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A rough outline of all five lectures

Actions of finite groups on C*-algebras and examples.

Crossed products by actions of finite groups: elementary theory.

Crossed products by actions of finite groups: Some examples.

The Rokhlin property for actions of finite groups.

Examples of actions with the Rokhlin property.

Crossed products of AF algebras by actions with the Rokhlin property.

Other crossed products by actions with the Rokhlin property.

The tracial Rokhlin property for actions of finite groups.

Examples of actions with the tracial Rokhlin property.

Crossed products by actions with the tracial Rokhlin property.

Applications of the tracial Rokhlin property.
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General motivation
The material to be described is part of the structure and classification
theory for simple nuclear C*-algebras (the Elliott program). More
specifically, it is about proving that C*-algebras which appear in other
parts of the theory (in these lectures, certain kinds of crossed product
C*-algebras) satisfy the hypotheses of known classification theorems.

To keep things from being too complicated, we will consider crossed
products by actions of finite groups. Nevertheless, even in this case, one
can see some of the techniques which are important in more general cases.

Crossed product C*-algebras have long been important in operator
algebras, for reasons having nothing to do with the Elliott program. It has
generally been difficult to prove that crossed products are classifiable, and
there are really only three cases in which there is a somewhat satisfactory
theory: actions of finite groups on simple C*-algebras, free minimal actions
of groups which are not too complicated (not too far from Zd) on
compact metric spaces, and “strongly outer” actions of such groups on
simple C*-algebras.
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Background

These lectures assume some familiarity with the basic theory of
C*-algebras, as found, for example, in Murphy’s book. K-theory will be
occasionally used, but not in an essential way. A few other concepts will
be important, such as tracial rank zero. They will be defined as needed,
and some basic properties mentioned, usually without proof. Various side
comments will assume more background, but these can be skipped.
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Group actions on C*-algebras

Definition

Let G be a group and let A be a C*-algebra. An action of G on A is a
homomorphism g 7→ αg from G to Aut(A).

That is, for each g ∈ G , we have an automorphism αg : A → A, and
α1 = idA and αg ◦ αh = αgh for g , h ∈ G .

In these lectures, almost all groups will be discrete (usually finite). If the
group has a topology, one requires that the function g 7→ αg (a), from G
to A, be continuous for all a ∈ A.

We give examples of actions of groups (mainly finite groups), considering
first actions on commutative C*-algebras. These come from actions on
locally compact spaces, as described next.
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Group actions on spaces

Definition

Let G be a group and let X be a set. Then an action of G on X is a map
(g , x) 7→ gx from G × X to X such that:

1 · x = x for all x ∈ X .

g(hx) = (gh)x for all g , h ∈ G and x ∈ X .

If G and X have topologies, then (g , x) 7→ gx is required to be (jointly)
continuous.

When G is discrete, continuity means that x 7→ gx is continuous for all
g ∈ G . Since the action of g−1 is also continuous, this map is in fact a
homeomorphism.
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Group actions on commutative C*-algebras

An action of G on X is a continuous map (g , x) 7→ gx from G × X to X
such that:

1 · x = x for all x ∈ X .

g(hx) = (gh)x for all g , h ∈ G and x ∈ X .

Lemma

Let G be a topological group and let X be a locally compact Hausdorff
space. Suppose G acts continuously on X . Then there is an action
α : G → Aut(C0(X )) such that αg (f )(x) = f (g−1x) for g ∈ G ,
f ∈ C0(X ), and x ∈ X .

Every action of G on C0(X ) comes this way from an action of G on X .

If G is discrete, this is obvious from the correspondence between maps of
locally compact spaces and homomorphisms of commutative C*-algebras.
(In the general case, one needs to check that the two continuity conditions
correspond properly.)
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Examples of group actions on spaces
An action of G on X is a continuous map (g , x) 7→ gx from G × X to X
such that:

1 · x = x for all x ∈ X .

g(hx) = (gh)x for all g , h ∈ G and x ∈ X .

Every action on this list of a group G on a compact space X gives an
action of G on C (X ).

Any group G has a trivial action on any space X , given by gx = x for
all g ∈ G and x ∈ X .

Any group G acts on itself by (left) translation: gh is the usual
product of g and h.

The finite cyclic group Zn = Z/nZ acts on the circle S1 by rotation:
the standard generator acts as multiplication by e2πi/n.

Z2 acts on S1 via the order two homeomorphism ζ 7→ ζ.

Z2 acts on Sn via the order two homeomorphism x 7→ −x .
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More examples of group actions on spaces

Fix θ ∈ R. Then there is an action of Z on S1, given by
n · ζ = e2πinθζ for n ∈ Z and ζ ∈ S1. (This action is generated by the
rotation homeomorphism ζ 7→ e2πiθζ.)

If G is a group and H is a (closed) subgroup (not necessarily normal),
then G has a translation action on X = G/H, given by
g · (kH) = (gk)H for g , k ∈ G .

If G is a group and σ : G → H is a continuous homomorphism to
another group H, then there is an action of G on X = H given by
g · h = σ(g)h for g ∈ G and h ∈ H. For example, G might be a
closed subgroup of H. (The action on the previous slide of Zn on S1

by rotation comes this way.) The previous example comes from the
homomorphism Z → S1 given by n 7→ e2πiθ. If θ 6∈ Q, this
homomorphism has dense range.

Let Y be a compact space, and set X = Y × Y . Then G = Z2 acts
on X via the order two homeomorphism (y1, y2) 7→ (y2, y1). Similarly,
the symmetric group Sn acts on Y n.
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Yet more examples of group actions on spaces
Every action on this list of a group G on a compact space X gives an
action of G on C (X ).

Let Z be a compact manifold, or a connected finite complex. (Much
weaker conditions on Z suffice, but Z must be path connected.) Let
X = Z̃ be the universal cover of Z , and let G = π1(Z ) be the
fundamental group of Z . Then there is a standard action of G on X .
Spaces with finite fundamental groups include real projective spaces
(in which case this example was already on the first slide of examples)
and lens spaces.

The group SL2(Z) acts on R2 via the usual matrix multiplication.
This action preserves Z2, and so is well defined on R2/Z2 ∼= S1 × S1.
SL2(Z) has finite cyclic subgroups of orders 2, 3, 4, and 6, generated
by (

−1 0
0 −1

)
,

(
−1 −1
1 0

)
,

(
0 −1
1 0

)
, and

(
0 −1
1 1

)
.

Restriction gives actions of these on S1 × S1.
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Group actions on noncommutative C*-algebras

Some elementary examples:

For every group G and every C*-algebra A, there is a trivial action
ι : G → Aut(A), defined by ιg (a) = a for all g ∈ G and a ∈ A.

Suppose g 7→ zg is a (continuous) homomorphism from G to the
unitary group U(A) of a unital C*-algebra A. Then αg (a) = zgaz∗g
defines an action of G on A. (We write αg = Ad(zg ).) This is an
inner action. (If A is not unital, use the multiplier algebra M(A), and
the strict topology on its unitary group.)

As a special case, let G be a finite group, and let g 7→ zg be a unitary
representation of G on Cn. Then g 7→ Ad(zg ) defines an action of G
on Mn.
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Pointwise inner does not imply inner
Let A be a unital C*-algebra. An automorphism ϕ ∈ Aut(A) is inner if
there is a unitary z ∈ A such that ϕ = Ad(z). Recall also that
α : G → Aut(A) is inner if there is a homomorphism g 7→ zg from G to
U(A) such that αg = Ad(zg ) for all g ∈ G .

Let A = M2, let G = (Z2)
2 with generators g1 and g2, and set

α1 = idA, αg1 = Ad

(
1 0
0 −1

)
,

αg2 = Ad

(
0 1
1 0

)
, and αg1g2 = Ad

(
0 1
−1 0

)
.

These define an action α : G → Aut(A) such that αg is inner for all
g ∈ G , but for which there is no homomorphism g 7→ zg ∈ U(A) for which
αg = Ad(zg ) for all g ∈ G . The point is that the implementing unitaries
for αg1 and αg2 commute up to a scalar, but can’t be appropriately
modified to commute exactly. Exercise: Prove this.
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Product type actions

We describe a particular “product type action”. Let An = (M2)
⊗n, the

tensor product of n copies of the algebra M2 of 2× 2 matrices. Thus
An

∼= M2n . Define
ϕn : An → An+1 = An ⊗M2

by ϕn(a) = a⊗ 1. Let A be the (completed) direct limit lim−→n
An. (This is

just the 2∞ UHF algebra.) Define a unitary v ∈ M2 by

v =

(
1 0
0 −1

)
.

Define zn ∈ An by zn = v⊗n. Define αn ∈ Aut(An) by αn = Ad(zn). Then
αn is an inner automorphism of order 2. Using zn+1 = zn ⊗ v , one can
easily check that ϕn ◦ αn = αn+1 ◦ ϕn for all n, and it follows that the αn

determine an order 2 automorphism α of A. Thus, we have an action of Z2

on A. This action is not inner, although it is “approximately inner”.
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General product type actions

We had A = lim−→n
(M2)

⊗n with the action of Z2 generated by the direct
limit automorphism

lim−→
n

Ad

(
1 0
0 −1

)⊗n

We write this automorphism as

∞⊗
n=1

Ad

(
1 0
0 −1

)
on A =

∞⊗
n=1

M2.

In general, one can use an arbitrary group, one need not choose the same
unitary representation in each tensor factor, and the tensor factors need
not all be the same size.
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More examples of product type actions

We will later use the following two additional examples:

∞⊗
n=1

Ad

1 0 0
0 1 0
0 0 −1

 on A =
∞⊗

n=1

M3,

and
∞⊗

n=1

Ad
(
diag(−1, 1, 1, . . . , 1)

)
on A =

∞⊗
n=1

M2n+1.

In the second one, there are supposed to be 2n ones on the diagonal,
giving a (2n + 1)× (2n + 1) matrix.
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The tensor product of copies of conjugation by the regular
representation
Let G be a finite group. Set m = card(G ). Let G act on the Hilbert space
l2(G ) ∼= Cm via the left regular representation. That is, if g ∈ G , then g
acts on l2(G ) by the unitary operator (zgξ)(h) = ξ(g−1h) for ξ ∈ l2(G )
and h ∈ G . Now let G act on Mm

∼= L(l2(G )) by conjugation by the left
regular representation: g 7→ Ad(zg ). Then take A = lim−→n

(Mm)⊗n (which is
the m∞ UHF algebra), with the action of G given by

g 7→
∞⊗

n=1

Ad(zg ).

The first example we gave of a product type action is the case G = Z2.
The left regular representation of Z2 is generated by(

0 1
1 0

)
rather than

(
1 0
0 −1

)
,

but these two matrices are conjugate. Using this, one can show (see
below) that the two product type actions are “essentially the same”.
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The rotation algebras
Let θ ∈ R. Recall the irrational rotation algebra Aθ, the universal
C*-algebra generated by two unitaries u and v satisfying the commutation
relation vu = e2πiθuv . If θ1 − θ2 ∈ Z, then Aθ1 = Aθ2 . (The commutation
relation is the same.) Some standard facts, presented without proof.

If θ 6∈ Q, then Aθ is simple. In particular, any two unitaries u and v in
any C*-algebra satisfying vu = e2πiθuv generate a copy of Aθ.

If θ ∈ Q, then Aθ is Type I. In fact, if θ = m
n in lowest terms, with

n > 0, then Aθ is isomorphic to the section algebra of a locally trivial
continuous field over S1 × S1 with fiber Mn.

In particular, if θ = 0, or if θ ∈ Z, then Aθ
∼= C (S1 × S1).

Aθ is the crossed product of the action of Z on S1 generated by
rotation by e2πiθ.

There is a “natural” continuous field over S1 whose fiber over e2πiθ

is Aθ. (Obviously it isn’t locally trivial.)

The algebra Aθ is often considered to be a noncommutative analog of the
torus S1 × S1 (more accurately, a noncommutative analog of C (S1 × S1)).
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The gauge action on the rotation algebra
Recall: Aθ is the universal C*-algebra generated by two unitaries u and v
satisfying the commutation relation vu = e2πiθuv .

There is a unique action γ : S1 × S1 → Aut(Aθ) such that

γ(λ,ζ)(u) = λu and γ(λ,ζ)(v) = ζv

for λ, ζ ∈ S1. This essentially follows from the fact that λu and ζv satisfy
the same commutation relation that u and v do. One must also check
that (λ, ζ) 7→ γ(λ,ζ) is a group homomorphism. (A bit of work is required
to show that (λ, ζ) 7→ γ(λ,ζ)(a) is continuous for all a ∈ Aθ. Exercise: Do
it. Hint: Show that it is true for a in the linear span of all umvn, and then
use an ε

3 argument.)

In particular, there are actions of Zn on Aθ generated by the automorphism

u 7→ e2πi/nu and v 7→ v

and by the automorphism

u 7→ u and v 7→ e2πi/nv .
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The action of SL2(Z) on the rotation algebra
Recall: Aθ is the universal C*-algebra generated by two unitaries u and v
satisfying the commutation relation vu = e2πiθuv .

The group SL2(Z) acts on Aθ by sending the matrix

n =

(
n1,1 n1,2

n2,1 n2,2

)
to the automorphism determined by

αn(u) = exp(πin1,1n2,1θ)u
n1,1vn2,1

and
αn(v) = exp(πin1,2n2,2θ)u

n1,2vn2,2 .

Exercise: Check that αn is an automorphism, and that n 7→ αn is a group
homomorphism.

This action is the analog of the action of SL2(Z) on S1 × S1 = R2/Z2. It
reduces to that action when θ = 0.
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The action of SL2(Z) on the rotation algebra (continued)
Recall: Aθ is the universal C*-algebra generated by two unitaries u and v
satisfying the commutation relation vu = e2πiθuv .

Recall that SL2(Z) has finite cyclic subgroups of orders 2, 3, 4, and 6,
generated by(

−1 0
0 −1

)
,

(
−1 −1
1 0

)
,

(
0 −1
1 0

)
, and

(
0 −1
1 1

)
.

Restriction gives actions of these groups on the irrational rotation algebras.

In terms of generators of Aθ, and omitting the scalar factors (which are
not necessary when one restricts to these subgroups), the action of Z2 is
generated by

u 7→ u∗ and v 7→ v∗,

and the action of Z4 is generated by

u 7→ v and v 7→ u∗.
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Cuntz algebras

We will be more concerned with stably finite simple C*-algebras here, but
the basic examples of purely infinite simple C*-algebras should at least be
mentioned.
Let d ∈ {2, 3, . . .}. Recall that the Cuntz algebra Od is the universal
C*-algebra on generators s1, s2, . . . , sd satisfying the relations

s∗1 s1 = s∗2 s2 = · · · = s∗dsd = 1 and s1s
∗
1 + s2s

∗
2 + · · ·+ sds∗d = 1.

Thus, s1, s2, . . . , sd are isometries with orthogonal ranges which add up
to 1. The Cuntz algebra O∞ is the universal C*-algebra generated by
isometries s1, s2, . . . with orthogonal ranges. Thus, s∗1 s1 = s∗2 s2 = · · · = 1
and s∗j sk = 0 for j 6= k.

These algebras are purely infinite, simple, and nuclear. Details and other
properties are on the next slide.
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Cuntz algebras (continued)
Some standard facts, presented without proof.

Od is simple for d ∈ {2, 3, . . . ,∞}. For d ∈ {2, 3, . . .}, for example,
this means that whenever elements s1, s2, . . . , sd in any unital
C*-algebra satisfy

s∗1 s1 = s∗2 s2 = · · · = s∗dsd = 1 and s1s
∗
1 + s2s

∗
2 + · · ·+ sds∗d = 1,

then they generate a copy of Od .

Od is purely infinite and nuclear.

K1(Od) = 0, K0(O∞) ∼= Z, generated by [1], and K0(Od) ∼= Zd−1,
generated by [1], for d ∈ {2, 3, . . .}.
If A is any simple separable unital nuclear C*-algebra, then
O2 ⊗ A ∼= O2.

If A is any simple separable purely infinite nuclear C*-algebra, then
O∞ ⊗ A ∼= A.

The last two facts are Kirchberg’s absorption theorems. They are much
harder.
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Actions on Cuntz algebras
For d finite, Od is generated by isometries s1, s2, . . . , sd with orthogonal
ranges which add up to 1, and O∞ is generated by isometries s1, s2, . . .
with orthogonal ranges.

We give the general quasifree action here. Two special cases on the next
slide have much simpler formulas.

Let ρ : G → L(Cd) be a unitary representation of G . Write

ρ(g) =

 ρ1,1(g) · · · ρ1,d(g)
...

. . .
...

ρd ,1(g) · · · ρd ,d(g)


for g ∈ G . Then there exists a unique action βρ : G → Aut(Od) such that

βρ
g (sk) =

d∑
j=1

ρj ,k(g)sj

for j = 1, 2, . . . , d . (This can be checked by a computation.) For d = ∞, a
similar formula works for any unitary representation of G on l2(N).
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Actions on Cuntz algebras (continued)
The Cuntz relations: s∗1 s1 = s∗2 s2 = · · · = s∗dsd = 1 and
s1s

∗
1 + s2s

∗
2 + · · ·+ sds∗d = 1. (For d = ∞, s1, s2, . . . are isometries with

orthogonal ranges.)

Some special cases of quasifree actions, for which it is easy to see that
they really are group actions:

For G = Zn, choose n-th roots of unity ζ1, ζ2, . . . , ζd and let a
generator of the group multiply sj by ζj .

Let G be a finite group. Take d = card(G ), and label the generators
sg for g ∈ G . Then define βG : G → Aut(Od) by βG

g (sh) = sgh for
g , h ∈ G . (This is the quasifree action coming from regular
representation of G .)

Label the generators of O∞ as sg ,j for g ∈ G and j ∈ N. Define
ι : G → Aut(O∞) by ιg (sh,j) = sgh,j for g ∈ G and j ∈ N. (This is the
quasifree action coming from the direct sum of infinitely many copies
of the regular representation of G .)
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The tensor flip
Assume (for convenience) that A is nuclear and unital. Then there is an
action of Z2 on A⊗ A generated by the “tensor flip” a⊗ b 7→ b ⊗ a.

Similarly, the symmetric group Sn acts on A⊗n.

The tensor flip on the 2∞ UHF algebra A =
⊗∞

n=1 M2 turns out to be
essentially the product type action generated by

∞⊗
n=1

Ad


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 on
∞⊗

n=1

M4.

Another interesting example is gotten by taking A to be the Jiang-Su
algebra Z . It is simple, separable, unital, and nuclear. It has no nontrivial
projections, its Elliott invariant is the same as for C, and Z ⊗ Z ∼= Z .

Since O2 ⊗O2
∼= O2 and O∞ ⊗O∞ ∼= O∞, one gets actions of Z2 on O2

and O∞ the same way.
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The free flip

Let A be a C*-algebra, and let A ? A be the free product of two copies
of A. Then there is an automorphism α ∈ Aut(A ? A) which exchanges the
two free factors. For a ∈ A, it sends the copy of a in the first free factor to
the copy of the same element in the second free factor, and similarly the
copy of a in the second free factor to the copy of the same element in the
first free factor. This automorphism might be called the “free flip”. It
generates an action of Z2 on A ? A.

There are many generalizations. One can take the amalgamated free
product A ?B A over a subalgebra B ⊂ A (using the same inclusion in both
copies of A), or the reduced free product A ?r A (using the same state on
both copies of A). There is a permutation action of Sn on the free product
of n copies of A. And one can make any combination of these
generalizations.
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Crossed products

Let G be a locally compact group, and let α : G → Aut(A) be an action of
G on a C*-algebra A. There is a crossed product C*-algebra C ∗(G ,A, α),
which is a kind of generalization of the group C*-algebra C ∗(G ). Crossed
products are quite important in the theory of C*-algebras.

One motivation: Suppose G is a semidirect product N o H. The action of
H on N gives an action α : H → Aut(C ∗(N)), and one has
C ∗(G ) ∼= C ∗(H, C ∗(N), α). Thus, crossed products appear even if one is
only interested in group C*-algebras and unitary representations of groups.

Another motivation (not applicable to finite groups acting on spaces): The
noncommutative version of X/G is the fixed point algebra AG . In
particular, for compact G , one can check that C (X/G ) ∼= C (X )G . For
noncompact groups, often X/G is very far from Hausdorff and AG is far
too small. The crossed product provides a much more generally useful
algebra, which is the “right” substitute for the fixed point algebra when
the action is free.
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Reminder: The group C*-algebra
Let G be a locally compact group. We recall that nondegenerate
representations of the group C*-algebra C ∗(G ) on a Hilbert space H are in
one to one correspondence with the unitary representations of G on H.

To construct C ∗(G ), one starts with L1(G ) (using left Haar measure µ)
with convolution multiplication:

(a ∗ b)(g) =

∫
G

a(h)b(h−1g) dµ(h).

(We omit the formula for the adjoint.) If G is discrete and δg ∈ l1(G ) is
the standard basis vector corresponding to g ∈ G , this amounts to
declaring that δg ∗ δh = δgh and δ∗g = δg−1 . A unitary representation
g 7→ vg of G on a Hilbert space H gives a nondegenerate *-representation
σ of L1(G ) on H via the formula

σ(a)ξ =

∫
G

a(g)vgξ dµ(g).

(One must check many things about this formula.) If G is discrete, this is
just σ(a) =

∑
g∈G a(g)vg , and in particular σ(δg ) = vg .

N. C. Phillips (U of Oregon) Actions of Finite Groups; Crossed Products 26 July 2014 29 / 36

The group C*-algebra (continued)
For a locally compact group G and a unitary representation v of G on H,
we set

σ(a)ξ =

∫
G

a(g)vgξ dµ(g)

for a ∈ L1(G ) and ξ ∈ H. If G is discrete, this is just
σ(a) =

∑
g∈G a(g)vg , and in particular σ(δg ) = vg .

Getting v from σ is easy if G is discrete, since vg = σ(δg ). In general, one
must do some work with multiplier algebras; we omit the details.

We must still get a C*-algebra. To do this, define a C* norm on L1(G ) by
taking ‖a‖ to be the supremum of ‖σ(a)‖ over all nondegeratate
*-representations σ of L1(G ) on Hilbert spaces. Then complete in this
norm.

If G is finite, this simplifies greatly. The sums σ(a) =
∑

g∈G a(g)vg are

finite sums and no completion is necessary (because L1(G ) is finite
dimensional). One only needs to find the C* norm. (It is equivalent to the
L1 norm, but not equal to it.)
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The universal property of the crossed product

The crossed product C ∗(G ,A, α) (for G locally compact) is defined in
such a way as to have a universal property which generalizes the universal
property of the group C*-algebra C ∗(G ). We give the statements for the
general case, and (below) go through some details in the much easier case
that G is finite.

Definition

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A. A covariant representation of (G ,A, α) on a Hilbert space H
is a pair (v , π) consisting of a unitary representation v : G → U(H) (the
unitary group of H) and a representation π : A → L(H) (the algebra of all
bounded operators on H), satisfying the covariance condition

vgπ(a)v∗g = π(αg (a))

for all g ∈ G and a ∈ A. It is called nondegenerate if π is nondegenerate.
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The universal property of the crossed product (continued)

Definition
Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A, and let (v , π) be a covariant representation of (G ,A, α) on
a Hilbert space H. Then the integrated form of (v , π) is the representation
σ : Cc(G ,A, α) → L(H) given by

σ(a)ξ =

∫
G

π(a(g))vgξ dµ(g).

C ∗(G ,A, α) is then a completion of Cc(G ,A, α), chosen to give:

Theorem
Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A. Then the integrated form construction defines a bijection
from the set of nondegenerate covariant representations of (G ,A, α) on a
Hilbert space H to the set of nondegenerate representations of
C ∗(G ,A, α) on the same Hilbert space.
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Crossed products by finite groups
As for group C*-algebras, crossed products simplify greatly if the group is
finite. We give details. Let α : G → Aut(A) be an action of a finite group
G on a C*-algebra A. As a vector space, C ∗(G ,A, α) is the group ring
A[G ], consisting of all finite formal linear combinations of elements in G
with coefficients in A. The multiplication and adjoint are given by:

(a · g)(b · h) = (a[gbg−1]) · (gh) = (aαg (b)) · (gh)

(a · g)∗ = α−1
g (a∗) · g−1

for a, b ∈ A and g , h ∈ G , extended linearly. There is a unique norm which
makes this a C*-algebra. (See below.)

If A is unital, the group elements g = 1 · g are in A[G ], and are unitary.
We conventionally write ug instead of g for the element of A[G ]. Thus, a
general element of A[G ] has the form c =

∑
g∈G cgug with cg ∈ A for

g ∈ G . (This actually works even if A is not unital.)

If G is discrete but not finite, C ∗(G ,A, α) is the completion of A[G ] in a
suitable norm. (Before completion, we have the skew group ring.)
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Crossed products by finite groups (continued)
Let α : G → Aut(A) be an action of a finite group G on a C*-algebra A.
We construct a C* norm on the skew group ring A[G ].
Recall:

(a · g)(b · h) = (aαg (b)) · (gh) and (a · g)∗ = α−1
g (a∗) · g−1,

that is,

(aug )(buh) = aαg (b)ugh and (aug )∗ = α−1
g (a∗)ug−1 .

Fix a faithful representation π : A → L(H0) of A on a Hilbert space H0. Set
H = l2(G ,H0), the set of all ξ = (ξg )g∈G in

⊕
g∈G H0, with the scalar

product 〈
(ξg )g∈G , (ηg )g∈G

〉
=

∑
g∈G

〈ξg , ηg 〉.

Then define σ : A[G ] → L(H) as follows. For c =
∑

g∈G cgug ,

(σ(c)ξ)h =
∑
g∈G

π(α−1
h (cg ))(ξg−1h)

for all h ∈ G .
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Crossed products by finite groups (continued)
Recall:

(aug )(buh) = aαg (b)ugh and (aug )∗ = α−1
g (a∗)ug−1 .

Also, for c =
∑

g∈G cgug ,

(σ(c)ξ)h =
∑
g∈G

π(α−1
h (cg ))(ξg−1h).

If A is unital, then for a ∈ A and g ∈ G , identify a with au1 and get

(σ(a)ξ)h = π(αh−1(a))(ξh) and (σ(ug )ξ)h = ξg−1h.

One can check that σ is a *-homomorphism. We will just check the most
important part, which is that σ(ug )σ(b) = σ(αg (b))σ(ug ). We have[

σ(αg (b))σ(ug )ξ
]
h

= π
(
αh−1(αg (b))

)
(σ(ug )ξ)h = π(αh−1g (b))(ξg−1h)

and (
σ(ug )σ(b)ξ

)
h

=
(
σ(b)ξ

)
g−1h

= π
(
αh−1g (b)

)
ξ
)
g−1h

.
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Crossed products by finite groups (continued)
Recall: for c =

∑
g∈G cgug ,

(σ(c)ξ)h =
∑
g∈G

π(α−1
h (cg ))(ξg−1h).

If A is unital, then for a ∈ A and g ∈ G ,

(σ(a)ξ)h = π(αh−1(a))(ξh) and (σ(ug )ξ)h = ξg−1h.

For c =
∑

g∈G cgug , it is easy to check that

‖σ(c)‖ ≤
∑
g∈G

‖cg‖

and not much harder to check that

‖σ(c)‖ ≥ max
g∈G

‖cg‖.

The norms on the right hand sides are equivalent, so A[G ] is complete in
the norm ‖c‖ = ‖σ(c)‖.
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