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31. In the discussion of the Riccati equation dy/dt = r(t)+a()y+ b(t)y? given in this
appendix, we did one change of variables to convert to a Bernoulli equation and then
another change of variables to obtain a linear equation. It is possible to combine the
two into a single change of variables. If yi (¢) is a particular solution of the Riccati
equation above, show that changing to the new dependent variable

wit) = ————
y(@®) — y1(®)
yields a linear equation for du/ dt.

32. Construct your own Bernoulli equation exercise of the form dy/dt = a(t)y+ b(t)y’
from the linear equation dz/dt = z + e,

33. Construct your own Riccati equation exercise from the function y; (¢) = t* +2 and
the Bernoulli equation dw/dt = w + t*w?.

B POWER SERIES: THE ULTIMATE GUESS

One of our most commonly used methods for finding formulas for solutions of differ-
ential equations has been picking a reasonable guess for a solution which is then sub-
stituted into the equation to see if it is indeed a solution. We improve our chances of
success by including unknown constants whose values are determined as part of the
process.

The only difficulty with this method is deciding what to guess. It would be sweet
if there was a guess that always, or almost always, works. In this appendix we present

such a guess.

A First-Order Example

Consider the equation p
Y
i ty + 1.

This is a linear equation, and we could try to solve it using an integrating factor (see
Section 1.9). However, the integrals involved are problematic, so we would rather
guess. But what should we guess? No function y(z) jumps to mind.

Since we do not have any ideas regarding what guess to make, we make a guess
that does not require any ideas. We know that almost all nice functions encountered in

calculus have Taylor series, SO we guess
o0
y(t) = ap + at +a2t2 +...= Zant”.
=0

That is, we guess the Taylor series for y(t) centered at t = 0 (a Maclaurin series).
As you remember from calculus, an infinite sum is really a limit and the first ques-
tion with any limit is “Does it exist?”. In this appendix we answer all convergence
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questions with “No comment.” Ignoring questions of convergence is often done in this
kind of analysis. In fact, there is even a name for it. It is called formal analysis. We
essentially treat power series as polynomials with a really large degree. This kind of
analysis is like skipping dinner and eating double dessert. It tastes good, but it isn’t
very healthy. There are theorems that justify this formal analysis for most reasonable
differential equations including the examples that follow. However, there is also some
danger, so if your life (or someone else’s) depends on a power series calculation, you
should consult an advanced calculus or real analysis textbook for the appropriate con-
vergence result.

Given that disclaimer, we proceed with this power series as our guess. First, we
compute the derivative of the power series by differentiating term by term. We get

dy 2 = n
I = a; + 2ayt + 3ast +...=;nant .

So the differential equation dy/dt = ty + 1 becomes

ay + 2axt + 3a3t2 + 4(14!3 + 5a5t4 + ...
= t(ag + art —|—a2t2+a3t3 +a4t4—l—...) +1,
and simplifying the right-hand side, we obtain
ai + 2axt + 3a312 + 4a4t3 + 5a5t4 +...
=1 +a0t+a1t2+a2t3 +a3t4+a4t5+....

These two series are equal if and only if the corresponding coefficients are equal (see
Exercise 16). Hence, we can think of the equality of these two power series as the
infinite list of equations

ap =1
2612 = ag
3a3 = ay
4a4 =a
5615 = a3

with infinitely many unknowns.

Has guessing a power series helped? Basically we have replaced the differential
equation for the function y(r) with infinitely many algebraic equations for the infinitely
many unknown coefficients of the power series. At first glance, we seem to have re-
placed one problem with another. However, looking closely at the list of equations for
the coefficients, we notice something nice. We do not have to solve the entire infinite




744 APPENDICES

system of equations simultaneously. Rather, we can start at the top and work down,
solving each successive equation in terms of the previous solutions. That is,

| ‘
' ap =1;

2a, = ag,  which implies that a2 = %0;
e 1
3az = a;, which implies that a3z = 5;
|
‘ dag = ap = %0, which implies that a4 = ;—0;
5 ! which implies that ——1
as = a3 = —, ich implies that  ds = >
5 3 3 p 5 3.5
6ag = a4 = Ea_.oz’ which implies that g = 5 .CZ)' &
I
I
‘ Therefore, the solution y(#) has the form
ap o 13 ao 4 L 5 a0 6
t) = +1 —1 -t +—t — 1t + {5 R
y() =ao+t+ + + 5 5 4.6 +

2 3 2-4 3.

=ag 1+lt2+Lt4+—L—t6+... + t+lt3+—1——t5+... .
2 2-4 2-4.6 3 3.5

Since y(0) = ap, we see that this power series is the general solution of the differential
equation. The “...” represent higher degree terms that we could compute if we had the
patience. We can think of this power series representation of the solution as giving a

sequence of polynomials
y(t) =~ yo(t) = ao
y(@) = yi(t) =ao+1

ao
YO &y =a0+1+ 1?

\ a 1
| YO ~yst) =ao+t+ 2+
‘ 23 3
) | ap 2 13 an 4
1)~ )= t —1 =1 —
YO Rty =ao+t+ "+ 305

‘ which form better and better approximations of the actual solution (see Figure B.1).
This convergence is just like saying /2 ~ 1.4, V2~ 1.41,4/2 ~ 1.414, .... Each ad-
ditional term makes the approximation a bit more accurate near f = 0. We graph these
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o y Figure B.1
3 3 1 / The graph of the solution to the
initial-value problem
dy
27 — =ty+1, 0) =1,
gr 2T y(0)
|~ £ is shown in dark blue. The other
A graphs are the graphs of the Taylor
—— polynomial approximations to this
.//:/ l . solution of degrees zero through four.
. 1

Taylor approximations for y(0) = ap = 1 along with the actual solution in Figure B.1.
Note that, like most Taylor polynomials, the approximations are accurate near ¢ = 0 but
not even close far from this point.

A Second-Order Example: Hermite’s Equation

The power series technique is particularly useful on certain second-order equations that
arise in physics. These equations are linear but do not have constant coefficients.
For example, consider the second-order equation

d*y  dy

— —2%—+2py =0,
) ar  ar T P
ntial where p is a parameter. This equation is called Hermite’s equation. The coefficient
| the —2¢ of dy/dt is not a constant, so our usual guess-and-test technique for constant-
ng a coefficient equations does not work (try it and see).

Since no better guesses come to mind, we try the guess of last resort, that is, we
guess the power series

o
y(t) = ap+ait +axt’ +ast> +...= Zant".
=)

To try this quess, we need

d o0
d—i =aj + 2axt + 3ast® + dast® + Sast* +...= Z;na,,t”_l
n=
and
d? -
Et_;) =2a, + (3-ast + (4 -3agt> + (5 -Hast®> + ... = Zn(n — Dant" 2.
.1). n=2
ad- Note that y(0) = ag and y'(0) = a1, so we can think of the first two coefficients as the

165€ initial condition for an initial-value problem.
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Substituting these series into Hermite’s equation

d? d
__}i 2; _y

_ Doy =),
Fr R T

we get
(2a2 + (3 - Dast + (4 - Bagt® + (5 - Dast® + ... )
—2¢(ay + 2apt + 3ast” + 4agt® +...)
+2p(a0+a1t+a2t2+a3t3 Fow J=B
Collecting terms on the left-hand side yields the power series

(2pao + 2a2)
+ (2pa; — 2a; +6a3) t
+ 2pay — 4ay + 12a4) '
+ (2pas — 6as + 20as) £°
+...=0

In order for this power series to be identically zero, all of the coefficients must
be zero (see Exercise 16). Consequently, solving the differential equation turns into
the problem of solving the infinite family of algebraic equations with infinitely many
unknowns

2pag+2a; =0

2(p — Daj +6a3 =0
2(p—2)az +12a4 =0
2(p — 3)az +20as =0

Because ag = y(0) and a1 = y'(0) are determined by the initial condition, we can solve
this list of equations starting from the top to obtain

az = —pao
p—1
azy = — 3 aj
a4__g_—_2a2= (p—2)Pao
6 6
a5=—£—_—3a3= (p—"a')(p—l)a1

10 30
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Note that the coefficients with even subscripts are multiples of ag while those with odd
subscripts are multiples of a;. The resulting general solution is

—1 -2 -3 -1
y(t) = a0+ ait — pa0t2 I A a1t3 + 7@ )pa0t4 + )(p )P )a1t5 —
3 6 30
-2
=a0<1—pt2+(p—6£t42|:...>
p—1 5 Ap—3p=1) s
= t t o N
+a1< 3 + 30 +

With this series representation of the general solution of Hermite’s equation, we
are tempted to think that our discussion of this example is complete. However there are
some important special cases that we should consider.

The parameter p is a nonnegative integer
Suppose the parameter p is a nonnegative integer. For example, consider p = 0. Then
all of the coefficients having p as a factor are zero, and we have

0—-1 0—-3)0—-1
y(t):a0<1—0.t2—|—0.t4—...>—|—a1<t— Z t3—|—( ;é )t5—...).

Moreover, if we specify the initial condition y(0) = ag = 1 and y'(0) = a; = 0, we
get that the constant function
y(@) =1

is the solution to Hermite’s equation with p = 0 and (y(0), y'(0)) = (1, 0).
Next we consider p = 1. Then all of the terms having p — 1 as a factor are zero,
and we get

1-2
y(t)=ao<l—t2+%t4—...>+a1<t—0t3+0t5—...>,

Taking y(0) = ap = 0 and y’(0) = a1 = 1, we get that the function
y) =t

is the solution of Hermite’s equation with p = 1 and (y(0), y'(0)) = (0, 1).
Taking p = 2, we see that all of the coefficients having p — 2 as a factor equal
zero. Again taking y(0) = ap = 1 and y'(0) = a1 = 0, we get that the function

y(t) =1 — 22

is the solution of Hermite’s equation with p = 2 and (y(0), y'(0)) = (1, 0).

This pattern continues. If p is a positive even integer and (y(0), y'(0)) = (1,0),
then the resulting Taylor series has only finitely many nonzero terms. The same holds
if p is a positive odd integer and (y(0), y'(0)) = (0, 1). These solutions are called the
Hermite polynomials H,(r). We have shown that the first three Hermite polynomials
are Hy(t) = 1, Hi(t) =t,and Hy(t) = 1— 212, and we can easily generate many more.
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Our analysis of the Hermite’s equation can be compared to our study of constant-
coefficient, second-order equations such as

d’y

— +n"y=0.

dr? y
The solutions of this constant-coefficient equation are linear combinations of sinn¢ and
cosnt. The Hermite polynomials share many properties with the functions sinnt and
cosnt, and both families of functions appear frequently in applications. Legendre’s

equation, another equation with similar properties, is studied in Exercise 15.

EXERCISES FOR APPENDIX B

In Exercises 1-4, use the guess-and-test method to find the power series expansion cen-
tered at ¢+ = O for the general solution up to degree four, that is, up to and including
the 4 term. (You may find the general solution using other methods and then find the
Taylor series centered at ¢ = 0 to check your computation if you like.)

dy dy

1.2 - 3.9 a1

a e
dy dy _

3.9 _ 4.2 =2y 41
dr J 5t

In Exercise 5-8, find the power series expansion for the general solution up to degree
four, that is, up to and including the t* term.

dy

d
S.d—)t)z—y+ezl 6.E=2y+sint
d*y d*y dy .
7.F+2y=cost 8.?‘”—2+5;Z7+y=sm2t
9, Verify that y(¢) = tant is a solution of
dy 2
A 1,
dt o+

and compute a power series solution to find the terms up to degree six (up to and
including the t6 term) of the Taylor series centered at ¢ = 0 of tan?.

In Exercises 10—13, find the general solution up to degree six, that is, up to and includ-
\ ing the ¢6 term.

\ d*y d*y dy
10. — +2y =0 11 — + — =0
| a2 7 4 T
1
| d? d d2
: | 12 y+—y+t2y:cost 13.—y+t—y+y=e’2’

“dir ' dt dt? dt
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14. Compute the Hermite polynomials H3(t), Hs(z), and Hs (t). Check that they are
solutions of the appropriate Hermite’s equation.

15. Legendre’s equation is the second-order differential equation

2
(1- zz)%zy- — 2:‘% +vw+1Dy=0,
where v is a constant. Guess the Taylor series centered at 1 = 0 as a solution y(t),
that is,
y() = ap + ayt + a2t2 + a3t3 + a4t4 + ..

(a) Compute the coefficients as, as, and a4 in terms of the initial conditions ag =
¥(0) and a; = y'(0).

(b) By choosing v to be a positive integer and using the initial conditions
((0), y'(0)) = (1,0) or (y(0), y'(0)) = (0, 1), show that there are polyno-
mial solutions P, (¢) of Legendre’s equation.

(¢) Show that the first three of these polynomials are Py(r) = 1, P; () = ¢, and
Py(t) = 1 — 3¢2.

(d) Compute P, (¢) forv = 3, 4, 5, and 6.

() Verify that k P, (z) is a solution of the same Legendre’s equation as P,(¢) if k
is a constant. (Consequently, P, (z) is only determined up to a constant. For
example, Py (1) is sometimes given as Py(z) = (312 — 1) /2).

16. In this appendix we used the fact that two power series in ¢ are equal if and only if
all of their coefficients are equal. To justify this statement, let

f®) =ap+ait +ayt* + a3t + ...

and
g(t) = by + byt +b2t2 +b3t3 + ...
and suppose that f(¢) = g(¢) for all ¢ for which both sides are defined.
(a) Verify that ag = bg.
(b) Compute f’(¢) and g’(¢). Since f(¢) = g(t), we must have f'(t) = g'(¢) for
all r. Verify that a1 = by.
(¢) Explain why a, = b, for all n.

17. Consider the linear differential equation

dy _
o yt+e .
The natural first guess for a particular solution of this equation is y(f) = ae™’, but
this guess does not yield a solution because it is a solution of the associated homo-
geneous equation.

Guess a power series solution y{(t) = ag + ait + ast? + azt> + . .. and use the
initial condition y(0) = ap = 0 to find a particular solution. Check that this series is

the power series for te™.




