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1. ISTRODUCTION 

The purpose of this paper is to prove the following result: 

‘hEOREM 1.1. Let G be a finite group 2-transitive on a set R. Suppose that 
the stabilizer GOB qf two di.stizzct points a, /I E Q is cyclic, and that G Jzas no 

regukzr normal subgroup. Then G is ooze of the following groups in its usual 
2-transitive representation: PSL(2, q), PGL(2, q), Sz(q), PSU(3, q), PGU(3, q) 
or a Rroup of Ree type. 

WC note also that the convcrsc of Theorem 1.1 is valid, i.e., in the usual 
2-transitive representations of PSL(2, s), PW2, q), Sz(q), PSU(3, q), 
PGU(3, q), and the groups of Ree type, the stabilizer of two points is cyclic. 

I-kc S,-(q) is a Suzuki group [25]. Groups of Ret type will be &fined in 

Section 2. 
As with the classification of Zassenhaus groups by Zassenhaus [30], 

Feit [9], Ito [17], and Suzuki [25], this theorem characterizes several families 
of 2-transitive groups, without regard for the parity of the characteristic. 

‘Presented to the American Wlathematical Society in San Antonio, Texas, on 
January 24, 1970. 
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18 KANTOR, O’NAN, AND SEITZ 

Instead, however, of placing restrictions on the action of G on Q, we have 
specified the structure of the relatively small subgroup G,, of G. This is 
analogous to the classification of 2-transitive groups G in which GolB has odd 
order (Suzuki [26], Bender [2, 31). Th ese latter results are required in our 
proof. 

Two special cases of Theorem 1.1, needed in its proof, are due to Suzuki 
[27] and O’Nan [20]. Th eir results characterize PGU(3, Q) and PSU(3, q), 
4 odd, by requiring that the structure of G, be very much like that of the 
corresponding subgroups of these 2-transitive groups. 

Another very special case of Theorem 1.1 is due to Ito [lg], who considered 
2-transitive groups G in which 1 G,, 1 = 2. Although we have no comparable 

hold on 1 G,, 1, the arguments in cases A and C of Section 5 were motivated 
by Ito’s methods. 

Our arguments are surprisingly elementary, as a result of which the main 
part of the proof of Theorem 1.1 (in Section 5) is reasonably self-contained. 
The proof proceeds as follows. As already noted, by using results of Suzuki 

[26] and Bender [2, 31, we may assume G,, has an involution t. Let d be the 
set of fixed points of t. In Section 4 we observe that the permutation group 
C(QA induced by C(t) on d is a 2-transitive group in which the stabilizer of 

two points is cyclic. Moreover, using a simple counting argument we obtain 
an important and useful relationship between n = I Q /, I d j, and G,, . 

By induction, C(t)A either has a regular normal subgroup or is one of the 
groups we are characterizing. Also, n is either odd or even. Taking each of 

these possibilities into account, we are led to four cases, which are dealt with 
in Section 5. In the course of the proof we show that, since G has no regular 

normal subgroup and ] Gas / is even, n cannot be odd. 
In case A, we assume that n is odd and that C(t)A has a regular normal 

elementary abelian p-subgroup, with p an odd prime number. By studying 
p-subgroups and 2-subgroups of G, we obtain a contradiction. 

In case B, n is odd and C(t)d h as no regular normal subgroup, so that 

C(t)4 is PSL(2, 29, Sx(2f), PSU(3,2f), or PGU(3,2f), where 2f > 4. In 
case C, n is even and C(t)d has a regular normal elementary abelian 2-sub- 
group. In these cases, as C(ty has a relatively large elementary abelian 
2-subgroup, we study the preimage in C(t) of this 2-group. 

In case D we consider the situation where n is even and C(t)” has no 
regular normal subgroup. We proceed in two steps. It is first shown that 
either G is of Ree type or that G very closely resembles PSU(3, q) or 
PGU(3, q), q odd: C(t)d is PGL(2, q), n = q3 + 1, G, has a normal subgroup 
regular on Q - 01, and the Sylow 2-subgroups of G are as they should be. 
We then use an argument of Brauer [l, Chap. 61 to show that ] Gorp 1 = q2 - 1 
or (q2 - l)/(q + 1, 3). Th e a f  orementioned results of Suzuki [27] and O’Nan 
[20] now imply that G is PGU(3, q) or PSU(3, q). 
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Section 2 contains properties of PSZ42, q), Sa(y), PSLI(3, q), and groups 

of Ree type. The definition of groups of Ree type is based on a paper of Rcc 
[23]. ‘There is an error in that paper which has been corrcctcd by Harada [I 51. 
In Theorem 2.3 we observe that Thcorcm 1 .I also yields a correction to 
Ret’s paper and a result even stronger than that of Rcc and that of Harada. 

12’ofation. All groups will be finite. I f  G is a group and XC G, then 
IVY and C,(X), or simply r\‘(X) and C(X), are the normalizer and 
centralizer of X, respectively. Aut(G) is the automorphism group of G, Gil) 

is the derived group of G, O(G) is the largest normal subgroup of G of odd 
order, and G# : G - {I). I f  G is ap-group Q,(G) - (x 1 x E G and .P = 1) 
and U*(C) = (xv 1 x E G). 

WC use Wiclandt’s notation for permutation groups [28]. I f  G is a permuta- 

tion group on Q and OL E Q, then G, is the stabilizer of LY. If  X c G, d C: Q 
and dx = A, then Xd denotes the set of permutations induced by X on A. 
G is said to be semiregular on R if only I E G fixes a point of R. G is regular 
on J? if it is transitive and semiregular on .Q. An involution t E G will be 

called regular if (t) is semiregular on Q. 

2. PK~PERTIES 01: THE GROUPS 

In this section we state those properties of the groups listed in Theorem 1.1 

which will be needed in the proof. 

LEMMA 2.1. Let G be PSL(2, 29, Sz(Zf), PSc’(3, 29 or PGU(3, 29, 
f  > 1, in its usual 2-transitive permutation representation on a set Q. Let 

%pEQ,a;jlb. 

(i) G has a simple normul subgroup of index 1 or 3. 

(ii) If S is a Sylow 2-s&group of G, then S jixes some point 0: E Q, 
S CI G, , and S is regular on Q - a. 

(iii) Z(S) = Q,(S) 11~s order 2f, and S has exponent 2 OY 4. 

(iv) GZB is cyclic and has a subgroup A of order 2’ -- 1 which is reguiar 
on Z(S)“. 

(v) A is the set of inverted elements of each involution (@)... infer- 
changirrg a and p. 

(vi) I f  G is PGU(3, 29 OY PSU(3, 29, C(Z(S)),,? has order 2’ f  I OY 

(2’ + 1)/3, andfixes 2f + 1 points. 

(vii) Zf t E Z(S)*, then C(t) = C(Z(S)). 

(viii) I f  G is Sz(29, f  is odd. 
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For 4 odd, all of the properties of PGL(2, q) which will be ncedcd are 
well-known. The following lemma will motivate much of Section 5, case D. 

LEMMA 2.2. Let G he PGU(3, q), q odd, in its usual 2-transitive representa- 
tion on a set G. Let LY, p f  JI, OL + p. 

(i) G has a simple normal subgroup ‘14 = PSU(3, q) of index (q + 1,3). 

(ii) All involutions of G ure conjugate and jix q + 1 points. 

(iii) Gors is cyclic of order q2 - 1, and 1 M,, 1 = (q2 - l)/(q + 1, 3). 

(iv) G, has a normal subgroup Q of order q3, regular on R - (Y. 

(v) Z(Q) = O(Q) has order q, and G,, is jixed-point-jree on 

Q;@(Q). 
(vi) If t is an involution in G,, , then C.w(t) has a normal subgroup Co(t) 

isomorphic to SL(2, q). 

(vii) Z(Q) = Co(t). 

(viii) The Sylow 2-subgroups of G are quasi-dihedral if q -s I (mod 4) 
OY mreuthed Z,, 1 Z, if q -2 3 (mod 4). 

In [23], Ree considered groups G satisfying the following conditions: 

(Rl) G is a group 2-transitive on a finite set s2, [ J2 1 = n. 

(R2) If (Y, ,!? E J2, o! f /3, G, has a unique element t f- 1 fixing more 
than 2 points. 

(R3) All involutions in G are conjugate. 
A family of groups staisfying (R I)-( R3) - were discovered earlier by Ree [22]. 

In its usual representation of degree 126, PsU(3, 5) also satisfies these 
conditions. A group G will be said to be of Ree type if it satisfies (RI)-(R3) 
together with 

(R4) C(t) - PSL(2, q) x (t) for some odd prime power q. 
Ree [23, Proposition 2.31 incorrectly showed that (Rl)-(R3) imply (R4). 

Harada [15] has proved that, when n is even, (Rl)-(R3) imply that (R4) 
holds or G is PSU(3, 5). 

Rcc also proved the following facts about groups of Ree type: 

(R5) n = q3 + 1, q = 32a+1, a a nonnegative integer; 

(R6) t fixes q + 1 points; 

(R7) GaB is cyclic of order q - 1; 

(R8) The Sylow 2-subgroups of G are elementary abelian of order 8. 

Groups of Rce type satisfy the conditions of Theorem 1.1. Conversely, 
assuming Theorem 1.1, we can prove the following: 
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THEOREM 2.3. Let G be agroup 2-transitive on afinite set Q. If  LY, p E Q, 
a .# 8, suppose that G,, has a unique nontrikl element t fixing more than two 

points. Then either 

(i) G is of Ree type; 

(ii) G is PSU(3, 5); 07 

(iii) G has a regular normal subgroup, : G,, ! = 2 and G has tzeo classes 

of involutions. 

Proof. (Rl) and (R2) clearly hold and 1 t 1 = 2. If d is the set of &ed 
points oft, then C(t)A is 2-transitive (\+‘itt [29]) and only 1 E C(t)d fixes three 
points. Also, n = 1 Q 1 = 1 A i (mod 2). 

If 11 is odd, C(t)$ is cyclic of odd order (Suzuki [25]), so that G,, is cyclic. By 
Theorem 1 .l, neither (i) nor (ii) holds, and G has a regular normal elementary 
abelian p-subgroup for some odd prime p. Then G,, fixes at least p points of 
R, so that j G,, 1 = 2 and G has two classes of involutions (Ito [18, p. 4101). 

If rr is even, then as in [23, p. 7991, G, has a normal subgroup 9 
regular on Q - z. Suppose that (t, u) is a Klein group in G,, . Then 

,o = C,(t) . C,(u) * G?(W, and since neither u nor tu fixes points other 
than cx and /3, Co(u) = Co(tu) = 1. Thus ,O = Co(t) and t fists all 
points of Q, which is not the case. Consequently, C;,, has just one involution 
and, as in [23, Proposition 1.251, G,, has a cyclic Sylow 2-subgroup. Then 
C(t)$ is cyclic (Feit [9], It0 [17]), so that Gh, is cyclic. By Theorem 1.1, if 
neither(i) nor (ii) holds then G has a regular normal elementary abelian 
2-subgroup and (iii) holds. 

3. I'RELIMINARY RESULTS 

It is well-known that the automorphism group of a cyclic group is abelian. 
For future reference, we isolate one special situation. 

LEMMA 3.1. Let S = (x, y) be a 2-group of order 2”-” such that 1 x 1 = 2” 
and i y  1 = 2. ‘Then S is defined by one of the following aa’ditional relations: 

(i) xv - x and S is abelian; 

(ii) xv = x-l and S is dihedral; 

(iii) xy = X-r+2+‘, m > 2, and S is quasidihedral; 

(4 
xv = xl4'"-' , m > 2, and S is modular. 

LEMMA 3.2. A group whose Sylow 2-subgroups are cyclic is solvable. 
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Proof. This follows from Burnside’s transfer theorem [14, p. 2031 and 
the Feit-Thompson theorem [IO]. 

LEMMA 3.3. Let X be a 2-group and Y d X, where [ X/Y 1 = k 3 4. 
Let A be a subgroup of Aut(X) of odd order centralizing Y and transitive on 
(X/Y)+. Then either 

(i) There is a unique A-invariant subgroup X, of X such that X = XI x Y; 
or 

(ii) k = 4 and there is a unique A-invariant subgroup XI of X such that 
X,isaquaterniongroupoforder8,X=X,Y,IX,nYI=2and[X,,Y]=l. 

Proof. The proof is by induction on 1 X I. Suppose that k > 4 and Y # 1. 
Let Y,, be a maximal subgroup of Y normal in X. 

If Ys = 1, then 1 X 1 = 2./z. As k > 4, X has an involution not in Y. 
By the transitivity of A, there is an involution in each coset of Y in X. As 
Y C Z(X), X is elementary abelian. Maschke’s theorem now implies the 
result. 

LetY,,f l,andsetX=X/Y,,Y=Y/Y,.ByinductionX=Xs~ F, 
where Y, C X0 C X and X0 is invariant of order k. As A is transitive on I,,#, 
by induction X,, = X1 x Y, with X1 an A-invariant group such that A is 
transitive on X1*. Then X = XsY = X,Y and X, n Y = 1. Moreover, 
X1 = [A, X0], so that Y normalizes X, . We thus have X = X, x Y, and X1 
is unique because of the action of A. 

If k = 4 and (i) does not hold, the same argument shows that (ii) holds, 
although here we must use the simple fact that the Schur multiplier of 
SL(2, 3) has odd order. 

LEhs&sA 3.4. Let R be an elementary abelian group of order 2”, and let B 
be a solvable subgroup of Aut(R), p rimitive on R#. If t E RR, then ICB(t)l 1 n. 

Proof. A minimal normal subgroup A of B is regular on R#. Then A is 
cyclic and Cu(t) acts faithfully as an automorphism group of GF(29. Con- 
sequently, ICe(t)I 1 n. 

LEMhfA 3.5. If G is a group 2-transitive on Q, and if IZ(G,): is even for 
some (Y E Q, then G has a regular normal subgroup. 

Proof. Let x be an involution in Z(G,). Since G, is transitive on Q - a, 
x fixes just the point (Y. Consequently, 1 D 1 is odd and we can choose a Sylow 
2-subgroup S of G with x E S C G, . If x9 E S, then x9 fixes only (Y, so g E G, 
and x9 = x. Now Glauberman’s Z*-theorem [13] implies that O(G) # 1. 
The result now follows from the Feit-Thompson theorem [IO]. 
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LENMA 3.6. Let G be a 2-transitivegroup on a set Q. Ijp is a prime dividing 

i D 1, and ij 0 is the permutation character of G, then 0 E B,( p, G) (the principal 
p-block of G). 

Proof. It suffices to show that, for each x in G, 

I G I 44 ! G i - ---- E 
IC(x)l n - 1 j C(~)l (mod P)’ 

where n = I Q [. Since p 1 n, n :.= kp and (n - 1, p) : : 1. 
First, suppose that C(X) contains a Sylowp-subgroup P of G. Then P fixes 

no points of 52, so that 8(x) = lp - 1 for some nonnegative intcgcr 1. Also 
1 G : C(x); ((0(x)/n - 1) - 1) is an algebraic integer and n - I is prime top. 
Thus 

y2 : C(x)] (+g$ - 1) = IG : C(x)1 p (s) = 0 (modp). 

Now suppose that C(X) does not contain a Sylow p-subgroup of G. Then 
p i [G : C(s)l, and again the result follows from the fact that (p, n - 1) -_ 1. 

4. BEGINNIX OF THE PROOF 

Let G be a counterexample to Theorem 1 .l of least order. Set n = 1 Q 1. 

LEMMA 4.1. Let 1 # UCG,,, and let A be the set of fixed points of 11. 
Call a subset of Q a line if it has the form Ag, g E G. 

(i) N(U)d is 2-transitive, and N(Ui)d, is cyclic. 

(ii) Two distinct points of Q are on precisely one line. 

(iii) Each point is on (n - l)/(k - 1) fines, where k = 1 A I. 

(iv) There are n(n - l)/k(k - 1) lines. 

(lf) n>ka-k+ 1. 

Proof. As 15’ is weakly closed in G,,, , X(U)* is 2-transitive and (ii) holds 
(Witt [29]). N(U);‘, is clearly cyclic. There are n -- 1 points +x, each on a 
unique line on a, proving (iii). Counting in two ways the ordered pairs (y, AQ) 
with y c Au, g E G, we obtain (iv). If y $ d then each point of A is on a line 
through y. By (iii), (n - l)/(k - 1) > k. 

In particular, either N( cly satisfies the hypotheses of Theorem 1 .l, and 
hence is known, or N(v)* has a regular normal subgroup. 

LEMMA 4.2. Gas contains an involution t. 
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Proof. Suppose that ] G,, ] is odd. By results of Bender [2, 31, G has a 
normal subgroup &I which acts on D as PSL(2,q). Sz(q), or PSU(3, q) in its 
usual permutation representation. As G _C Aut(M), G satisfies the conclusions 
of Theorem 1.1, contrary to the fact that G is a counterexample of least order. 

The following notation will be used throughout the proof of Theorem 1 .l. 
t is an involution in G,, , A its set of fixed points, and W the pointwise 
stabilizer of A in G. Set k = ] A I. Clearly n = /z (mod 2). Let t’ = (a@)... 

be a conjugate of t, and A’, w’ the corresponding set of fixed points and 
pointwise stabilizer. Note that all involutions fixing at least two points are 
conjugate. Lines are defined as in Lemma 4.1 with U = (t). 

Let c be the number of involutions (a/3)..., and d the number of involutions 
(a/3)... fixing at most one point of Q. 

LEMMA 4.3. 

(i) tl = K((c - d)(h - 1) + 1). 

(ii) c is the number of elements of G,, inverted by any involution 
24 = (a/l)... . 

(iii) c is even. 

(iv) If n is odd, there are precisely c - d conjugates of t in C(t), - {t}, 
and each of these is regular on A - 01. 

(v) If TZ is even, there are precisely (c - d)(h - 1) conjugates of t in 

C(t) - {t} and each of these is regular on A. 

(vi) c - d = c or &. 

(vii) c-d#landd#l. 

(viii) I f  n is odd, d is the number of involutions=$xing just the point 01. 

Proof. WC shall use the terminology of Lemma 4.1. 

(i) There are c - d conjugates of t of the form (a/3)..., hence 
(c - d)(n - 1) conjugates of t moving a. That is, there are (c - d)(n - 1) 
lines not on (Y. By Lemma 4.1 (iii) and (iv), 

or 
(c - d)(n - 1) = n(n - l)/R(k - 1) - (n - l)/(k - 1), 

c - d = (n - h)/h(k - 1). 

(ii) x = (aj3)... is an involution if and only if u inverts XC, where 
ux E G,, . 

(iii) This is clear from (ii), since Gti is cyclic of even order. 

(iv) t centralizes tg if and only if t fixes do. As k is odd, if t fixes Ag, 
then t fixes a point of A”. Also, if yt # y then t fixes the line through y 
and yt. Thus, t fixes (n - h)/(k - 1) 1 ines #A, each of which meets A. The 



2-IXAYSlTIVE CROUPS 25 

number meeting d at a is, by Lemma 4.1 (i), (n - R)/(k - I)k L- c - d. 
By Lemma 4.1 (ii), each such line meets d in a single pomt. 

(v) In this case, t fixes (n - /z)!R =: (c - d)(k - I) lines +d, 
each of which does not meet d. 

(vi) By Lemma 3. I, (t’> G,, - G,, has 1 or 2 classes of involutions 
under Gall. If .Y .-: (ap)... is an involution then t’.r E G.,, , so that C(t’),, = 

C(x),, . Thus, if d # 0, then c - d = ! Gn3 : C(t’),, ! = d. 

(vii) If c - d = 1, then n = k2 by (i). The points of R, together with 
the lines 4”,g E G, thus form a finite afKne plane, and G is 2-transkive on 
the points of the plane. By a result of Ostrom-\Vagner [21, Theorem I], 
G has a regular normal subgroup, which is not the case. If d = I, then 
c -- d = 1 by (1.;). 

(viii) d is the number of involutions interchanging a and fi and fixing 
a single point. Let Y be the number of involutions fixing a single poin:. 
We count in two ways the pairs (j, (h, p)), where j is an involution fixing 
a single point and interchanging h and CL. 

Since the number of such involutions j is nr and each interchanges 
(n - I);2 points, this number is (nr)(n - 1),‘2. Since thcrc arc n(n - 1),‘2 
two eiement subsets of -0 and there are d such involutions j interchanging the 
clemcnts of a fixed two clement subset, this number is also (n(n - 1):2)(d). 
Thus d : r. 

LEMMA 4.4. Let n bC even. 

(i) I f  Z,. < 1Vjxes more then t,wo pints, then t’ E C(U). 

(ii) lV is serniwgulur on Q - d. 

Proof. 

(i) Let U < Wand I’be the set of fixed points of U. Let I = 1 F 1 > 2. 
By Lemma 4.1 IVY is 2-transitive. As tr fixes h points of I’, 1 is even. As 

A’( U)/C(U) is abelian and I > 2, C(U)’ is transitive. Since C,, < C(U), 
]N(U);C(U)i ; (I - 1). l’he result follows since I - 1 is odd. 

(ii) Let I’ 3 J and suppose that c’ -#- I is the pointwise stabilizer of r. 
Then 1 U 1 is odd. Set I := 1 r I. If c and d are as in Lemma 4.3, and c’ and d’ 
are the corresponding numbers for h’(U)r, then c’ - d’ 2. 1~‘. Each involu- 
tion (a/3)... centralizes U, so that c = c’. As in Lemma 4.3 (i), we have 

I- k = (c’ - d’) k(k - 1) > Jck(k - 1) > $(c - d) k(k - 1) 
.= J(n - k) > .;n - k. 

However, n ;>- l2 - 1 + 1 by Lemma 4.1 (v), a contradiction. 
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LEMMA 4.5. k > 3. 

Proof. Otherwise k L= 2 and n is even. By Lemma 4.4 (iii), IV = G, 
is semiregular on Q - (a, p}. ‘Thus, G is a Zassenhaus group of even degree, 
and hence is PSL(2, q) or PGL(2, q) [30], which is not the case. 

5. PROOF OF THEOREM 1.1 

In view of Lemma 4.1 (i), there are four cases: 

(A) n is odd and C(t)A has a regular normal subgroup; 
(B) n is odd and C(ly has no regular normal subgroup; 
(C) tl is even and C(ty has a regular normal subgroup; 
(D) IZ is even and C(ty has no regular normal subgroup. 

We recall also that G is a counterexample to Theorem 1.1 of least order. 

Case A. Here n is odd and C(tp has a regular normal elementary abelian 
p-subgroup LA of order k, where L I W and p is an odd prime. Since 
N(W)/C(W) is abelian, and LA is the unique minimal normal subgroup of 
C(ty, L C C(W), and hence L has a normal Sylow p-subgroup P. Thus, 
C(t) C N(P). Let P* bc a Sylow p-subgroup of C(t) containing P. 

Let t” bc an involution in C(t), - {t> (Lemma 4.3 (iv)), d* its set of fixed 
points and W* the pointwise stabilizer of A”. Then t*A E Z(C(t)t) by 
Lemma 4.3 (iv). 

LEMMA A.1. n = k(c(k - 1) $ I) and all imolutions k G are conjugate. 

Proof. By Lemma 4.3 (i), we must show that d = 0. Let x be an involution 
fixing only 0~. If y # (Y, then x fixes the line through y and J, hence fixes 
a point of this line, since k is odd. Thus x fixes each line Au on a. If x’ is also 
an involution fixing only (Y, then x’ also fixes each such line Ag, a E do, and 
x and x’ agree on Ag. (They both invert the regular normal subgroup of 
C(to)d’.) Thus x = x’. It follows that d = 1, contradicting Lemma 4.3 (vii). 
(Alternatively, Lemma 3.5 can be used to obtain a contradiction.) 

LEMMA A.2. If the Sylow 2-subgroup R of G,, is not contained in W, then 
c =2andt*~C(W). 

Proof. Let s E Gas be a 2-element such that P is an involution. Then 
(t”, x)4 is a Klein group acting on PA, and t*A inverts PA. Thus (t*x)“ 
centralizes an element +l of PA not centralized by Y“. In particular, (t*x)A 
fixes distinct points y, 6 E A -. {OL, p}, where we may assume yt’ = 6. Then 
t*xEG+W = G,cC(W) and XEG~CC(W) imply that t*eC(W). 
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If y is another involution fixing d and only N on A, then t*d .= yA, so 
y E (W, t”). Since t” E C(W), there are only two possibilities for y. ’ By 
Lemma 4.3 (iv), c - d = 2. Since d = 0, c = 2. 

LEMMA A.3. iV(P*) = c(p*)(c(t) n fV(P*)). 

Proof. By definition t E C(P*). Let S be a Sylow 2-subgroup of P*C(P*) 
containing t. As n is odd, S fixes a point y. Since t E S, y E A. Then S C C(P) 
fixes at least 2 points of A, and hence is cyclic. Since P*C(P*) -=q N(P*), 
the Frattini argument implies that 

N(P*) = P*C(P*)(C(t) n N(P*)) = C(P*)(C(t) n N(P*)). 

LEMMA A.4. c + 2. 

Proof. Let c = 2, so that t* centralizes O(W). By Lemma A.1, n= k(2k - 1) 
and k is the highest power of p dividing n. It follows that P* is a Sylow 
p-subgroup of G. 

If N(P*) C C(t), then IG : C(t)] = jG : N(P*)!/IC(t) : N(P*)I I 1 
(modp). However, IG : C(t)1 :-z- n(n - l)/k(k - 1) == (2k + 1)(2k - l), a 
contradiction. 

Thus, N(P*) $ C(t). By Lemma A.3, C(P*) g C(t), so that C(P) g C(t). 
Also, as in Lemma A.3, C(P) has a cyclic Sylow 2-subgroup S containing t, 
so that PC(P) = O(PC(P))S. 

Let P,, be a Sylow p-subgroup of O(PC(P)). As P* _C N(P), we may assume 
that P, _C P*. However, C,,(P) _C P. For otherwise, P* 3 P, P* - P has an 
element g fixing a point of A centralizing P, and then g E P* n W _C P. Thus 
P, = P is a Sylow p-subgroup of O(PC(P)). 

It follows that O(PC(P)) = P x U, where (I U 1, 2p) = 1. Set U,, -= U n C(t). 
As C(P) $ C(t), U,, C U. Also, U,, C W. Since P C C(W), it follows that 
O(W)=;(PnW)x U,. The Klein group (t*, t) acts on U, so that 
U = C,(t) C,(t*) C,(tt*). Moreover, U, _C O(w) C C((t, t*)), so that for 
some involution t, # t of (t, t*) we have U, --= C,(t,) 3 L’, . 

Let q be a prime dividing 1 U, : U, I and let Q be a Sylow q-subgroup of 
U, . Then Q acts on the set A, of fixed points of t, . As q f p, Q fixes some 
point 6 E A, . If 6 is the only fixed point of Q, then P C C(U) c C( U,) implies 
that P fixes S. Since p I n, P must fixed at least 2 points, and hence P is cyclic. 
However, PA is elementary abelian, so that k = p and W contains a Sylow 
p-subgroup of Gti . Thus, 1 P i I 1 W 1, whereas P r> P n W. This contradic- 
tion shows that Q tixcs at least 2 points, so that Q is cyclic. 

As t acts on C,(t,) = U, , t normalizes a conjugate of Q, which we may 
assume to he Q. Then t inverts Q/Q n Lro , and since Q is cyclic, t inverts Q. 
The group (t, Q) acts on A,. Let t, z tg, g E G, and let Lg/ Wg be the regular 
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normal subgroup of C(t’-‘y”. Then tLg is in Z(C(tg)/Lg), so that Q = [t, Q] _CLg. 
As (!Q!,P) = 1, QCVI rg. However, since c := 2, t centralizes O(Wg), 
a contradiction. 

Let IIF be a minimal normal subgroup of G. 

LEMMA A.5 M is a simple group z&se Sylow 2-subgroups are not dihedral. 

Proof. Mis simple and C(M) = 1 by results of Burnside [8, pp. 200-2021. 
If M has a dihedral Sylow 2-subgroup, then M w A, or PSL(2, q) for some 
odd q (Gorenstein and Walter [12]). Then G c Aut(M). As G,, is cyclic, this 
is impossible by a result of Liineburg [19, p. 4221. 

LEMMA A.6. Let R be the Sylom 2-subgroup of Ga3 and S a Sylow 2-subgroup 
of C(t), containing R * (t*). 

(i) R C W. 

(ii) S, = S n M is a Syloz~ 2-subgroup of M. 

(iii) SOA,is cyclic. 

(iv) I SoA,1 3 4. 

(v) SO is nonabelian. 

Proof. 

(i) Lemmas A.2 and A.4. 

(ii) n - 1 = (h - I)(& -+ 1) by Lemma A.l, and c is even by 
Lemma 4.3 (iii). It follows that S is a Sylow 2-subgroup of G. 

(iii) Otherwise, SA is a generalized quaternion group by (i). As 
N(W)/C(W) is abelian, t*A E C(v, so that t* E C(W). Precisely as in the 
proof of Lemma A.2, c = 2, a contradiction. 

(iv) By Lemma A.l, 1%’ contains all involutions of G. Moreover, 
[Cm(t): and 1 W n M 1 are independent of the involution t. 

Suppose that 1 S,,A 1 < 4. Then S,, = (t*) R, , where R, == A n M. 
If S,, is abelian then N(S,,) controls fusion in S, , so that S,, is a Klein group, 
contradicting Lemma A.5. If S, is modular (Lemma 3.1), then t* centralizes 
the subgroup R, of index 2 in R, . Then R, acts faithfully on d*, so that 
1 R, 1 = 2 and S,, is dihedral of order 8, again contradicting Lemma A.5. 

Thus, S,, is quasi-dihedral. By a theorem of Grtin [14, p. 2141, 

S,, = So n M(l) = <SO n NM(S,,)(l), S,, n S$jg [ g E M). (1) 

NM(S,,) = S,C,(S,) implies that S, n N,W(SO)(l) c Sir’. If S,, n Sfjg has 
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order 2, it lies in the dihedral group (P’) Sa). I f  j S, n SF’!’ [ > 4, then 

t E S, n SA1)9, so that t r: tg. However, Sa) C R, cl W, so that Sil), :--I Sg’. 
Thus, S, n kV1) C (t*) S a), a contradiction. 

(v) Otherwise, as Sgd and S,, n W arc cyclic, we have S,, == S, x S, 

with S, , S, cyclic. By Lemma A.1 and the fact that ;V&S,,) controls fusion 
in S, [!4, p. 2031, 1 S, j z-7 ! S, I. h T~w a result of Brauer [S, p. 3171 shows 

that S, is a Klein group, contradicting (iv). 

We can now complete case A. Once again WC use (1). 
By Lemma A.6, 1 # Sa) CR, , so that N,,,(S,) C C+,(t). Also, by Burnside’s 

transfer theorem, C,w(t)t = O(C.tf(t)f) S,:. Thus, S,, n .V,,,(SJz) C R, . 
Let I, = S, n SA1)O f :  1, where g E 1%‘. Then L K SA1lQ implies that tg EL. 

By (I), WC‘ may assume that for some g, R,L = So , since So/R, is cyclic. 
tg ./: t, as otherwise L _C Shl)U L= W n Shl’g c R, . Thus, R,, n L := 1. If  

1 R, 1 ~7 2’ and 1 S, 1 -= 2r+s, then 1 I, 1 = 2”. Since s > 1 (Lemma A.6 (iv)), 
either t* E C,(R,) or t* is a square in N,(R,)/C,(R,). In either case, t* 
centralizes the subgroup A, of index 2 in R, . Then R, acts faithfully on d *, 
so that 2p-1 := I R, I < I Sod I -= 2”. 

Thus, i L / = 2” 3 27--l. However, I, c Sfjy C R,y. It follows that 

IL; :-= 2r--1. As L is cyclic and Aut(R,) is abelian of exponent 2r-2, ty must 
centralize R,, . However, R, then acts faithfully on dg, and we have 2’ := 
1 R,, I zz 1 SoA I =. 2” = 27-1, a final contradiction. 

Case H. As n is odd and C(t)“ has no regular normal subgroup, by 
Lemma 4.1 C(t)d is PSL(2, 29, Sz(29, PSU(3, 29 or PGU(3, 29, where 
f 3 2 and Ir - 1 is some power of 2. 

LEMMA B.1. 1 WI :: 2 OT 4, and I W / = 2 ;f C(ty is PSL(2, 29. 

Proof. As N(Wy --I C(ty, IX(W) : C(W)/ = 1 or 3 (Lemma 2.1 (i)). 
In particular, if t* f  t is a conjugate of t in C(t), (Lemma 4.3 (iv)), then 
WC C(t*). Let d* be the set of fixed points of t*, so that d n A” .-= {a}. 

The Sylow 2-subgroup of W acts semiregularly on Q - d, and, in 

particular, on d* - a. By Lemma 2.1 (iii), the Sylow 2-subgroup of W has 
order 2 or 4, 2 if C(t)4 is PSL(2, 29. 

Suppose that U is a subgroup of 0( W) of prime order. Then U fixes a point 

of d* - a. Let r be the set of fixed points of U. Then f  3 d and t acts on I-, 
so that j r I is odd. By Lemma 4.1 (i), N( U)I. is 2-transitive. As C(t) nor- 
malizes U, the minimality of G implies that N(U)r has a regular normal 
subgroup E. Then En C(t)A is a regular normal subgroup of C(t)&? a 
contradiction. 

LEMMA B.2. C(t)“ is neither PSU(3, 29 nor PGU(3, 2’). 
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Proof. Otherwise let S,, be a Sylow 2-subgroup of C(t), . Let S/W := 
Q,(S,,/ W) = Z(S,/W), so that S contains each involution in C(i), 
(Lemma 2.1). S is centralized by a group II cl G&s of order 2’ -1 1 or (2f-+- 1)/3, 
so that D cl C(t*), and H fixes points of d * - cy (Lemma 2.1 (vi)). The set r 
of fixed points of II is not contained in A and tr fixes 2f + 1 points. Then 
1 P 1 is odd. By Lemma 4.1 (i) and the minimality of G, N(li)r has a regular 
normal subgroup. However, N(H) n C(t) acts on both r and A n r, and 

Gvfo n C(t)) dnr does not have a regular normal subgroup, a contradiction. I 

LEMMA B.3. Let SO be a Sylow 2-subgroup of C(t)= . Then Sr,(S,,) = R x(t) 
is elementary abelian of order 2f+l, where C(t), acts transitively on Rg. Ether Rt 
is the set of all involutions in SO conjugate to t, OY 2’ = 4 and all involutions in 
SO are conjugate to t. 

Proof. Set S/W = Q,(S,,/W) = Z(S,/ W). Then all involutions in C(t), 
are in S. There is a group A _C C(t), of order 2’ - 1 transitive on (S/ W)#. 
If 2f > 8, then, by Lemma 3.3, S is abelian and .Q1(S,) = R x (t) has 
order 2’+l with R A-invariant. If 2f = 4, then C(t)d,is PSL(5 4) and 1 W 1 = 2 
(Lemma B.l). Since t* E S, - W and A is irreducible on S/W, we again 
have S, = R x (t) elementary abelian. 

KOW Q,(S,) C C(t), n C(t*), , so that &(S,,) contains all the involutions 
in both C(t), and C(t*), . Th us, N = N(L?,(S,))r, (C(t), , C(t*:),). Also, 
Chi(t) has orbits on Q,(S,) - (t) of length 2f - 1 or 2(2’ - 1). ‘Thus, 
either .Qn,(S,) consists entirely of conjugates of t, or 2’ conjugates of t lie in 
Q,(S,). In the latter case, the conjugates of t in Q,(S,-J consist of R# w (t} 
or Rt. 

Suppose that d = 0 and 2f 3 8. Then all involutions in Q1(S,) are con- 
jugate to t. Moreover, S, is a Sylow 2-subgroup of G and Qr(S,) is weakly 
closed in S,, , so that N is transitive on sZ,(S,,)+. Also, Q,(S,,) fixes just 01, 
so that N < G, and CN(t) < C(t), . Consider N/C,,(QR,(S,)) as a transitive 
permutation group on Q,(S,)# and apply Burnside’s p-complement theorem 
to first the odd prime divisors of ~C,(t)/C,(~~(S,))~ and then to p = 2. 
It follows that N/C,,(QR,(S,)) contains a regular normal subgroup and acts 
as a primitive solvable group on Q,(S,,)+. This contradicts Lemma 3.4. 

We may then assume that d f 0 and a,(&) has 2’ conjugates of t, and 
tc n &(S,,) = R* u {t} or Rt. Suppose that tg E R, g E G. As Q1(S,) contains 
all involutions in C(tO)fi , we have Q,(S,)~ =:: Q,(S,,). Then Rg is contained 
in R u {t}, and it follows that Rg = R. Then g E N(R), whereas tg E R and 
t $ R, a contradiction. Thus, Rt is the set of all conjugates of t in Q,(S,). 

LEMMA B.4. C(t)d is not PSL(2, 29 

Proof. Suppose that C(t)d = PSL(2,29 with 2f > 8. By Lemma 4.3, 
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c - d = 2’ -- 1. Then n - 1 -7 2Yf by Lemma 4.3 (i). Let Q be a Sylow 
2-subgroup of G, containing t. 

Let P be a p-subgroup of GaB for an odd prime p. We claim that C’,=(P) --_ 
GaB = :VG,(P). We first note that G, = G,, . Q, so that NGI(P) --: C;,,(No(P)). 
Thus, N,(P) is transitive on the fixed points of P other than N, so that either P 
ties just cr and /3 or P fixes an odd number of points. Also, t fixes just a: 
and /3 in its action on the fixed points of P. Consequently, P must fix just 
the points a: and 13, and since No(P) C G0 , No(P) c G&,?. This proves the 
claim. 

If P is chosen to be a Sylow p-subgroup of C;,, , then, since n - I =.. 2:<f, P 
is a Sylowp-subgroup of G, and by the above, G, has a normalp-complement. 
It follows that G, has a normal Sylow 2-subgroup, so that Q (i G& . Moreover, 
if x E (G,J+’ has odd order, then Co(x) = (t). 

In the notation of Lemma B.3, R* consists of all 2f - 1 involutions in 
C(t), fixing only 1 point of !Z’. By Lemma 4.3 (vi) and (vii), H contains all 
d = c - d = 2f - 1 involutions of G fixing only IX. Thus, R 4 G, . Also, 

R C Q Q G,, . 
Let RI/R be a minimal normal subgroup of G,/R with R, LQ. Then 

RI/R C %(Q)lR), so that either RI :.= R(t), or t 6 Ki , GeD is irreducible on 
R,IR and I RJR 1 :--- 2’. 

Suppose that R, = R(t). Then Q permutes the 2f involutions Rt. Since 
1 Q/R, 1 = Pf, we have tlg = t, with t, E Rt and g EQ - R, , so that 
C(t,),S (R, , g). However, t and t, arc conjugate, so that R, is a Sylow 
2-subgroup of C(t) (Lemma B.l), a contradiction. Thus, 1 R,,‘R ! = 2f. 

Let RJR, bc a minimal normal subgroup of G,,!RI with R, C Q. As before, 
either R, -:= R,(t) or t $ R, and [ X,/R, 1 == 2f. Suppose that R, = R,(t). 
Then 1 Q/R2 / = 2’ and O(G,,) is transitive on (Q/R&+. Since we are assuming 
that 2f 3 8, we can apply Lemma 3.3 to Q/R1 in order to obtain a group 
8, 4 Q normalized by O(G,,) and such that Q = 8&t) and t 6 a2 . 

We may thus assume that Q = Rz(t) with R, Q G, and t $ R, . Then 
R,G,, - - G, and R, n G,, = 1. Since R, 4 G, , t is conjugate to no eIement 
of R, . By considering the image of t under the transfer map G + QiRz, 
we find that G has a normal subgroup G such that G = C> . (t), t $ G, and 
R, C 6. 

Since R, is transitive on J2 - OL, G is 2-transitive on Q. Also, GXfi = O(G,,). 
We have seen that all elements of O(G,,)# fix just a and /3. Moreover, the 
involutions in GE are precisely the 2f - 1 involutions in R. By the minimality 
of G, G is PSL(2,23 or Sa(2f). In either case, the Sylow 2-subgroup of G 
has order <23/, a contradiction. Consequently, WC’ must have 2’ = 4. 

Then C(tp = P&5(2,4), k = 5, and c - d ::--: 3 or 6. By Lemma 4.3 (i), 
71 = 5. 130r53.S uppose first that c - d = 6. In the notation of Lemma B.3, 
S,, := J2,(S,) is elementary abelian of order 8 and all involutions are con- 



32 KAKTOR, O'NAN, AKD SEITZ 

jugate. Then N(S,) is transitive on S,, 8. It follows that 7 1 1 G i which is not 
the case. 

Thus, c - d = 3 and n = 5 * 13. Here, 1 G,, 1 = i W 1 1 C(t):, 1 = 2 . 3, 
1 G 1 = (5 * 13)(26)(2 * 3). Th e centralizer of a Sylow 13-subgroup P has 
order 13 or 5 * 13, and it is easy to check that I G : N(P)/ f 1 (mod 13), 
contradicting Sylow’s Theorem. 

LEMMA B.5. C(t)d is not Sz(23. 

Proof. Suppose that C(+’ is Sx(29, so that 2’ > 8 and k = 22f + 1. 
By Lemma B.3, C(t), - {t} has precisely 2f - 1 conjugates of t, so that 
c - d = 2f - 1 and n - 1 = 23f(22f - 2f + 1). Since O(G,,) has order 
2f - 1, it is a Hall subgroup of G, . 

Let x E O(G,,)#, so that x fixes just 2 points of d. If r is the set of fixed 
points of x, then t fixes just 2 points of I’, so that if x does not fix just 01 and /?, 
then by Lemma 4.1 (i), N((x))~ = PSL(2, q) or PGL(2, q) with q odd. 
As (x) is cyclic, N((x))/C((x)) is abelian, and since 1 r 1 > 2 and 
I r n d ; = 2, no involution fixes each point of r. It follows that there is 
a Klein group (t, u) centralizing (x). Then ud centralizes xA, which is 
impossible. Thus, x fixes just the points (II and /3. 

Now, as in the proof of Lemma B.4, G= has a normal subgroup Q with 

Q . O(GJ = 6 and Q n O(G,,) = 1. Moreover, if x E O(G,,)+, then 
C,(x) = w. 

Let P be a Sylow p-subgroup for p a prime dividing 2”’ - 2f + 1. As 
(jO(G,,)], 1 Q I) = 1, we may assume that O(G,,) _C iV,o(P), so that O(G,,) is 
fixed-point-free on P. If PO is a minimal normal subgroup of P * O(G,,) with 
P,, C P, then (2f - 1) 1 (I P,, I - I), so that I P,, 1 3 2f. If P,, C P, then 
1 P/P,, j > 2f and I P j 2 22’ > 2 *f - 2f + 1, which is impossible. Then 
PO = P. Similarly, I P I = 22f - 2f + 1. For otherwise, let L be a Sylow 
I-subgroup for a prime 1 # p, dividing 2 2f-2f+1.Then22f-2f+1 3 
1 P I * 1 L 1 > 2f * 2f, a contradiction. 

Xow f is odd, so that 3 I (22f - 2f + 1) and P is a 3-group of order 
22’ - 2f -I- 1. Let 3~ =_: 2’f - 2f + 1. Then 3” = 1 (mod 4) implies a is 
even. Write a = 2b. Then (3b -)- 1)(3b - 1) = 2’(2f - 1). Since (3b + 1, 
3b - 1) =: 2, we have 2f-1 1 (3b - E), E = &l. Also, 32b - 1 < 22f - 1, so 
that 3b < 21. Then 3b - E < 2f, as otherwise 3b + 1 = 2f and 3b - 1 = 
2f - 1. Thus, 2f-l I (3b - e) and (3b - c) < 2f, so that 2f-l = 3b - E. 
Now 21-l + 2~ = 3” + E = 2(2f - 1). This contradiction completes case B. 

Case C. Here a is even and C(t)A has a regular normal elementary 
abelian 2-subgroup LA, where L 3 W. Since N(W)/C( W) is abelian, 
L _C C(W). Then L = S x O(W) with S a Sylow 2-subgroup of L and 
Sn W_CZ(S). 
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Since k is even, C(t): has cyclic Sylow 2-subgroups. ‘I’hen C(t)4 is solvable 
(Lemma 3.2). By a result of Huppcrt [16], C(L)~ can be regarded as a sub- 

group of the group of l-dimensional affine semilinear mappings on GF(iz). 
In such groups, all regular involutions are in the regular normal subgroup, 
namely, P. 

By Lemma 4.3 (v), S contains each of the (c - d)(k - 1) involutions in 
C(t) -- {t} conjugate in G to t. 

LEhlVA C.I. c -1 2, d ==: 0, and n =: k(2k .-- i ). 

Proof. By Burnside’s transfer theorem 114, p. 2031, C(t), has a normal 
2-complement /I. Clearly, i3 is transitive on (S/S n IV)+. As 2’ E S .. S r\ W 

and S n IV Z Z(S), each coset of S n Win S contains preciselv 2 involutions. 
Thus, S - {t} contains just 2(/z - 1) . mvolutions. It follows that c - d :: 2. 
By Lemma 4.3 (iii) and (‘) i,wehaved -=Oandn=~(2(k--l)+l). 

LEMM.\ c.2. h = 4. 

Proof. Suppose that k f  4. Since k is even and k > 2, k > 4. Xow 
S n WC %(S) and A is transitive on (S/Z(S))+“. By Lemma 3.3, S is abelian. 
Then H = a,(S) is clcmentary abelian of order 2k. All elements of R# arc 

conjugate. Let P E R, g E G. Then Rg--l C C(t), whereas R contains all the 
involutions in C(l). It follows thatg E N(R). 

Thus, N(R) is transitive on Rf. Also, N(R) n C(t) is transitive on (R/<t))+ 
and hence has orbits on R - (t) of length k - 1 or 2(k -. 1). Since 

I 11’(R) : X(R) n C(t)/ is odd, the Sylow 2-subgroups of H = N(R)/C(R) are 
cyclic. By Lemma 3.2, H is solvable. Also, II is primitive on Rfi, and 
(2K - l)(k - 1) 1 1 II j. However, if 2h -_ 2f?l, then 1 111 1 (2k - l)( ,J + 1) 
by Lemma 3.4. Then (2’ -- 1) / (f + I), contradicting the fact that f  > 2. 

We now complete case C. By Lemmas Cl and C.2, n .-= 4 . 7 = 28 and 
C(t)4 is A, or S, . Since 0( IV) _C C(t’), L 

Also,‘@ j; 1, so that 1 W 1 = 2 or 4. 
emma 4.4 implies that O(W) = 1. 

Since 1 C(t)$ I < 2, ] G,, ] = 2,4, or 8. I f  I Gas I == 2, then G is of Ree 
type [23, 181. If  I G‘,, 1 :;- 8, then G is PSU(3,3) [27]. Thus, we must have 
I G,, ; z-x 4, I G I -= 28 . 27 . 4. Since d --= 0, a Sylow 7-subgroup of G is 
self-centralizing, and it is easy to check that jG : X(S)’ + 1 (mod 7), 
contradicting Sylow’s theorem. 

Case D. Kow n is even and C(t)A has no regular normal subgroup. Thus, 
C(t)” is PSL(2, q), PGL(2, q), f  or some odd prime power q > 3, orPSU(3, q), 
PGU(3, q), with q an odd prime power, or a group of Ree type. By Lemma 4.3 
(v), the involution (t’)” is regular. By Lemma 2.2 (ii) and (R6) of Section 2, the 
latter possibilities for C(ty cannot occur, so C(t)4 is PSL(2, q) or PGL(2, q), q 

48x/zr/r-3 
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an odd power, q > 3. By Lemma 4.4 (i), I C(t)“ : C(w)” 1 < 2. Since 
G,, c C(W), it follows that C(W) = C(t). 

Clearly, h --- q + 1. 

LEMVA D.l. c =-: q - 1, and either 

(i) II = qs -I- 1 andd .=: 0, or 

(ii) 71 ;=1 1 + q(q2 + 1),/2 and d -= (q - 1)/2. 

Proof. By definition, c is the number of involutions x = (&)... . Such 
an involution x normalizes G,, , so centralizes t and fixes d. Moreover, xd is 
regular. 

In its usual permutation representation, PGL(2, q) has precisely q(q - 1)/2 

regular involutions, all of which are conjugate under PSL(2, q). Thus, there 
are (q - 1)/2 involutions in C(t)A which interchange OL and p and are conjugate 
to t“‘. Moreover, with x as in the previous paragraph, t’A and P arc conjugate. 
If  we have .xd :: tlA, then xt’ E WC C(t’) implies that x E t’(t). Thus, 

c =q-- 1. 
By Lemma 4.3 (iv) and (ii), c - d = q - 1 or (q - 1)/2, and n - 1 := 

(h - l)((c - d)(k -+ 1) = q3 or q(q2 + 1)/2. 

LEMMA 2. 

(i) C;,, is semiregular on Q - A. 

(ii) IWIi(qtI) and 1 G,, 1 1 (q2 -- 1). 

(iii) Jf I # U C W, then N(U) = C(U) = C(t). 

(iv) I f  1 + 7JC G,, and U n 14 =: 1, then N(U), = C(U), . 

Proof. (i) By Lemma4.4 (ii), W is semiregular on Sz - A. Suppose that 
G,, is not semiregular on ,Q -- A and U is G,,,, for some y  E Sz - A, such 

that Gaav # 1. Then U n W = 1, and so ( U 1 is odd. Take x any element 
interchanging (Y and B. Eow i U* 1 =: 1 U 1 and xA inverts UA, so x inverts U. 

Now let r be the fixed point set of U. Then A n F = {a, /2}, as C(t)A is 
a Zassenhaus group. Also, tr fixes just LY and /?, so that 1 r / is even and 
N(U)’ is I’SL(2, q’) or PGL(2, q’). Since Aut( U) is abelian, C(U)’ contains 
PSL(2, q’). Thus, some element interchanging LY and /3 centralizes U, in 
contradiction to the previous paragraph. 

(ii) We know that WC: C(t’). Thus, W acts on A’. Since A n A’ = O, 
WA’ is semiregular by (i). 

(iii) Since W is semiregular on Q - A, the fired point set of U is A. 
Thus IV(U) (7 C(t) = C(W) C C(U). 

(iv) By (i), Ti fixes only s and /3. Thus, N(U), fixes /3 and N(U), C 

GxB C C(U). 
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LEMMA D.3. G, has a normal subpoup Q qf order n - I such that Q is 
regular on Q - a. Also, (1 Q 1, I GaB [) := 1. 

Proof. By Lemmas D.1 and D.2 (ii), G,, is a Hall subgroup of G, . I f  
P f  1 is a Sylow p-subgroup of Ge9 , then, by Lemma D.2, IY(P)~ := C(P), . 
By repeated use of Burnside’s transfer theorem, we find that G, has a normal 
subgroup Q such that G, = Q . Gx4 and Q n G,, : 1. Then 1 Q ! = n -- 1 
and Q is regular on a --. 01. 

LE%Im D.4. G is simple. 

Proof. I f  G is not simple, let M hc a proper normal subgroup of G. 
Then M is transitive and G = M . G, :.= M . Q . Gao . Thus, :l,ZQ < G, 
and (MQ) Go3 : G. Therefore, MQ is 2-transitive on i). 

Suppose first that IWQ = G. Then / G : M ! i j Q 1, and (I Glzi :, ; Q i) := 1, 
by Lemma D.3, so G,, C. &I. Thus, t E M and [t, Q] G Q f~ -12, so that 
Q -=. (M n Q) C,(r). Thus, G -: -41 . C,(t). Since t’ E M, C,tz(t)d -7/- 1. 
Since C(t)A is PSL(2, 4) or PGL(2, q), C,V(t)d 4 C(t)A, and C,, C C,\,(t), 
we have C(t) c‘ C,\,(t). Thus, G -- M, a contradiction. 

Consequently, L = &IQ q G, with L 2-transitive on J2. AsL C G, either 1, 
has a regular normal subgroup, or L is PSL(2, q’), PGL(2, q’), I’SC’(3, q’), 
PGD’(3, q’), or a group of Ret type. L has no regular normal subgroup, as G 

does not. I f  L is PSL(2, q’) or PGL(2, q’), then G (7 PFL(2, q’). Since G*,, is 
cyclic, G == PSL(2, q’) or PGL(2, q’), w UC ,l h is not the case. IfL is PSU(3, q’) 
or PGU(3, q’), then q’ + 1 = i d ; = q i-- 1 and / G,,, ;: I L,, / 3 (q? - 1)/‘3. 
By Lemma D.2 (ii), the results of Suzuki [2S] and O’San [20] imply that G 
is PSU(3, q) or PGU(3, q), which is again not the case. 

Finally, suppose that L is of Ree type. Hy Section 2, CL(t) - H x <t>, 

where H := PSL(2, q’). Then q -: q’ , n = g3 {- 1 and d =-7 0 (Lemma D.l). 
Consequently, all involutions of G arc in 1,. Let V be a Sylow 2-subgroup of 
Cl,(t) such that t’ E V and let (x) be the Sylow 2-subgroup of G, . WC claim 
that x = t. I f  x E W, then L(x) has Sylow 2-subgroups of type (2, 2, 1 x I) 
and all involutions of L(x) are conjugate in G. Thus I x ’ -= 2 and s :: t. 

Suppose now that x $ W, so that Cc;(t)d --: CL(t)d(~)d and x2 E W. As 
above x2 : = t. Now C,(V) = V x O(W) and (;\rG( V) n C(t))d is isomorphic 
to S,i . As all involutions of V are conjugate in NJ V), 7 ] [NJ V)!. It follows 
that j Xo( V)/C,(V)i = 2 . 3 . 7 and NJ V)/C,,( I/) contains a subgroup 
isomorphic to S, . This is impossible, hence x = t as claimed. Thus I/ is 
a Sylow 2-subgroup of G. 

Now C(V) =-= I;- x O(W). Since V is also a SyIow 2-subgroup of C,(t’) 
containing (t’, t), C(V) =: V x O(W). Therefore, O(W) == O(W). Thus, 
O(W) fixes D u d’ pointwise, and by Lemma D.2, O(W) = 1. It follows that 
W =-- (t), so that L = G, contrary to hypothesis. 
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LEMMA D.5. n = q3 + 1 and all involutions of G are conjugate. 

Proof. If II + q3 + 1, by Lemma I>. I we have 1 Q [ = n - 1 = q(q2 + 1)/2. 
The proof will be divided into three parts. 

(i) We first show that Q = QOL, where Q, = C,(t) and L are elementary 
abelian groups of order q and (y2 -k 1)/2, respectively. Moreover, G*, 
normalizes both QO and L, and G,, is fixed-point-free and irreducible on L. 

By Lemma D.3, (1 Q I, 1 Gkr( I) = 1. Taking QO = C,(t), we see that Q, 
is an elementary abelian group of order q such that GO3 acts irreducibly on 
Q, . %Ioreovcr, if 1 is some prime divisor of (q2 + 1)/2, then G,, normalizes 
a Sylow l-subgroup I, of Q. 

Identifying Q with Q - 01, where 1 EQ corresponds to /I E Sz - 01 (as we 
may by Lemma D.3), we see, using Lemma D.2 (i), that all fixed points of 
elements of G$ lie in Q,, , which corresponds to A. Thus, Gas is fixed- 
point-fret on L. 

Since C;,, is fixed-point free on L, and I G,, 1 3 2 1 G$ 1 > q - 1, we 
have ] L 1 3 q. However, / Q : Q,, 1 = (q2 -t- 1)/2, so that I is the only prime 
divisor of (q” + 1)/2, L is elementary abelian of order (q2 + 1)/2, and GWB 
acts irreducibly on L. 

(ii) We next show that Q = QO x 1, is abelian. 
Kow No(Qt,) =Z Q&‘, with L’ -_: -WL(Q,,). Since G,, normalizes L and 

Q2o > GB normalizes L’. Since G,, acts irreducibly on L, L’ = 1 or L. If 
L’ == 1, [Q : fVo(Qs)] = [Q : QO] = (q2 + 1)/2. But (q2 $ I)/2 f l(mod p), 
contradicting Sylow’s theorem. Therefore, Qs 4 Q. 

I\l’ow LG,, is a Frobenius group with Frobenius kernel L and Frobenius 
complement GX9 by (i). Since LG,, normalizes QO and WC G,, centralizes 
QO ,1, centralizes Qa . Thus, (ii) follows. 

(iii) We now derive a contradiction using an argument of Suzuki 
[27, Lemma 121. 

There are q(g(qs + 1) - 1) = q(q2 - I)/2 linear characters 5 of Q not 
having L in their kernels. Each induced character cc= is irreducible since G,s 
is fixed-point free on I,. In this manner we obtain s = q(q2 - 1)/2 1 Gti 1 
irreducible characters $i , +2 ,..., (bs of G, , each of degree i GaB 1, and these 
exhaust the irreducible characters of G, not having L in their kernels. 

Let x1 , x2 ,..., xs be the exceptional characters of G corresponding to 

4 1 ,..., +, [ll, pp. 146, 1471. Th esc are all of the irreducible characters of G 
whose restrictions to G, do not contain all the & with the same multiplicity. 

There is a linear character h + 1 of C=, , having Q in its kernel, such that 
At’ and X agree on G,, . (For example, the linear character of G, whose 
kernel is the product of Q and the subgroup of index 2 in G,, .) Then 
,jG := CJ + 1 with (T and 5 distinct non-principal irreducible characters of G. 
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If lc = 1 + 8, then 0 # (T, {, as otherwise either u or 5 would be linear, 
contradicting Lemma D.4. 

For each i andj, we have ((1 - h)“, xi - xj) = .+((l - A)‘, (di - dj)“) 1 

1(1 - As di - $j) = O, since 1 -- h -= 0 on Q. Suppose that (1 - X)G 
contains an exceptional character xi . It follows then that ((1 -- h)“, xj) = 
(( 1 - h)G, xi) i/; 0 for each j, so that (1 - h)” contains each of the s excep- 
tional characters. ‘I’h en 3 > s = q(q2 - I)/2 1 Ge,s 1 whereas 4 > 5 and 
1 G,, ! 1 (4” --- 1) (Lemma D.2 (ii)), a contradiction. 

In particular, neither u nor 4 is an exceptional character. Suppose that the 
restrictions of both 0 and 5 to G, contain a character $i . Then these restric- 
tions contain each of the s characters $Q , and we have 1 + q(q2 + 1)/2 = 
o(l) + i(l) >, .&(I) + s&(l) = 2s 1 G,, 1 = q($ - I), a contradiction. 

Re may thus assume that the restriction of u to G, contains no &, and 
hence has L in its kernel. It follows that the kernel of o contains I., con- 
tradicting the simplicity of G (Lemma D.4). 

LEMMA 11.6. C(t) has a unique normal su&voup C,,(t), having the properties: 
w L Co(t), C”(t)” = PSL(2, q), and Co(t)(l) = PSL(2, q) or SL(2, q). 

Proof. As C(t)O = PSL(2, q) or PGL(2, q), there is a unique Co(t) 
satisfying the first two conditions. Since W c‘ Z(C,(t)), a result of Schur [24] 
implies that either C,,(t)(i) == Z’SZ,(2, q) or SL(2, q), or q .= 9 and C,(t)” n W 
is cyclic of order dividing 6. Suppose then 4 :.= 9 and that 3 i C,,(t)“’ IT W [ 
and let I, be a Sylow 3-subgroup of Co(t) cl). Then I, is a nonabclian group of 
order 27 and exponent 3. On the other hand, C,(t) is an elementary abelian 
group of order 9, contained in Co(l)(i), with C,(t) n W 7:: 1, contradicting 
the structure of L. 

LEMMA D-7. C(t)” is not PSL(2, q). 

Pvoof. If C(t)d -= Z’%(2, q), then C(t) I= CO(t) and C(t)“) .-= PSL(2, q) 
or SL(2, q) be Lemma D.6. 

(i) Suppose that C(t)(‘) = PSL(2, q). Since C(t)d,= PSL(2, q) and 
C(t)A contains the regular involution trd, q = 3 (mod 4). Also, q + 1 > 4. 
Since C(t) :: C(t)(l) x W, C(t) n C(t’) = (C(t)(l) n C(t’)) x IV, where 
C(r)(l) n C(t’) is dihedral of order q + 1. Thus, Z(C(t) n C(t’)) r (t’) x W. 
Interchanging t and t’, Z(C(t) n C(t’)) = (t) x W’. Since W n TV’ 7:: 1, 
IV’ = (t’). By Section 2, G is of Ree type, in contradiction to the minimality 
of G. 

(ii) Suppose that C(t) U) :-= SZ,(2, q). Let (N) be the Sylow 2-subgroup 
of W, (x’) a Sylow 2-subgroup of IV’. Since t’ centralizes W, WC C(t’) = 
C(W), by Lemma I>.2 (iii). Thus, ( X, x’) is abelian of exponent i x /. 
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Since C(t’)A’ is PSL(2, q), A+’ is inverted by an involution y”’ of C(+“. 
Since all involutions of C(t’)d’ are conjugate, we may suppose y is an involu- 
tion. Then XY = X-%I, with w E (x’). Therefore ( w 1 < 1 x 1. 

We note first that x # t. For if x = t, C(t) = C(t)(l) x O(W), and the 
Sylow 2-subgroup of C(t) is generalized quaternion, contradicting the fact 
that <t, t’>, a Klein group, is contained in C(t). 

Suppose next that ] w 1 < I x 1. Then ty = t, so y E C(t) = C(X). Then 
x2 = u; (; IV’ and x2 E W, so x2 = 1, and x = t, in contradiction to the 
previous paragraph. 

Thus, 1 w I = I x 1, and (~y)~ = w, where w generates (x’). But any 
Sylow 2-subgroup of C(t’) is the central product of <w) and a generalized 
quaternion group. Therefore, w cannot bc a square in C(t’), a contradiction. 

LEMMA D.8. If q- 1 (mod 4), then G has quasi-dihedral Sylow 2-sub-groups. 

Proof. By Lemma D.5, C(t) contains a Sylow 2-subgroup S of G. We 
may assume that S = <t’) S,, . Here, S* is dihedral of order 3 8, by 
Lemma D.7. Thus, if S is not quasi-dihedral, then S must be dihedral. 
However, if S is dihedral, then C(t) has a normal 2-complement [12, p. 2601, 
which is not the case. 

LEMMA D.9. If q = 3 (mod 4), then a Sylow 2-subgroup of G is a wreathed 
group Z,, 1 Z, , where 2’ is the largest power of 2 dividing q + 1. 

Proof. Let S be a Sylow 2-subgroup of C(t) such that S contains the 
Sylow 2-subgroup (x’) of w’. If Co(t) is as in Lemma D.6, then 
[c(t) : Co(t)1 = 2, and C,,(t)(l) = PSL(2, q) or SL(2, q). 

(i) Suppose that C,,(t)(l) = PSL(2, q), so that C,,(t) = C’,,(t)“) x W. 
Then we may assume that S = DR, where D is a dihedral Sylow 2-sub- 
group of Co(t)(l), R is a cyclic Sylow 2-subgroup of G,, , and t’ E Z(S) n D. 

Then, since t’ E Z(S), S acts on d’. Xow the kernel of restriction map is kV’, 
so S n l+” 4 S. Since IV(S n wl) = C(S n W,) by Lemma D.2 (iii), 
S n W’ C Z(S). Also, Z(S) _C <R, t’), so S n W’C (R n W’, t’>. Since H 
is a Sylow 2-subgroup of G,,,{cy,/3}_Cd, andd’nd -= 0, Rn IV’-= 1. 
Therefore, S n W’ = (t’). Thus, the Sylow 2-subgroup of W is of order 2. 

Since the Sylow 2-subgroup of the two-point stabilizer of PGL(2, q), 
q = 3 (mod 4), is cyclic of order 2, ] R I = 4. Now, DA’ 4 S*’ and 
R*’ n P’ = 1. On the other hand, R*’ is a cyclic subgroup of order 4 of 
the dihedral group SA’. Therefore, R*’ Q S*‘. Thus, R*’ n LY’ 1 Z(S*‘), 
a contradiction. 

(ii) Suppose that Cu(t)(lJ = SL(2, q). Define x, y, and w as in the 
proof of Lemma D.7, part (ii). We may assume that y c C&t’). Then, 
RY = x’ *w, withy an involution, w E (x’), and ( w 1 < 1 x 1. 
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If x = t, then C,,(t) := Cs(t)‘r) x 0( w contains only one involution, t. ) 
On the other hand, since 4 = 3 (mod 4), t’ E C,,(t), a contradiction. As 
before, we have 1 x 1 =: / w j. 

Suppose that I x ; < 2f. Then, x4’ E CO(t’)d’, so that both x and y are in 
C()(t’). As (xy)? := w and all involutions in Co(t)“’ are conjugate to P’, we 
have xyu =: z~‘i E W’ for some element u E C(t’) = C( W’) with u2 = 1. 
Then w 7: (xy)” .--1 (~wr)~ = wi2, whereas (w) is the Sylow 2-subgroup of 
W’, a contradiction. 

Thus , 1 .2: 1 Z-Z 2f. The group (x, w, y) is a Sylow 2-subgroup of C(t), 
and therefore, of G. Since x and w commute, x and XV commute. Moreover, 
(x) n (9) =- (x) n (x-1~) and the involution of <x~~*w) is tt’. Thus, 
(x) n (XV) -= I, and <x, w, y) is wreathed, as asserted. 

At this stage, G is a simple group of order (1 -+ 4”) q3(q - 1) j W I, where 
] W [ j (4 -j- 1) (Lemma D.2 (ii)). If j W 1 = q + 1 or (2 t l)/(q f 1, 3), 
then the results of Suzuki [27] or O’Nan [20] will complete the proof. It 
follows that we must build up the order of W. In doing this, we modify an 
argument of Brauer [I, Chap. 61. Brauer carried out the process of building 
up j W! in the case where the Sylow 2-subgroups of G are quasi-dihedral. 
In the following argument, we will treat the cases of quasi-dihedral and 
wreathed Sylow 2-subgroups simultaneously. 

LEMMA D.lO. Let p be an odd prime divisor of q -(- 1. Then there is 
a Sylow p-subgroup P of C(t) such that P c C(t) n C(t’). There are invoZutions 
y1 in C(t) andy, in C(t’) such that (t’)gl = tt’, tY2 = tt’, y1 andy, normake P, 
and ( y1 , y2) induces on (t, t’) a group of automorphisms isomorphic to S, . 
Moreover, ylA inverts PA and yg’ inverts PA’. Finally, ;f p > 3, P is a Sylow 

. p-subgroup of G. 

Proof. Since C(t)A =. PGL(2, q), there is a dihedral group LA of order 
2(q $ 1) in C(t)A, Since t’ fixes no points of d, we may choose this dihedral 
group so that t” is central in it. Let P be a Sylow p-subgroup of C(t) such 
that PA is the Sylow p-subgroup of L d.A~IGirzl(q3-~I)q”(q-l)IWI, 
if p > 3, then P is a Sylow p-subgroup of G. Since W_C Z(C(t)), PC C(t’). 

Assume that Q =-z 3 (mod 4). Then all involutions in PSL(2, 4) are regular. 
It follows that there is an involution yA in C(t)A, which fixes no point of d, 
with the property that yA centralizes t” and yA inverts PA. 

Sow suppose that 4 6s 1 (mod 4). Then in th; dihedral group LA, there is 
an involution yA inverting PA and centralizing t . As Pa fixes no point of d, 
either yA or (yt’)” is an involution fixing no point of d. 

Thus, there always is an involution yd E C(t)A such that yA centralizes 
t”, yA fixes no point of d, and yd inverts PA. Now t” is regular and all 
regular involutions of C(t)A arc conjugate to i”. Therefore, there is an 
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involution y1 E C(t) with yld = yA. S imilarly, in C(t’) there is an involution 
y2 E C(t’) such that &’ centralizes tA’ and inverts PA’. 

Since fA is centralized by yld, (t’)“’ I= t’ or tt’. In the first case, ( y, t, t’) 
is an elementary abclian group of order 8 ( y 6 (t, t’), as y $ C(Y)). However, 
this contradicts Lemmas D.8 and D.9. Thus, (t’)“l = tt’, and similarly, 
tl* = tt’. This completes the proof. 

LEMMA D.ll. 

(i) I f  the Sylo~ 2-subgroups of G are wreathed, then the characters in 

&(2, G) hawe degrees I,$, q(q - I), q2 - p + 1, q(q” - q + l), (q - I)@* - q-t- I), 
and (q -+ l)(q2 - y $- 1). 

(ii) If the Sylow 2-subgroups of G are quasi-dihedral, tlzen the characters 
in B,(2, G) haze degrees 1, q3, q(q - l), q2 - p +- 1, q(q2 - q -+ l), and 

(4 f  l>(n’ - !I + 1). 
In either case, the permutation character 0 is the only character in B,(2, G) 

of degree q3. 

Proof. By Lemma 3.6, the permutation character 0 is in B,(2, G). In 
[6], Brauer found the degrees of the characters in B,(2, G) for a group G 
having wreathed Sylow 2-subgroups and no normal subgroup of index 2. The 

degrees are 1, cf”,f(f+ l),f 2 tf +I, $(f” +f +I>, 4f + l)(f 2 -i-f+l>, 
and e(f + l)( f 2 + f + l), where f is an integer and E -1 51. Braucr also 
states that there is only one character of degree ef”. Thus, to prove (i) it 
suffices to show that f = -q. From the fact that O(1) L= q3, for q an odd 
prime power, it follows that q3 = Gf s or y3 = f 2 + f + 1. Brauer also states 
thatf (f + 1) j ) C(t)l. Since (q3 - 1) +’ i C(t)\, we have q3 = ef3, and p = -j$ 
If y = f, then (qz + q -l- 1) 1 1 G I, which is not the case. Thus, q = -f, 
proving (i). 

To prove (ii), we first recall that all involutions of G arc conjugate and 
q 1s 1 (mod 4). Thus, (x, t’) is a Sylow 2-subgroup of G, with (x) the 
Sylow 2-subgroup of GIls . Then, x, t’ E C(t) - C(t)(l), and xt’ E C(t)(l) == 
SL(2, q). Since all elements of order 4 of SL(2, q) are conjugate, xt’ is con- 
jugate to the clement of order 4 in (x). We may now apply the results of 
Brauer [7, Section 81. Brauer has shown that B,(2, G) consists of characters 
x,, = lo , x1 , xs , x3 , x4 , and characters x(j), such that the characters ~(9) 
have the same degree, x. Moreover, if we set, xi = #, there are signs, 
6,) 6,) 6,) and an integer m = 1 (mod 4), such that 

1 + 8rXr = 6,X = +x2 - 6,x, , 1 + &xx, = ssxa 

s,s2s3 = 1, %% = m2x3 , x2 = -m = -1 (mod4), 

x, = 6, (mod 4), x4 = 0 (mod 2), 

x1(t) = %m, x2(t) = -S2m, x3(t) = -s, . 
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First we show that 0 = x1 . Since 1 -)- 6,x, = Srx, and x1 = 6, (mod 4), 
x is even, and 8 f x(j) for any j. Also, 0(t) = q = 1 (mod 4) and 6(l) = 
q3 = 1 (mod 4), so that 0 :A ~a , x3 , or x4 . Thus, 0 ::-= x1 . Since xl(l) r SAM, 
q = 6,m. 

Now 1 -= q3 = x1 .Y S,(mod 4), so that 6, = 1. As S&S3 = 1, 6, = 6, . 
Since xrxa :I- m2xs , x3 = qx2 . Using the relation 1 -:- 6,x, -_ -S,s, - S,x, , 
wc obtain x2 = q” - q + 1, xa x = q(q2 - q + l), and 6, : = - 1. From 
1 + sg2 : = S,.Y~ , it follows that xq :-: q(q - 1). Finally, 1 -F 6,x, :-= S1x 
implies that x ..-. q3 + 1 = (q + l)(q2 - q + 1). This proves (ii), and the 
proof shows that 0 -7 x1 is the only character of degree q3 in B,(2, G). 

LEMMA D.12. Letp ;7’- 3 be an odd prime diziding q + 1. l’hm the p-part 
of 1 W ; equals the p-part of q f  1. l’lze 2-part of TV 1 equals the 2-part of 
q$ 1. 

Proof. The last assertion follows from Lemmas D.8 and D.9. If p f 3 
is an odd prime and p 1 (q + I), we first show that p 1 I l&’ j. 

Suppose that p 7 j W 1 and let P, yr , y2 be as in Lemma D.lO. Then P is 
cyclic andy, inverts P, so that C(P)CX(P). We claim that N(P) .= (C(P),ylj. 
For, let S be a Sylow 2-subgroup of (C(P), yJ containing t, t’, and yl. . 
Then t = t”‘t’s W. By Lemmas D.8 and D.9, the derived group of a 
Sylow 2-subgroup of G is cyclic. Thus, (t) = St,(W). Also, N(P)/C(P) is 
cyclic, so that C(P)S (1X(P). By the Frattini argument, N(P) c C(P) SC(t) = 
C(P) C(t). However, in C(t) the only nontrivial automorphism induced on P 
is involutory and induced by yr . Thus, N(P) = (C(P), yl). 

\f:c now apply results of Brauer [7, Section 91 concerning the principal 
p-block of G. R,(p, G) contains 2 + (I P ] - l)j2 characters 1, $J, , Z/J@). 
These arc all real-valued, and there is a sign 6 such that 6 -I- &(l) = #u)(l) 
and 4,(u) -= S for each p-singular element u of G. 

Suppose that #,(l) is even. Then each $ti)(l) is odd, and since Z/J(~) is real- 
valued, #fi) is in R,(2, G) (Braucr [6]). By Lemma 3.6, the permutation 
character 0 of degree q3 is in B,(p, G), so that 0 = #r or z,W), for some i. 
Kow each z/N has degree q3 and each I,W is in B,(2, G). This contradicts 
Lemma D.ll, as (I P I - 1)!2 > 1. 

Therefore, &(l) is odd and #(i)(l) is even. By Lemma 3.6, 0 E B,(p, G), 
so 8 = z/r . Since p +’ 1 GaO i, S = #r(u) = t?(u) -== -1 for all p-singular 
elements u. Then #(i)(l) --= q3 - 1, which does not divide j G I. This is a 
contradiction. 

We thus have p 1 ] W 1. Again let P, y1 , and y2 be as in Lemma D.lO. The 
dihedral group D = (yr , ya) normalizes P. As P/P n W is cyclic and 
P n WC Z(C(t)), P is abelian. Since y1 inverts P/P n W, we have P = 
PO x (Pn W), where ] P,, 1 is the p-part of q + 1 and y2 inverts P,, . 



42 KAXTOR, O'NA.., AKD SEITZ 

Suppose 1 P, I> [ Pr\ W [. From the structure of P, it follows that n modulo 
C,(P) * O,(D) is abelian. By Lemma D.lO, n contains a 3-element inverted 
by y, . Thus, since p -# 3, the Sylow 3-subgroup of 11 centralizes P. However, 
C(P) C C(P n W) = C(t) by L emma D.2 (iii). Since yrye induces an 
automorphism of order 3 on (t, t’), the Sylow 3-subgroup of L) is not 
contained in C(P). This is a contradiction, so that [ P, 1 = [ P n W 1, as 
asserted. 

LEMMA D.13. If 3” is the 3-part of y  + 1 and 3” is the 3-part of j WI, 
thenh--k32andka 1. 

Proof. If 3 { (q + I), then, by Lemma D.12, ] W i = q $ 1 and Suzuki’s 
result [27] implies that G = PGU(3, q). Thus, 3 1 (q + 1). If h - k < 1, 
then the results of Suzuki 1,271 and O’Nan [20] imply that G - PSU(3, q) 
or PGU(3, q). Thcreforc, h - k > 2, so it remains to show that k 3 1. 

Suppose that 3 { ( WI, and let P, y, ,ya be as in Lemma D.lO. Since 
9 : (q + l), 3 1 (q2 - q + I), and 9 7 (q2 - q + l), so that a Sylow 3-subgroup 
of G has order 3 [ P 1 = 3h-1. Also, P is cyclic. Since (yr , y2) induces Sa 
on (t, 2’) and normalizes P, (yr , ye) has a 3-element x centralizing P but 
not t. Thus, B = (P, x) is an abelian Sylow 3-subgroup of G. Also, B is 
cyclic or of type (3h, 3). 

Since B is abclian, iv(B) controls the fusion of B. Thus, there is a 2- 
element x in N(B) with ux = rr-r for (u) = P, and C(B) C N(B). 

If B is cyclic, then IN(B) : C(B)1 = 2. 
If B is abelian of type (3h, 3) then N(B) does not act indccomposably on 

B as 3” > 3. Thus, there are elements q , vu2 in B such that I q 1 = 3*, 
1 v2 I = 3, B := (q) x (v2), and (q), (v2) arc both N(B)-invariant. In 
particular, v2 is not conjugate to any element of (v,), and N(B)/C(B) is an 
elementary abelian group of order 2 or 4. If IN(B) : C(B)1 = 4, then IC(v2)l 
is even. However, (vra) - 6,(B) = (u3), and each element of C(t) of 
order 3 is a cube in C(t), so that v2 must fuse to an element of (~3) := (vra), 
which is not the case. 

Thus, we always have IN(B) : C(B)] = 2 and N(B) = (C(B), x). Since B 
centralizes no conjugate of t, IC(B)I is odd and [ x I = 2. Since B is abclian 
and G is simple, a result of Griin [14, p. 215] implies that x inverts B. 

We may now use the same argument as in the proof of Lemma D.12 to 
obtain a contradiction. 

LEMMA D.14. Let P be a Sylow 3-subgroup of C(t). Then P = P,, x P, , 
where PI is the Sylow 3-subgroup of W, 1 P,, 1 = 3h, I P, 1 = 3”, P,, = (I+,>, 
PI = (II&. Thme is a 3-element x such that B = (P, z) is a Sylow 3-subgroup 
of G and 1 B : P 1 = 3. There is an involution y in N(B) such that y inverts x 
and uO and centralizes u, . 
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Pyoof. Let P and yr = y be as in Lemma D.lO. As P n PVC Z(P) and 
P/P n W is cyclic, P is abelian. Since y inverts P/P n W and centralizes 
P n W, WC have P = PO x P, : (uO) x (ur) with PO inverted by y and P, .= 
Pn W centralized by y. Letting y2 be as in Lemma D.10 and <a) a Sylow 
3-subgroup of (y,, yz), we have x $ C(t), x E N(P), with x inverted by y. Since 
9 { (q* -- q -i- l), B = (P, 2) is a Sylow 3-subgroup of G and [B : P] == 3. 

LEMMATA D.15. Set uO* = u,,%,~ and ulz = u,,~u~*, where a, b, c, and d are 
integers. Then 

(i) i u1 1 = 3k z-: 3; 

(ii) a z ] $ 3”-‘a,, with a, g 0 (mod 3); 

(iii) c = 3h-1~, , with c,, s$ 0 (mod 3); 

(iv) d = 1 (mod 3); 

(v) a, -: bc,, z-4 0 (mod 3). 

Proof. Let 7 and z be the automorphisms induced on PO x P, by y and z, 
respectively. ‘I’hcn j corresponds to [-i 3 and z corresponds to [z ,!J, where 
the first columns are taken modulo 3h and the second columns are taken 
modulo 3”. 

Now z3 = 1, so that 

Also, zy = Z-*, so that 

Consequently, we must have 

a* + bc z a (mod 3h), 

(a + d)c z -c (mod 3h), 

(u + d)b =I --b (mod 3”), 

d2 + bc G d (mod 37. 

Also, g-l =-: j~jj = [-z -iI, so that 
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Thus, we also have 

u2 - bc .S 1 (mod 3h), 

(u - d)c = 0 (mod 3h), 

(u - d)b F= 0 (mod 37, 

d* - bc = 1 (mod 3k). 

(3) 

We note that, since 1 zlr* i = ; ul i = 3k, we must have c = 3h-k~, for some 
integer c0 . Kow suppose that c0 = 0 (mod 3), and let U* = uiLel. Then 
(u*)~ E (u*) and u* E W”. Thus, x~Ai((u*)) := C(r) (Lemma D.2 (iii)) 
which is not the case. Thus, c,, ++ 0 (mod 3). 

From (2) and (3) we obtain 

(2~ + l)(n - 1) =: 2a2 - a - 1 =: 0 (mod 3h), 

(2d+l)(d-l)=:2d2-d-11-.0(mod3k), 

a2 =I 1 + bc z d2 (mod 3k). 
(4) 

Since [ us2 ] =: 1 uU 1 and h - k _>, 2, 3 f a. Thus, by (4), we have a .= fd 
(mod 3”). If a = 2 (mod 3), then 2u -I- 1 = 2 (mod 3) and this contradicts 
(4). Thus, a = 1 (mod 3). Since (a - 1,2u ;- 1) = 3, by (4) either a .= 1 
(mod 3”-l) or a = - 4 (mod 3h .‘). 

Suppose that a = - & (mod 3”-l). Then from (2) it follows that 3h-kbc, = 
bc = a - us E - 4 (mod 3”-l), and consequently h - K < 1, a contradic- 
tion. Thus, a = 1 (mod 3h-1), and we can write a = 1 + ~,,3~-‘. By (2), 
3h-kbc, = bc E -u,3”--1 (mod 3”). Since 3 { ca , it follows that 3k-1 \ b. 
Write b = 3k-1b 

: ‘7k--lb0 
NOW Uuz = lfg Ui , so that (u,,“) is normalized by Z. As x has order 3, 

u,,(J is centralized by x. Set Iz, = u:*-~, so that 22, E (z+,“) and 27” is centralized 
by x. Since 1lr2 = : @urd and ur == z$= u{o(~+~+~*)u~~, we have c,,( If d + d2) SE 0 
(mod 37, and since c, + 0 (mod 3), 1 + d + d2 = 0 (mod 3k). Then 
d = 1 (mod 3), and d2 + d -t I = (d - 1)” -I- 3d = 0 (mod 9) if K > 2. 
Thus, if h >, 2, we have 3d = 0 (mod 9), whereas d = 1 (mod 3), a con- 
tradiction. Thus iz = 1. 

We now have c .= 3”-lc, , c,, + 0 (mod 3), d = 1 (mod 3), and k = 1. 
From (2) we also get cl,, + bc,, L-: 0 (mod 3). 

It only remains to show that a, -+ 0 (mod 3). If a, = 0 (mod 3), then 
a may be taken as 0, and 6 = 0 (mod 3). Thus, ugZ = u,, and urZ = u~‘-‘Qu~ . 
The group B,!(u,) is abelian, since it is of order 9, and Z(B) = (u$. Thus, 
B has class 2. Consider the action of N(B) on B/Z(B). The involutiony inverts 
the coset zZ(B) and centralizes u,Z(B). Clearly, the action of N(B) on 
B/Z(B) must be that of some 2-group in GL(2, 3). If the order of this 2-group 
is greater then 2, there is some 2-element g E N(B), such that g inverts 
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R,‘%(B). Therefore, g permutes the four subgroups of P of order 3, while 
normalizing .Q,((uJ), so that g normalizes some conjugate of (IQ in P. 
Then, g must centralize this conjugate of (u,) (I‘emma D.2 (iii)), and con- 
sequently z centralizes an element of 13/Z(B). Since this cannot occur, the 
action of IL’(R) on B/Z(B) must be of order 2 and X(B) has a normal subgroup 
of index 3. The Hall-Wielandt theorem [14, 1’. 2121 implies that G has 
a normal subgroup of index 3, and this contradicts Lemma D.4. Therefore, 
a, f 0 (mod 3), as asserted. 

I,I~~IA D.16. 

(j) W’) = <C(P), B, Y>; 
(ii) N(B) = (B, y) = (P, Z, y). 

Proof. 

(i) Let 6 E N(P). From the structure of P (Lemmas D.14 and D.15), 
it follows that g normalizes Ql(P) and Q1((us3)). Since B permutes the 
3 subgroups of Q,(P) other than a,((~~)) transitively, for some h E B, 
gh E X((ul)) = C(t) (L emma D.2 (iii)). Since C(l) n N(P) = (C(P)n C(t))<y>, 
gh E (C(P), y>, so g E (C(P), B, y). 

(ii) Since B is not of class 2 (Lemma D.l5), and since P is an abclian 
subgroup of index 3 in B, P is weakly closed in B. Therefore, X(R) C -V(P). 
By (i) it suffices to show that X(R) n C(P) ---: P. 

Let R be a Sylow r-subgroup of C(P), r f 3. Then, in the notation of 
Lemma D.10, yr , ya normalize R, and z E (yr , y&. Since R is homocyclic 
on 2 gcncrators, and (yr , ye) induces a dihedral group of automorphisms 
of R, -if z centralizes some element of Rff, it centralizes all of R. Then 
u” E C(t), a contradiction. 

Thus, if a is a Sylow r-subgroup of N(B) n C(P), r f 3, we have 
[R, R] = 1, so fi c C(Z). Thus, R = 1. Therefore, N(B) n C(P) C P, and 
the result follows. 

LEMMA D.17. Set I = 3h-1. Then, B(l) = (uOz, ul) = s2,(P) ad Z(B) = 
(uo”) = q(P). 

Proof. This follows from the structure of B given in Lemma D.15. 

In the following we let S be a Sylow 2-subgroup of C(t) n N(P) containing 
the Klein group (t, t’). If S is quasi-dihedral, set T = <t, t’). If S is 
wreathed, take T to be the homocyclic abclian subgroup of index 2 in S. 
Thus, in either case (t, t’) Z T. 
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LEMIA D.18. 

(i) C(Z) n C(T) C B. 

(ii) C(P) = C(T). 

(iii) N(P) = N(Y) = (C(T),y, a). 

(iv) C(B) = Z(B). 

(v) X(B) = (B,y). 

Proof. To prove (i), recall that C(T) is an abelian group of order 

(q + I) 1 W I. I f  H is a Sylow r-subgroup of C(T), with 7 # 3, R is homo- 
cyclic on two generators. In the notation of Lemma D.10, z belongs to the 
dihedral group (yr , ya). I f  z centralizes some element of R#, a centralizes all 

of R and, in particular, R n IV # I. Fly Lemma D.2, z E C(i), a contradiction. 
Thus, C(Z) n C(T) C B, as claimed. 

Since P ,z C(T) and C(T) is abclian, C(T) C C(P). As P n H’ :# I, 
C(P) C C(t). Since C(t)d = PGL(2, q), C(P)d _C C(T)A. Since IV C C(T), 

C(P) C C( ‘I’). So (ii) follows. 
Then, (iii), (iv), and (v) follow from Lemmas D.15 and D.16. 

LEMMA n.19. ~A g E P#. 

(i) Zf g E (u,)z’ with r = 0, 1, - 1 then C(g) = C(t)z’. 

(ii) Ifx E cl(P), then C(g) = (C(T), a). 

(iii) In all other cases, C(g) = C(T). 

Proof. Lemma D.2 (iii) implies (i). Suppose that g is not in (u,>~’ for 

7 = 0, I, -1 andsetK = C(g).S ince C(T) is an abelian group and contains 
P, C(T) C K. 

WC claim that T is a Sylow ?-subgroup of li’. For if T is not a Sylow 
2-subgroup of K, let TC K, with 1 ir : ‘I’ 1 = 2. Let t, be an involution of 
Z(T) and let d, be the set of fixed points of t, . Then it follows that gAr is 

centralized by a Klein group in C(t$-‘l. But since C(t,)“l =2- PGL(2, q) and 
gdr # 1, this is impossible. 

We note next that C(t) n K = C(T). Clearly, C(7’) C C(t) n K. Since 
gA f: 1 and C(t)” = PGL(2, q), (C(t) n K)d C C(P)‘-‘. Since C(P) =: C(T) 
and IV C C(T), C(t) n K C (I(T). Likewise, C(t’) n K = C(T) and 
C(tt’) n K = : C(T). 

Now let R bc a Sylow 3-subgroup of K containing P. Then, R = P or 
[ R : P i -= 3. In the latter case, R C N(P) = (C(P), z, y) (Lemma D.16 (i)). 
Since C(P) = C(T) C K, <P, Z) C K. Thus, we may take R = (P, 2). I f  
R = (P, z), g E Ul(P). I f  R = I’, g $0,(P). 

Now y  4 K, since the Sylow 2-subgroups of K are abelian. Thus, Rr,(P) = 
C(P) * R. Also, Z(J(R)) = P. By Glauberman’s theorem [l 1, p. 2801, K has 
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a normal 3-complement, say 1,. Then, V,(T) .: C,(T), so L has a normal 
2-complement, M. 

Then M : C.&t) CM(t’) C,+,(lt’). Since C(t) n K = C(T), C(t’) n K -: 
C(T), and C(tt’) n K = C(T), ill C C(T). Therefore, L C C(T). So 
K =-- R C(T) and the result follows: 

LE~N.~ 11.20. If  z, E B - P, then IC(v)I is odd and v  is conjugate to no 
element of P. 

Proof. Suppose that 0” = u E P, g E G. Then C(v)g = C(u) and (Z(B), v>g 

is contained in some Sylow 3-subgroup of C(u). Thus, by replacing g by 
gc for some c E C(u), WC may assume Z(J?(R)8 c R. Thus, (uir)g C U and 
(u:)!’ L I’. As h 3 3, (z$ -’ )” C P. As u1 is not a cube in N((ui)) .= C(t) 
(L,c~m,ma D.2 (iii)), (u$-‘) is not conjugate to (u,>. Therefore, (ut’-l)g -: 

(4 ,, so g E N(P) (Lemma D.19). Then, z’” E P, with v  E B - P, a con- 

tradiction. 
If  iC(v); is even, then v  centralizes a conjugate of t. Then, z’ is contained 

in some conjugate of P, which is a contradiction. 

LE~IA D.21. I fv E B - P, then (v, Z(R)) is a Sylozc: 3-s&group of C(r). 

Proof. By Lemma D.20, TJ is conjugate to no element of P. For any 
u E B -.- P, C,(u) = (u, Z(B)). Thus, C,(v) is a Sylow 3-subgroup of C(a). 

LEMMA D.22. If  v, , va E B -- Pare conjugate in G, then they are conjugate 
in X(B). 

Proof. Suppose that wig = v. L , g E G. By Lemma D.21, C(q) has Sylow 
3-subgroup (z.~, Z(B)). Thus, we may assume that (z’i, Z(R))9 : (v?, Z(B)), 
so that Z(R)g C (Q , Z(B)). Let E ==I 3h---1. Then, (ual)g E (~a, Z(B)). By 
Lemma D.20, (u”l)g E Z(B). Th us, g E N((u,~)) = (C(T), x, yj = :V(T) 
(Lemmas D.18 (iii) and D.19 (ii)). Al so, C(T) has a normal 3-complement H 
such that C(T) z-= P x H. Let g =-.= glgz , where g1 E B(y) and g, E R. Then 
z1p E H. so that [$I, gz] E H n B = 1. Therefore, Ed = v:lgt -: vi1 and 
g, E M(B). 

IXMMA D.23. If  v  E B - P, then C(w) has a normal 3-complement. 

Proof. By Lemma D.21 if v  E B - P, then (ZJ, Z(B)) is a Sylow 3-sub- 
group of C(W). By Lemma D.20 1 C(v); is odd. Thcrcfore, all elements 
of C(zl) normalizing (v, Z(R)) must centralize it. Hv Burnside’s transfer 
theorem [14, p. 2031, C(E) has a normal 3-complement. 

LEMMA D.24. There is an element f  E B - P with F G B(l) == Q,(P). 
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Proof. By Lemma D.17, B(l) = Q,(P). Since B is nonabelian, B/B(‘) is 
abelian of type (3”-‘, 3). Thus, we can clearly choose 2 E B - P such that 
53 E B”‘. 

LEMMA D.25. If i is chosen as in Lemma D.24, then B - I’ is the disjoint 
union of the sets fuojBcl), H-lu,jB(l) for j = 0, I,..., 3h-l - 1. Zf u c HuOjB(l), 
then & n B =: &,JB”) ” ~-lq-JB(l). 

Proof. The first statement follows from the structure of B. I f  u E B - P, 
then, by Lemma D.21, ,CB(u)l L- I(u, Z(B))] = 3h. Thus, if u E Zu,,jB(l), 
then u” = zu,,jW. Since y  inverts B/B cl), the result follows from Lemmas 

D.22 and D. 16. 

We can now complete the proof of Theorem 1.1. Let h be a linear character 
of B with kernel P. We can choose h so that, if u E .5P, then h(u) = p, where p 
is a primitive cube root of unity. Thus, if o lies in S-*U~‘B(~), X(zs) p-l. 

I f  x is any irreducible character of G, consider x(u) and (1 - A)(U) for 
u E B - P. If  u E Zu,,jB[l), then X(U) = x(zu,,j) = ~(f-~zc;‘) (by Lemma D.25) 
and (1 - X)(U) = 1 - p. I f  u E S-‘u,‘B”), then (1 - A)(U) = 1 - p-l. 

Now consider B,(3, C), the principal 3 block of G, and let X(r), Y E G, 
denote the column whose entry for x E B,(3, G) is x(r). I f  Y E U - P it 
follows from Lemma D.23 that X( Y is the column of generalized decom- ) 
position numbers for the block B,(3, G) and the 3-section of r [5, (2.6), 

Corollary 51. Defining inner products of columns as usual we have: 

(a) If  z‘ E B - P, then (X(z), X(V)) is the 3-part, 3h, of C(V) (see 

Brauer [5, 2.71). 

lb) If vu1 9 2 z’ are in B - P and w, is not conjugate in G to z2 , then 

(X(q), X(Q)) = 0 (Brauer [4, (7C)]). 

(c) If  v  E B - P, then (X(l), X(V)) = 0 (Braucr [4, (7C)]). 

Set 

Then R is the column whose entry in position x E B,(3, G) is just (x, 1 - A)B . 
In order to compute R it suffices to let u range over B - P, since 1 - h 
vanishes on P. We thus have 

R=& 

31-l-1 

c 9X(IU,j)( 1 - p + 1 
j=O 

- p-1) = 3:! 3hiM1 27X(puoj) 
j-0 
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Since the 3h l clemcnts zf4,j, j =: 0 ,..., 3’+l- 1, lie in distinct classes of G 

(Lemma D.X), it follows from (a) and (b) that 

(R, R) = &. 3h. 3h-’ = 3. 

However, each entry in H is an integer, so that R must have exactly 
3 nonzcro entries, each k 1. From the definition of R it is clear that lo 
contributes a 1. Let 0 bc the permutation character, which, by Lemma 3.6, 

is in E&(3, G). I f  z E B - P, then v  fixes no points of R, so that d(a) ; - 1. 

‘l’hcs, the entry in the 0 position of R is 

Sow let x be the third character in B,,(3, G) that contributes a non-zero 
entry to R. By (c) we have 

--- 
(X(l), R) = & C (X(l), X(4(1 - 4(u)) = 0. 

UEB 

I-iowevcr, (X(l), R) = 1 . 1 -I- q3(- 1) + ,Y( I)&, where 6 = f  1. Therefore, 
x(1)8 = qa - I, 6 = I, and x(1) = q3- 1. However, qa - 1 does not 
divide i G 1. This final contradiction completes the proof of Theorem 1. I. 

I. J. I,. ALPEHIN, R. BRKER, AND D. GOIUPJSTEIN, Finite groups \vith quasi-dihedra! 

and wreathed Sylaw 2-subgroups. Tmns. ALb1.S 151 (1970). 1-261. 
2. I-I. BESWZR, Endliche zweifach transitive Pcrmutationsgruppen, dercn Involutionen 

kcine Fixpunkte haben, Muth. Z. 104 (1968), 175-204. 

3. H. BEXDEH, Transitive Gruppen gcrader Ordnung, in dcncn jedc Involution 
genau eincn Punkt festlasst, J. Algebra 17 (1971), 527-554. 

4. R. Fh~cm, Zur Darstellungsthcorie der Gruppcn endlicher Ordnung, II, ~LZ~z!h. 

Z. 72 (1959), 25-46. 
5. R. BWLJER, Some applications of the theory of blocks of characters of finite 

groups, I, 11, J. Algebra 1 (1964), 152-167, 307-334. 
5. Ii. BMLTR, Investigations on groups of even order, II, Proc. Nat. Acad. Sci. U.S.A. 

55 (1966). 254-259. 
7. R. BRXER, Some applications of the theory of blocks of characters of finite 

groups, III, J. Algebra 3 (1966), 225-255. 

481,!21/1-4 



50 KANTOH, O’NAR’, ASD SEITZ 

8. W. B~~RNSIDE, “Theory of Groups of Finite Order,” Dover, New York, 1955. 
9. W. hIT, On a class of doubly transitive permutation groups, Ill. I. M&r. 4 (1960), 

17&186. 

10. W. FEI~ AXD J. G. THOMPSON, Solvability of groups of odd order, Pacific j. 
Much. 13 (1963), 775-1029. 

11. D. GOWNSTEIN, “Finite Groups,” Harper and Row, New York, 1968. 

12. D. G~RENSTEIN .4ND J. \\‘AI.TER, The characterization of finite groups with dihedral 
Sylow 2-subgroups, I, II, III, /. Algebru 2 (1965), 85-151, 218-270, 334-393. 

13. G. GLAIJBERMAN, Central elements of core-free groups, J. Algebra 4 (1966), 
403-420. 

14. M. HALL, JR., “The l’heory of Groups,” MacMillan, New York, 1959. 

15. K. HARADA, A characterization of the simple group U,(5), Nugoyu Murh. J. 38 
(1970), 24-40. 

16. B. 13Ul’I’ERT, Zwcifach transitive, auflijsbarc Permutationsgruppen, Math. Z. 
68 (1957), 126-150. 

17. N. ITO, On a class of doubly transitive permutation groups, Ill. J. Math. 6 (1962), 
341-352. 

18. N. Ire, On doubly transitive groups of degree n and order 2(n - l)n, hTagoyu 
Much. /. 27 (1966), 409-417. 

19. II. L~NEB~JRG, Chamkterisierungen dcr endlichen dcsarguesschcn projektiven 
Ebenen, 1Math. Z. 85 (I 964), 419-450. 

20. M. O’S.ax, A characterization of U,(q), (to appear). 
21. T. G. OSTROM .4x1 A. WAGNEH, On projective and afine planes with transitive 

collineation groups, iMath. Z. 71 (1959), 186-199. 
22. R. RI:E, A family of simple groups associated with the simple I,ie algebra of type 

(G,), Aw. /. Math. 83 (1961), 432-462. 

23. R. &I:, Sur une famille dc groupes de permutations doublement transitifs, 
Cunud. J. Much. 16 (1964), 797-820. 

24. I. Sceun, Untersuchungen iiber die Darstellung der endlichen Gruppen durch 

gcbrochene lineare Substitutionen, J. reine ungew. Math. 132 (1907), 85-137. 
25. 31. SUZUKI, On a class of doubly transitive groups, Ann. Math. 75 (1962), 105-145. 

26. M. SIJZUKI, On a class of doubly transitive groups, II, Ann. Math. 79 (1964), 
514-589. 

27. -MM. SUZUKI, A characterization of the 3-dimensional projective unitary group 
over a finite field of odd characteristic, /. Algebra 2 (1965), 1-14. 

28. II. ~VII&wDT, “Finite Permutation Groups,” Academic Press, New York, 1964. 
29. E. WITT, Die 5-fach tmnsitiven Gruppen von Mathieu, Abh. Math. Hamburg 

12 (1937), 256-264. 

30. H. %SSIXHAUS, Kennzcichnung endlicher linearer Gruppen als Pcrmutations- 
gruppen, Abh. Muth. Hamburg 11 (1936), 17-40. 


