y4. Similarly, in C(z') there is an involution
¥, € C(¢') such that y2" centralizes 4" and inverts P4,

Since ' is centralized by 4, (t'Yr = t' or tt’. In the first case, (¥, ¢ ¢')
is an elementary abelian group of order 8 (¥ ¢ (¢, t'>, as y ¢ C(P)). However,
this contradicts Lemmas D.8 and D.9. Thus, (#')¥* = #¢, and similarly,
t¥z = tt'. This completes the proof.

Levima D.11.

(1) If the Sylow 2-subgroups of G are wreathed, then the characters in
By(2, G) have degrees 1, ¢*, g(q - 1), ¢*~ ¢ + 1, ¢(¢* - ¢ + 1), (g - 1)(g* - ¢-+1),
and (g -+ 1)(¢* — ¢+ 1).

(i) 1If the Sylow 2-subgroups of G are quasi-dihedral, then the characters
in B2, G) have degrees 1, ¢3 qlg— 1), ¢*—q+-1, ¢(¢* — g+ 1), and
@+ g — g+ D).

In either case, the permutation character 8 is the only character in By(2, G)
of degree g3

Proof. By Lemma 3.6, the permutation character 8 is in By(2, G). In
[6], Brauer found the degrees of the characters in By(2, G) for a group G
having wreathed Sylow 2-subgroups and no normal subgroup of index 2. The
degreesare 1, ¢f, f(f + 1),/2 + f+ L f (f2 +F+1), (f + D>+ F+1),
and (f + 1) f %4 f+ 1), where f is an integer and € = <-1. Brauer also
states that there is only onc character of degree ¢f% Thus, to prove (i) it
suffices to show that f = —¢. From the fact that §(1) == ¢, for ¢ an odd
prime power, it follows that ¢* = ¢f® or ¢ = f2 4- f + 1. Brauer also states
that f(f + 1) | | C(#)l. Since (¢® — 1) 1 | C(#)i, we have ¢* = ¢f3,and ¢ = 4-f.
If q = f, then (¢ + g -+ 1) | | G|, which is not the case. Thus, ¢ = —f,
proving (1).

To prove (ii), we first recall that all involutions of G are conjugate and
g =1 (mod 4). Thus, {x,¢) is a Sylow 2-subgroup of G, with {x}> the
Sylow 2-subgroup of G,5. Then, x, ' € C(t) — C(t)V, and xt’ € C()V ==
SL(2, q). Since all elements of order 4 of SL(2, q) are conjugate, xt' is con-
jugate to the clement of order 4 in <{x>. We may now apply the results of
Brauer [7, Section 8]. Brauer has shown that By(2, G) consists of characters
%o = lgsX1sXas X3» Xa» and characters x?, such that the characters x?
have the same degree, x. Moreover, if we set, x; == xiV, there are signs,
8;, 85, 83, and an integer m == 1 (mod 4), such that

1+ 83y = 81 = —8ywy — 833, 1 4 8%, = 5%,
8,8,8; =1, Xy = mixy, %y = —m = —1 (mod 4),

#, =3, (mod 4), x,=0(mod2),
x1(t) = &ym, Xz(t) = —38;m, xs(t) = —3;.



2-TRANSITIVE GROUPS 41

First we show that # = y, . Since 1 4- §,x, = 8., and x, == §, (mod 4),
x is even, and 0 £ 9 for any j. Also, 6(t) == ¢ == 1 (mod 4) and 6(1) =
¢® = 1 (mod 4), so that £ y,, x5, 0r x4 . Thus, 8 == yx, . Since x,(t) == §,m,
q = &;m.

Now 1 = ¢% = x, == 8,(mod 4), so that §, = 1. As §,8,8;, = I, §, = §;.
Since x,x, == m%x, , ¥; = gx, . Using the relation 1 -- 8,00, == —8,x, — O3%5,
we obtain x, =g —q¢+ 1, x5==¢g(¢* — g+ 1), and §, := —1. Trom
1+ 8,%, == 8yx4, it follows that x, ::= g(¢ — 1). Finally, 1 -- 8% = &%
implics that x — ¢® + 1 == (¢ =+ 1)(g* — ¢ + 1). This proves (ii), and the
proof shows that & — y, is the only character of degree ¢% in By(2, G).

Levva D12, Let p 5= 3 be an odd prime dividing q <- 1. Then the p-part
of | W equals the p-part of ¢ +— 1. The 2-part of | W | equals the 2-part of
g+ 1.

Proof. The last assertion follows from Lemmas D.8 and D.9. If p 3£ 3
is an odd prime and p | (¢ + 1), we first show that p | | W' 1.

Suppose that p+ | W | and let P, y,, y, be as in Lemma D.10. Then P is
cyclic and y, inverts P, so that C(P)C N(P). We claim that N(P) == (C(P), y,>.
For, let S be a Sylow 2-subgroup of (C(P), y,> containing ¢, ¢, and y;.
Then ¢ = "¢’ € SV. By Lemmas D.8 and D.9, the derived group of a
Sylow 2-subgroup of G is cyclic. Thus, {t) = £,(S?V). Also, N(P)/C(P) is
cyclic, so that C(P)S <] N(P). By the Frattini argument, N(P) C C(P) SC(#) =
C(P) C(t). However, in C(t) the only nontrivial automorphism induced on P
is involutory and induced by y, . Thus, N(P) = (C(P), y.>.

We now apply results of Brauer [7, Section 9] concerning the principal
p-block of G. By(p, G) contains 2 + (| P| — 1)j2 characters 1, &, 4%,
These are all real-valued, and there is a sign 8 such that 8 ~- ¢,(1) = (1)
and ¢,(x) = 8 for each p-singular element # of G.

Suppose that (1) is even. Then each (1) is odd, and since ¥ is real-
valued, 2 is in By2, G) (Brauer [6]). By Lemma 3.6, the permutation
character 0 of degree ¢° is in By(p, G), so that 6 = ¢, or ¥, for some 2.
Now each #® has degrec ¢ and each ¢® is in By(2, G). This contradicts
Lemma D.11,as (| P| — 1)/2 > 1.

Therefore, (1) is odd and #*)(1) is even. By Lemma 3.6, 0 € By(p, G),
s0 0 =3, . Since pt |G|, &= iy(u) = 0(u) = —1 for all p-singular
elements #. Then %(1) == ¢ — 1, which does not divide | G |. This is a
contradiction.

We thus have p | | W |. Again let P, y, , and y, be as in Lemma D.10. The
dihedral group D = (y,, y¥,> normalizes P. As P/PN W is cyclic and
Pn WCZ(C(t)), Pis abelian. Since y, inverts P/P N W, we have P =
Py X (PN W), where | Py | is the p-part of ¢ + 1 and y, inverts P, .
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Suppose | Py | > | PN W |. From the structure of P, it follows that D modulo
Cp(P) - 0,(D) is abelian. By Lemma D.10, D contains a 3-element inverted
by v, . Thus, since p = 3, the Sylow 3-subgroup of ) centralizes P, However,
C(PYCC(PN W)= C(t) by Lemma D.2 (iii). Since y,y, induces an
automorphism of order 3 on {z, ¢, the Sylow 3-subgroup of D is not
contained in C(P). This is a contradiction, so that | Py| = | PN W |, as
asserted.

Lemma D.13. If 3% is the 3-part of ¢ - 1 and 3* is the 3-part of | W |,
thenh —k >2and k > 1.

Proof. 1f3+ (g + 1), then, by Lemma D.12, | W| = ¢ + 1 and Suzuki’s
result [27] implies that G = PGU(3, q). Thus, 3| (¢ + 1). If A — %k < 1,
then the results of Suzuki [27] and O’Nan [20] imply that G = PSU(3, ¢)
or PGU(3, q). Therefore, h — & > 2, so it remains to show that & > 1.

Suppose that 34| W, and let P, y,,y, be as in Lemma D.10. Since
9. (g+1),3|(¢#— g+ 1),and 9 (¢ — g + 1), so that a Sylow 3-subgroup
of G has order 3 [ P| = 3*1, Also, P is cyclic. Since {y,, y;> induccs S
on {f,t"> and normalizes P, {y,, ¥»» has a 3-element z centralizing P but
not t. Thus, B = (P, 2> is an abelian Sylow 3-subgroup of G. Also, B is
cyclic or of type (3%, 3).

Since B is abelian, N(B) controls the fusion of B. Thus, there is a 2-
element x in N(B) with #® = u~! for (u) = P, and C(B)C N(B).

If B is cyclic, then [N(B) : C(B)| = 2.

If B is abelian of type (3%, 3), then N(B) does not act indecomposably on
B as 3" > 3. Thus, there are elements v, , v, in B such that | v, | = 34,
7o | =3, B =<2 X {vp, and (v, {z,> are both N(B)-invariant. In
particular, o, is not conjugate to any element of {v,>, and N(B)/C(B) is an
elementary abelian group of order 2 or 4. If |N(B) : C(B)| = 4, then [C(9,)!
is even. However, {v*) = U (B) = (#®), and each clement of C(t) of
order 3 is a cube in C(2), so that v, must fuse to an element of {u#3) = {93,
which is not the case.

Thus, we always have |[N(B) : C(B)] = 2 and N(B) = {(C(B), x). Since B
centralizes no conjugate of ¢, |C(B)! is odd and | x| = 2. Since B is abclian
and G is simple, a result of Griin [14, p. 215] implies that x inverts B.

We may now use the same argument as in the proof of Lemma D.12 to
obtain a contradiction.

Levma D.14. Let P be a Sylow 3-subgroup of C(t). Then P = Py X P,
where P, is the Sylow 3-subgroup of W, | Py} = 3%, | P, | = 3%, Py = {tp»
P, = {u,>. There is a 3-element z such that B = (P, 2) is a Sylow 3-subgroup
of Gand | B: P| = 3. There is an involution y in N(B) such that y inverts z
and u, and centralizes u, .
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Proof. Let P and y, = y be as in Lemma D.10. As PN W C Z(P) and
P/P N W is cyclic, P is abelian. Since y inverts P/P N W and centralizes
PN W,wehave P = Py x P, —= {uyy X {u;y with Pyinverted by y and P, =
P W centralized by y. Letting y, be as in Lemma D.10 and {z> a Sylow
3-subgroup of { y,, y,>, we have z ¢ C(¢), z € N(P), with z inverted by y. Since
91 (g2 — ¢ - 1), B = (P, 3> is a Sylow 3-subgroup of G and [B : P] == 3.

Levma D.15. Sef uy® = uyu,® and u,® = uyu,8, where a, b, ¢, and d are
integers. Then

() P l=3=3
(i) a =1+ 3 ay, with a, == 0 (mod 3);
(i) ¢ == 3¢, , with ¢y == 0 (mod 3);
(iv) d ==1 (mod 3);
(v) ay -+ bey == 0 (mod 3).

Proof. Let ¥ and % be the automorphisms induced on P, X P, by y and ,
respectively. Then j corresponds to [73 7] and Z corresponds to [¢ 5], where
the first columns are taken modulo 3* and the second columns are taken
modulo 3%,

Now 3% = 1, so that

_ B a®+bc (a—+d
1 52
s [(a +d)e drt bc]'

Also, 2% = #1, so that

cAl M Rl P |

Consequently, we must have

a® + bc = a (mod 3%),
(¢ + d)e = —c (mod 3%,
(¢ + d)b == —b (mod 3¥),

d? + bc = d (mod 3¥).

Also, 771 =: 32y = [_% 4], so that

R R I v I P A
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Thus, we also have
a* — be = 1 (mod 3%),
(@ — d)c == 0 (mod 3%),

3)
(a — d)b == 0 (mod 3¥),
d? — bc = 1 (mod 3%).
We note that, since [ #,* | = | #; | = 3%, we must have ¢ = 3"~*¢, for some

intcger ¢,. Now suppose that ¢, = 0 (mod 3), and let u* = u}"". Then

(w*)? e<u®y and u*e W4 Thus, 2e N(u*}) := C() (Lemma D.2 (iii))
which is not the case. Thus, ¢, 5 0 (mod 3).
From (2) and (3) we obtain

(2a + 1)(a — 1) == 24> — a — 1 =2 0 (mod 3%),
(2d 4+ 1)(d — 1) =: 2d®* — d — | = 0 (mod 3%), 4
@* =z 1 + be = d? (mod 3%).

Since | uy* | == |, | and A — k = 2, 3 1 a. Thus, by (4), we have a = 4d
(mod 3%). If @ == 2 (mod 3), then 2¢ 4- 1 = 2 (mod 3), and this contradicts
(4). Thus, @ = 1 (mod 3). Since (a — 1, 2a = 1) = 3, by (4) either @ == 1
(mod 3*~1) or ¢ == — } (mod 3*1).

Suppose that a = — 4 (mod 3*71). Then from (2) it follows that 3**bc, =

be = a — a? = — 3 (mod 3"*1), and consequently # — %k < 1, a contradic-
tion, Thus, a == | (mod 3*-1), and we can write a = [ 4 q,3* 1. By (2),
3h—kpey == be = —ay3* ! (mod 3*). Since 3 +¢,, it follows that 3%#1)b.

Write b = 31, .

Now uy* = uyu} *, so that {uy®> is normalized by 2. As # has order 3,
u,? is centralized by z. Set 4, = 42", so that i, € (u,®> and #, is centralized
by 2. Since u;? == figou;? and u, == u¥ = u§p ™39y P we have ¢)(1 4+ d -+ d?)=0
(mod 3%), and since ¢y %= 0 (mod 3), 1+ d 4 d* =0 (mod 3¥). Then

= 1(mod3), and d?4-d -+ 1 =(d— 12+ 3d =0 (mod 9) if & > 2.
Thus, if £ = 2, we have 3d = 0 (mod 9), whercas d == 1 (mod 3), a con-
tradiction. Thus 2 = 1.

We now have ¢ = 3¢, ¢y == 0 (mod 3), d =1 (mod 3), and 2 = 1.
From (2) we also get a, + bcy = 0 (mod 3).

It only remains to show that @, % 0 (mod 3). If g, == 0 (mod 3), then
a may be taken as 0, and b = 0 (mod 3). Thus, #* = uyand u* = 13" Cou; .
The group B/<{uy> is abelian, since it is of order 9, and Z(B) = {u,». Thus,
B has class 2. Consider the action of N(B) on B/Z({B). The involution y inverts
the coset 2Z(B) and centralizes #,Z(B). Clearly, the action of N(B) on
B/Z(B) must be that of some 2-group in GL(2, 3). If the order of this 2-group
is greater then 2, there is some 2-element g e N(B), such that g inverts

k—1pg
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B/Z(B). Therefore, g permutes the four subgroups of P of order 3, while
normalizing 2,(<x,>), so that g normalizes some conjugate of {u;) in P,
Then, g must centralize this conjugate of (> (L.emma D.2 (iii)), and con-
sequently g centralizes an element of B/Z(B). Since this cannot occur, the
action of N(B) on B/Z(B) must be of order 2 and N(B) has a normal subgroup
of index 3. The Hall-Wielandt thcorem [14, p.212] implies that G has
a normal subgroup of index 3, and this contradicts Lemma D.4. Therefore,
ay = 0 {mod 3), as asscrted.

ILesma D.16.

(i) N(P)=C(P), B, y>;
(i) N(B) = <{B,y> =<P, 2.

Proof.

(i) Let g& N(P). From the structure of P (Lemmas D.14 and D.15),
it follows that g normalizes £,(P) and £2,({%;*>). Since B permutes the
3 subgroups of £,(P) other than Q,(<(1,®) transitively, for some % B,
gh e N((u,p) = C(t) (Lemma D.2 (iii)). Since C(t) N N(P)—(C(P)NC(@)){y>,
ghe {C(P),y>,s0 g (C(P), B, y).

(i) Since B is not of class 2 {(Lemma D.]5), and since P is an abelian
subgroup of index 3 in B, P is weakly closed in B. Therefore, N(B) C N(P).
By (i) it suffices to show that N(B) N C(P) = P.

Let R be a Sylow r-subgroup of C(P), r # 3. Then, in the notation of
Lemma D.10, y, , ¥, normalize R, and 2 € (¥, , ¥,>. Since R is homocyclic
on 2 generators, and <y, , ¥,> induces a dihedral group of automorphisms
of R, if = centralizes some element of R#, it centralizes all of R. Then
z € C(t), a contradiction.

Thus, if R is a Sylow 7-subgroup of N(B) N C(P), r 5 3, we have
[R, B] = 1, so RC C(z). Thus, R = 1. Therefore, N(B) N C(P)C P, and
the result follows.

Lemma D.17.  Set I = 32, Then, BV == (uy, u,> = ,(P)and Z(B) =
uy®y = Oy(P).

Proof. This follows from the structure of B given in Lemma D.15.

In the following we let S be a Sylow 2-subgroup of C(¢) N N(P) containing
the Klein group <t ¢'>. If S is quasi-dihedral, set T = (¢, tD. If S is
wreathed, take T to be the homocyclic abelian subgroup of index 2 in S.
Thus, in either case (¢, "> C T.
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Lemma D.18.

(i) C(z)n C(T)CB.
(i) C(P) = C(T).

(i) N(P) = N(T) = <C(T),y, .
(iv) C(B) = Z(B).

(v) N(B) = (B, .

Proof. To prove (i), recall that C(T) is an abelian group of order
(g+ 1I)I W If R is a Sylow r-subgroup of C(T), with » £ 3, R is homo-
cyclic on two generators. In the notation of Lemma D.10, = belongs to the
dihedral group <y, , ¥5). If = centralizes some element of R*, = centralizes all
of Rand, in particular, RN W s . By Lemma D.2, z € C(t), a contradiction.
Thus, C(z) N C(T) C B, as claimed.

Since PCC(T) and C(T) is abelian, C(TYC C(P). As P W £ |,
C(P)C C(2). Since C(t)? = PGL(2,q), C(PY*C C(T)4. Since W CC(T),
C(P)C C(T1). So (i1) follows.

Then, (iii), (iv), and (v) follow from Lemmas D.15 and D.16.

Levmva D.19. Let ge P4,

(i) If ge<up® withr = 0,1, —1 then C(g) = C(t).
(ii) If g O(P), then C(g) = LC(T), ).
(i) In all other cases, C(g) = C(T).

Proof. Lemma D.2 (iii) implics (i). Suppose that g is not in (u,>*" for
r = 0,1, —l and set K = C(g). Since C(T) is an abelian group and contains
P, C(TYCK.

We claim that T is a Sylow 2-subgroup of K. For if T is not a Sylow
2-subgroup of K, let TCK, with | T: T'| = 2. Let ¢, be an involution of
Z(T) and let 4, be the set of fixed points of ¢, . Then it follows that g4 is
centralized by a Klein group in C(t,)%. But since C(t,)% == PGL(2, ¢) and
g4 £ 1, this is impossible.

We note next that C(t) N K = C(T). Clearly, C(T')C C(¢) n K. Since
g2 # 1 and C(¥)? = PGL(2, q), (C() N K)4C C(P)4. Since C(P) = C(T)
and WCC(T), C(t)n KC(C(T). Likewise, Ct')N K = C(T) and
CittyNn K =: C(T).

Now let R be a Sylow 3-subgroup of K containing P. Then, R = P or
[ R: P = 3.In the latter case, R C N(P) == (C(P), 2, y> (Lemma D.16 (i)).
Since C(P) = C(T)C K, <P, 2y C K. Thus, we may take R =- (P, 2. If
R =(P,2),geUy(P).If R = P, g¢ U,(P).

Now y ¢ K, since the Sylow 2-subgroups of K are abelian. Thus, Ng(P) =
C(P) - R. Also, Z(J(R)) = P. By Glauberman’s theorem [11, p. 280}, K has



2-TRANSITIVE GROUPS 47

a normal 3-complement, say L. Then, N, (T) — C,(T), so L has a normal
2-complement, M.

Then M - = Cy(t) Cp(t') Cy(tt'). Since C(t)N K = C(T), CYN K ==
C(1), and C@')NK = C(T), MCC(T). Therefore, LCC(T). So
K == R - C(T) and the result follows:

Levya D.20. If ve B — P, then |C(v)| is odd and v is conjugate to no
element of P.

Proof. Supposethato? = uec P, ge G. Then C(v)? = C(y) and {Z(B), v}*
is contained in some Sylow 3-subgroup of C(#). Thus, by replacing g by
ge for some ¢ e C(u), we may assume Z(B)? C B. Thus, (%,*>? CB and
> CP. As h = 3, ¥ "> C P. As 4 is not a cube in N((u,>) == C(t)
(Lemma D.2 (iii)), (#3'™) is not conjugate to {#;>. Thercfore, (a3 7> =
@), so ge N(P) (Lemma D.19). Then, v7 € P, with ve B — P, a con-
tradiction.

If ;C(v); is even, then v centralizes a conjugate of ¢. Then, v is contained
in some conjugate of P, which is a contradiction.

Levia D21 Ifve B — P, then (v, Z(B)) is a Sylow 3-subgroup of C(%).

Proof. By Lemma D.20, v is conjugate to no element of P. For any
ue B — P, Cylu) = <u, Z(B)). Thus, Cx(v) is a Sylow 3-subgroup of C(v).

Lemma D22, Ifv,, v, € B -~ Pare conjugate in G, then they are conjugate
in N(B).

Proof. Suppose that v, = v,, g€ G. By Lemma D.21, C(z,) has Sylow
3-subgroup {z;, Z(B)). Thus, we may assume that {z,, Z(B)}¥ .—{v,, Z(B),
so that Z(B) C<(z,, Z(B)). Let [ == 3*1, Then, (') €<%,, Z(B)). By
Lemma D.20, (u,!)? € Z(B). Thus, geN(Ku") =<C(T), 7, y) = N(T)
{Lemmas D.18 (iii) and D.19 (ii)). Also, C(T) has a normal 3-complement &
such that C(T) == P X H. Let g == g,g,, where g, € B{¥) and g, ¢ H. Then
oj1€ B, so that [o1, g,]Je HN B = 1. Therefore, v, == v71%: = 91 and
g, € N(B).

Lemya D.23. If ve B — P, then C(v) has a normal 3-complement.

Proof. By Lemma D.21 if ve B — P, then (v, Z(B)) is a Sylow 3-sub-
group of C(v). By Lemma D.20 | C(9)! is odd. Therefore, all elements
of C(v) normalizing (v, Z(B)> must centralize it. By Burnside’s transfer
theorem {14, p. 203], C(%) has a normal 3-complement.

Levva D.24.  There is an element %€ B — P with 3 ¢ BV = Q,(P).
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Proof. By Lemma D.17, B = Q,(P). Since B is nonabelian, B/BV is
abelian of type (3*7, 3). Thus, we can clcarly choose £€ B — P such that
e BW,

Levma D.25. If 2 is chosen as in Lemma D.24, then B — P is the disjoint
union of the sets ZugBW, 214 BV for j = 0, 1,..., 31 — 1. If u € Zu/BY),
then u® N B = Fug B U -1y B,

Proof. The first statcment follows from the structure of B. If ue B — P,
then, by Lemma D.21, Cy(u)| = [Ku, Z(B))| = 3" Thus, if ue ZuBD,
then u? = Zu B, Since y inverts B/BW, the result follows from Lemmas
D.22 and D.16.

We can now complete the proof of Theorem 1.1, Let A be a lincar character
of B with kernel P. We can choose A so that, if # € 2P, then A(u) —= p, wherep
is a primitive cube root of unity. Thus, if  lies in £-1u5 /B, A(z) = p~L

If x is any irreducible character of G, consider y(#) and (1 — A)w) for
ue B — P.1fue 3uyBW, then x(u) == x(3uy)) = x(3-1u;’) (by Lemma D.25)
and (1 — A)(u) =1 — p. Ifue 57 uy’BY, then (1 — A)(u) =1 —p7L.

Now consider By(3, G), the principal 3 block of G, and let X(r), 7 € G,
denote the column whose entry for y € By(3,G) is x(r). If re B — P it
follows from Lemma D.23 that X(r) is the column of generalized decom-
position numbers for the block By(3, G) and the 3-section of r [5, (2.6),
Corollary 5]. Defining inner products of columns as usual we have:

(a) If ve B— P, then (X(v), X(v)) is the 3-part, 3% of C(v) (sce
Brauer [5, 2.7]).

(b) If v,,7, are in B — P and v, is not conjugate in G to 7,, then
(X(2y), X(v;)) = O (Brauer [4, (7C)]).
(c) If ve B — P, then (X(1), X(v)) = 0 (Brauer [4, (7C)]).

Set
R= —3,f—+2 Y X(u) (T = N@).

uesd

Then R is the column whose entry in position y € By(3, G) is just (x, [ — A)g.
In order to compute R it suffices to let # range over B — P, since 1 — A
vanishes on P. We thus have

1 3 Lo ] o
R= 3ht2 Y 9X(Bu)l —p + 1 —p7') = T Y 27X(Fuy)
=0 im0
| I e S
= 31 X(Zuy)).
=0
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Since the 3% 1 clements Zuyf, j = 0,..., 3*1 — 1, lie in distinct classes of G
(L.emma D.25), it follows from (a) and (b) that

]

32)!.—2

(R, R) — LI s )

However, each entry in R is an integer, so that R must have cxactly
3 nonzero entries, cach -£1. From the definition of R it is clear that 1;
contributes a 1. Let ¢ be the permutation character, which, by Lemma 3.6,
is in By(3, G). If v € B — P, then v fixes no points of £, so that #(z) = —1.
‘I'hus, the entry in the 8 position of R is

s T T =@ = gy ¥ 8T = @)

ueB ueB--P

- _3Tl"'2'u§;(l — () = —1.

Now let x be the third character in By(3, GG) that contributes a non-zero
entry to R. By (c) we have

(X(1), B) = g 3. (X(1), X){T = 7)) = 0.

ueB

However, (X(1), R) =1 -1 - ¢%(—1) + x(1)3, where § = +1. Therefore,
x(I)d =¢*—1, 8§ =1, and x(1) = ¢* — 1. However, ¢° — 1 does not
divide | G |. This final contradiction completes the proof of Theorem 1.1,
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