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Lecture 1 (26 July 2014): Actions of Finite Groups on C*-Algebras
and Introduction to Crossed Products.

Lecture 2 (27 July 2014): Crossed Products by Finite Groups; the
Rokhlin Property.

Lecture 3 (28 July 2014): Crossed Products by Actions with the
Rokhlin Property.

Lecture 4 (29 July 2014): Crossed Products of Tracially AF Algebras
by Actions with the Tracial Rokhlin Property.

Lecture 5 (30 July 2014): Examples and Applications.
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A rough outline of all five lectures

Actions of finite groups on C*-algebras and examples.

Crossed products by actions of finite groups: elementary theory.

Crossed products by actions of finite groups: Some examples.

The Rokhlin property for actions of finite groups.

Examples of actions with the Rokhlin property.

Crossed products of AF algebras by actions with the Rokhlin property.

Other crossed products by actions with the Rokhlin property.

The tracial Rokhlin property for actions of finite groups.

Examples of actions with the tracial Rokhlin property.

Crossed products by actions with the tracial Rokhlin property.

Applications of the tracial Rokhlin property.
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The tracial Rokhlin property is common
The action of Z2 generated by

γ =
∞⊗
n=1

Ad

1 0 0
0 1 0
0 0 −1


has the tracial Rokhlin property.

In fact, it turns out to be hard to write down a product type action of Z2

using conjugation by matrices of the form

diag
(
1, 1, . . . , 1, −1, −1, . . . , −1

)
(1)

which is outer but doesn’t have the tracial Rokhlin property. In particular,
the matrix sizes must go to infinity. (Example: At the end of the next
slide.)

Exercise: Any product type action of Z2 is conjugate to an infinite tensor
product of conjugations by matrices of the form in (1).
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Some other actions with the tracial Rokhlin property
The actions on irrational rotation algebras coming from finite
subgroups of SL2(Z) have the tracial Rokhlin property. (Formulas are
recalled below.)
The action of Zn on an irrational rotation algebra generated by

u 7→ e2πi/nu and v 7→ v

has the tracial Rokhlin property.
The tensor flip on any UHF algebra has the tracial Rokhlin property.
An action of a finite group on a unital Kirchberg algebra has the
tracial Rokhlin property if and only if it is pointwise outer (essentially
due to Nakamura).

None of the actions in the first three items above has the Rokhlin
property. In the last item, most actions don’t have the Rokhlin property.
Some of the proofs are complicated.

Most actions above don’t even have the right sort of higher dimensional
Rokhlin property (the one with commuting towers). (The action
u 7→ e2πi/nu and v 7→ v does have this property.)
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Some other actions with the tracial Rokhlin property
Actions with the tracial Rokhlin property, but mostly without the Rokhlin
property or even its nearly as good generalization:

Actions on Aθ from finite subgroups of SL2(Z).

The action of Zn on an irrational rotation algebra generated by
u 7→ e2πi/nu and v 7→ v . (It does have a higher dimensional Rokhlin
property with commuting towrs.)

The tensor flip on any UHF algebra.

Pointwise outer actions of a finite group on a unital Kirchberg algebra.

It is true (and easy) that the tracial Rokhlin property implies pointwise
outerness in complete generality, but the converse is false. Counterexample
without proof: The product type action of Z2 generated by

∞⊗
n=1

Ad(diag(−1, 1, 1, . . . , 1)) on A =
∞⊗
n=1

M2n+1.

Exercise (nontrivial): Give a proof.
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Crossed products by actions with the tracial Rokhlin
property

The tracial Rokhlin property is good for understanding the structure of
crossed products.

Theorem

Let A be a simple separable unital C*-algebra with tracial rank zero. Let
G be a finite group, and let α : G → Aut(A) have the tracial Rokhlin
property. Then C ∗(G ,A, α) has tracial rank zero.

This is important because tracial rank zero is a hypothesis in a major
classification theorem (due to Lin).

There are examples (such as the one of Elliott mentioned in Lecture 4)
which show that this theorem fails if one weakens the condition on the
action to pointwise outerness.
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Crossed products by actions with the tracial Rokhlin
property (continued)

Theorem

Let A be a simple separable unital C*-algebra with tracial rank zero. Let
G be a finite group, and let α : G → Aut(A) have the tracial Rokhlin
property. Then C ∗(G ,A, α) has tracial rank zero.

The idea of the proof is essentially the same as for crossed products of
AF algebras by actions with the Rokhlin property. The definitions of both
tracial rank zero and the tracial Rokhlin property allow a “small” (in
trace) error projection. One must show that the sum of two “small” error
projections is again “small”.

There is one additional difficulty. The hypotheses give an error which is
“small” relative to A. One must prove that it is also “small” relative to
C ∗(G ,A, α). This uses a theorem of Jeong and Osaka. We give the ideas
of a proof.
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“Small” in C ∗(G ,A, α) vs. “small” in A
The following result implies that one can make the error projection “small”
relative to C ∗(G ,A, α) by requiring that it be “small” relative to A.

Theorem

Let A be an infinite dimensional simple separable unital C*-algebra which
has Property (SP) (every nonzero hereditary subalgebra contains a
nonzero projection), and let α : G → Aut(A) be an action of a finite group
which has the tracial Rokhlin property. Then for every nonzero hereditary
subalgebra D ⊂ C ∗(G ,A, α), there is a nonzero projection p ∈ D which is
Murray-von Neumann equivalent to a projection q ∈ A.

So, to ensure the error projection 1− e is Murray-von Neumann equivalent
to a projection in D, it is enough to require that 1− e - q in A.

Much weaker conditions suffice: provided one uses C ∗r (G ,A, α), one can
allow any pointwise outer action of a discrete group (Jeong-Osaka).

Tracial rank zero is known to imply Property (SP).

N. C. Phillips (U of Oregon) Examples and Applications 30 July 2014 9 / 32

Kishimoto’s condition
We want to show that a nonzero hereditary subalgebra D ⊂ C ∗(G ,A, α)
contains a nonzero projection equivalent to a projection in A.

We use what we call Kishimoto’s condition (from his paper on simplicity of
reduced crossed products). Here is the version for finite groups:

Definition

Let α : G → Aut(A) be an action of a finite group G on a C*-algebra A.
We say that α satisfies Kishimoto’s condition if for every x ∈ A+ with
‖x‖ = 1, for every finite set S ⊂ A, and for every ε > 0, there is a ∈ A+

with ‖a‖ = 1 such that:

1 ‖axa‖ > 1− ε.

2 ‖abαg (a)‖ < ε for all g ∈ G \ {1} and b ∈ S .

For general discrete groups, one uses finite subsets of G \ {1}. Kishimoto
shows that it holds for pointwise outer actions on simple C*-algebras (in
fact, under weaker assumptions).
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Getting Kishimoto’s condition
Given x ∈ A+ with ‖x‖ = 1, and a finite set S ⊂ A, we want:

1 ‖axa‖ > 1− ε.

2 ‖abαg (a)‖ < ε for all g ∈ G \ {1} and b ∈ S .

For F ⊂ A finite and δ > 0, the tracial Rokhlin property gives mutually
orthogonal projections eg such that (omitting a condition we won’t need):

1 αg (eh) = egh for all g , h ∈ G .

2 ‖egb − beg‖ < δ for all g ∈ G and all b ∈ F .

3 With e =
∑

g∈G eg , we have ‖exe‖ > 1− ε.

Apply the tracial Rokhlin property with F = S ∪ {x}. Then
exe ≈

∑
h∈G ehxeh (exercise: check this!) so, provided δ is small enough,

orthogonality of the sum implies that there is some h ∈ G such that
‖ehxeh‖ > 1− δ. Now g 6= 1 implies

ehbαg (eh) ≈ behαg (eh) = behegh = 0.

This proves Kishimoto’s condition. Exercise: Write out the details.
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Using Kishimoto’s condition

We want to show that a nonzero hereditary subalgebra D ⊂ C ∗(G ,A, α)
contains a nonzero projection equivalent to a projection in A. We assume
α satisfies Kishimoto’s condition.

Step 1: Choose a nonzero positive element c =
∑

g∈G cgug ∈ D. We
claim c1 ≥ 0 and we can arrange to have ‖c1‖ = 1.

To see this, write c = yy∗ with y =
∑

g∈G ygug . Multiply out, getting
c1 =

∑
g∈G ygugu

∗
gy
∗
g =

∑
g∈G ygy

∗
g ≥ 0. (Exercise: Check this!) If

c1 = 0, then yg = 0 for all g , so y = 0, so c = 0.

Now multiply c by a suitable scalar.

Step 2: Apply Kishimoto’s condition, with suitable ε > 0, with x = c1,
and using the finite set of coefficients cg for g ∈ G , getting a ∈ A+ with
‖a‖ = 1 such that:

1 ‖ac1a‖ > 1− ε.

2 ‖acgαg (a)‖ < ε for all g ∈ G \ {1}.
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Using Kishimoto’s condition (continued)
We want to show that a nonzero hereditary subalgebra D ⊂ C ∗(G ,A, α)
contains a nonzero projection equivalent to a projection in A.

We have c =
∑

g∈G cgug ∈ D+ and a ∈ A+ with ‖c1‖ = ‖a‖ = 1 and

1 ‖ac1a‖ > 1− ε.

2 ‖acgαg (a)‖ < ε for all g ∈ G \ {1}.

Step 3: Using ugau
∗
g = αg (a) at the second step and (2) at the third step:

aca =
∑
g∈G

acguga =
∑
g∈G

acgαg (a)ug ≈ ac1au1 = ac1a.

Step 4: Choose f : [0, 1]→ [0, 1] such that f = 0 on [0, 1− 2ε] and
f (1− ε) = 1. Then f (ac1a) 6= 0 by (1). By Property (SP), there is a
nonzero projection p in the hereditary subalgebra of A generated by
f (ac1a). One can show that pac1ap ≈ p. Exercise: Do this, giving precise
estimates. (Nothing special to crossed products is needed.)
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Using Kishimoto’s condition (continued)
We want to show that a nonzero hereditary subalgebra D ⊂ C ∗(G ,A, α)
contains a nonzero projection equivalent to a projection in A.

We have c ∈ D+, a ∈ A+, and a nonzero projection p ∈ A, all satisfying

aca ≈ ac1a and pac1ap ≈ p.

Step 5: So
pacap ≈ p.

Define
s0 = c1/2ap.

Then s∗0 s0 ≈ p and is in pC ∗(G ,A, α)p. So we can form s = s0(s∗0 s0)−1/2

(functional calculus in pC ∗(G ,A, α)p), getting

s∗s = p and ss∗ = c1/2ap
(
(s∗0 s0)−1/2

)2
pac1/2 ∈ cC ∗(G ,A, α)c ⊂ D.

Thus ss∗ is a projection in D equivalent to the nonzero projection p ∈ A.
This is what we want.
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An application: Crossed products of rotation algebras by
finite groups

Theorem (Joint with Echterhoff, Lück, and Walters; known previously
for the order 2 case)

Let θ ∈ R \Q. Let α : G → Aut(Aθ) be the action on Aθ of one of the
finite subgroups of SL2(Z) (of order 2, 3, 4, or 6). Then C ∗(G ,Aθ, α) is
an AF algebra.

This solved a problem open for some years. The result is initially
unexpected, since Aθ itself is not AF. It was suggested by K-theory
computations done for rational θ.

The proof uses the tracial Rokhlin property for the action to show that
C ∗(G ,Aθ, α) has tracial rank zero. One then applies classification theory
(specifically, Lin’s classification theorem), but one must compute the
K-theory of C ∗(G ,Aθ, α) and show that it satisfies the Universal
Coefficient Theorem. This is done using known cases of the Baum-Connes
conjecture.
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Direct proof?

C ∗(G ,Aθ, α) is AF for finite subgroups G ⊂ SL2(Z). For G = Z2, much
more direct methods are known. For the other cases, our proof, using
several different pieces of heavy machinery (the Elliott classification
program and the Baum-Connes conjecture), is the only one known.

Problem

Prove that C ∗(G ,Aθ, α) is AF for G ⊂ SL2(Z) of order 3, 4, and 6, by
explicitly writing down a direct system of finite dimensional C*-algebras
and proving directly that its direct limit is C ∗(G ,Aθ, α).
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An application: Higher dimensional noncommutative tori

Theorem

Every simple higher dimensional noncommutative torus is an AT algebra.

A higher dimensional noncommutative torus is a version of the rotation
algebra using more unitaries as generators. An AT algebra is a direct limit
of finite direct sums of C*-algebras of the form C (S1,Mn).

Elliott and Evans proved that Aθ is an AT algebra for θ irrational. A
general simple higher dimensional noncommutative torus can be obtained
from some Aθ by taking repeated crossed products by Z. If all the
intermediate crossed products are simple, the theorem follows from a
result of Kishimoto. Using classification theory and the tracial Rokhlin
property for actions generalizing the one on Aθ generated by

u 7→ e2πi/nu and v 7→ v ,

one can reduce the general case to the case proved by Kishimoto.

N. C. Phillips (U of Oregon) Examples and Applications 30 July 2014 17 / 32

Some directions for further work: Summary

Infinite discrete groups. This is a vast area, with little known beyond
elementary amenable groups. (I will say no more here.)

Actions of finite dimensional quantum groups (recently started by
Kodaka, Osaka, Teruya).

What if there are few or no projections? Some things are known, but
there is much to do.

The nonunital case.

The nonsimple case: There are many open questions, including
analogs of facts which in the simple case are easier than the results
we have presented.

For many open problems for actions of finite groups, see the survey article:

N. C. Phillips, Freeness of actions of finite groups on C*-algebras, pages
217–257 in: Operator structures and dynamical systems, M. de Jeu,
S. Silvestrov, C. Skau, and J. Tomiyama (eds.), Contemporary
Mathematics vol. 503, Amer. Math. Soc., Providence RI, 2009.
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Finite dimensional quantum groups

There are versions of the Rokhlin and tracial Rokhlin properties for actions
(coactions?) of finite dimensional quantum groups on (simple) C*-algebras
(Kodaka, Osaka, Teruya), and some theorems. Some of it even generalizes
to inclusions of C*-algebras of “index-finite type”.

There is a great shortage of examples of such actions which don’t come
from groups (regardless of whether they have the Rokhlin property or the
tracial Rokhlin property).
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Few or no projections

What if there are few or no projections? There are several competing
suggested conditions generalizing the tracial Rokhlin property, and some
theorems, but there is no known analog of the statement that crossed
products by tracial Rokhlin actions preserve tracial rank zero. (There isn’t
a known suitable generalization of tracial rank zero.)

The higher dimensional Rokhlin properties (both with and without
“commuting towers”) of Hirshberg-Winter-Zacharias do not need
projections, and there are examples of such actions on simple C*-algebras
with few projections. The “right” property (which gives results close to
what one gets with the Rokhlin property) is the one with commuting
towers, and there are no actions on the Jiang-Su algebra with this property
(joint with Hirshberg).
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The nonunital case

What should be done in the nonunital case? There is a definition for the
Rokhlin property (and the higher dimensional Rokhlin properties), and
several theorems, but still work to be done. There is at least one
suggested answer for the tracial Rokhlin property, but as far as I know
almost no theorems.
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Stable rank of crossed products

An old problem on stable rank:

Problem

Let A be a simple C*-algebra with stable rank one (in the unital case: the
invertible elements are dense), and let α : G → Aut(A) be an action of a
finite group on A. Does it follow that C ∗(G ,A, α) has stable rank one?

Without simplicity, there is a counterexample (Blackadar).
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The tracial Rokhlin property in the nonsimple case
The result on crossed products of AF algebras by Rokhlin actions did not
need simplicity. Lin has a definition of tracial rank zero for unital
nonsimple algebras, but some things go wrong: it no longer implies either
real rank zero or stable rank one. (There are theorems relating tracial rank
zero to tracial quasidiagonality of extensions, which suggest that,
nevertheless, this definition is the “right” one.)

Problem

Find a suitable definition of the tracial Rokhlin property for actions on
nonsimple unital C*-algebras, and possibly a different definition of tracial
rank zero, so that crossed products of C*-algebras with tracial rank zero
by tracially Rokhlin actions again have tracial rank zero.

One can extend the definition of the tracial Rokhlin property to the
nonsimple case by imitating Lin. It looks likely that then crossed products
of C*-algebras with tracial rank zero by tracially Rokhlin actions again have
tracial rank zero. Some partial results are known (using strong hypotheses
on the ideal structure of A), but this has not been proved in general.
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Preservation of structure in the nonsimple case: pure
infiniteness

Definition

A not necessarily simple C*-algebra A is purely infinite if there is no
nonzero homomorphism from A to C, and for every a, b ∈ A such that
a ∈ AbA, we have a - b (Cuntz subequivalence; it means that there exists
a sequence (vn)n∈N such that limn→∞ v∗nbvn = a).

Direct sums of purely infinite simple C*-algebras are purely infinite.
C ([0, 1], Od) is purely infinite.

The following is a corollary of a result of Jeong-Osaka.

Proposition

Let A be a purely infinite simple C*-algebra, let G be a finite group, and
let α : G → Aut(A) be any action. Then C ∗(G ,A, α) is purely infinite
(even if it isn’t simple).
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Nonsimple pure infiniteness (continued)

Proposition

Let A be a purely infinite simple C*-algebra, let G be a finite group, and
let α : G → Aut(A) be any action. Then C ∗(G ,A, α) is purely infinite
(even if it isn’t simple).

Is simplicity of A really needed?

Problem

Let A be a purely infinite C*-algebra, let G be a finite group, and let
α : G → Aut(A) be any action. Does it follow that C ∗(G ,A, α) is purely
infinite?
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Nonsimple pure infiniteness (continued)

Problem

Let A be a purely infinite C*-algebra, let G be a finite group, and let
α : G → Aut(A) be any action. Does it follow that C ∗(G ,A, α) is purely
infinite?

Something is known for a slightly different condition.

Definition

Let A be a C*-algebra. We say that A is hereditarily infinite if for every
nonzero hereditary subalgebra B ⊂ A, there is an infinite positive element
a ∈ B in the sense of Kirchberg-Rørdam, that is, there is b ∈ A+ \ {0}
such that a⊕ b - a. We say that A is residually hereditarily infinite if A/I
is hereditarily infinite for every ideal I in A.

Kirchberg and Rørdam asked whether residual hereditary infiniteness
implies pure infiniteness. This is still open.
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Nonsimple pure infiniteness (continued)
A C*-algebra A is residually hereditarily infinite if for every ideal I ⊂ A and
nonzero hereditary subalgebra B ⊂ A/I , B has an infinite positive element.

Theorem (with Pasnicu)

Let A be a residually hereditarily infinite C*-algebra, let G be a finite
group, and let α : G → Aut(A) be an action. If α is strongly pointwise
outer (defined below), or if G = Z2 and α is arbitrary, then C ∗(G ,A, α) is
residually hereditarily infinite.

This is for the wrong condition, and one should get the result for arbitrary
actions of arbitrary finite groups.

Definition

Let A be a C*-algebra and let G be a group. An action α : G → Aut(A) is
said to be strongly pointwise outer if, for every g ∈ G \ {1} and any two
αg -invariant ideals I ⊂ J ⊂ A with I 6= J, the automorphism of J/I
induced by αg is outer, that is, not of the form a 7→ Ad(u)(a) = uau∗ for
any unitary u in the multiplier algebra M(J/I ).
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Preservation of structure in the nonsimple case: the ideal
property

Definition

A C*-algebra A has the ideal property if every ideal in A is generated, as
an ideal, by the projections it contains.

So all C*-algebras with real rank zero, and all simple unital C*-algebras,
have the ideal property. C ([0, 1], Od) does not have the ideal property.

Problem

Let A have the ideal property, let G be a finite group, and let
α : G → Aut(A) be any action. Does it follow that C ∗(G ,A, α) has the
ideal property?

There is some progress. It is true (joint with Pasnicu) if α is strongly
pointwise outer. It can probably be proved easily using known results if A
is simple and unital.
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Preservation of structure in the nonsimple case: pure
infiniteness and the ideal property

Theorem (with Pasnicu)

Let A be a purely infinite C*-algebra which also has the ideal property, let
G be a finite group, and let α : G → Aut(A) be an action. If α is strongly
pointwise outer, or if G = Z2 and α is arbitrary, then C ∗(G ,A, α) is purely
infinite and has the ideal property.

Again, it should be true for arbitrary actions of arbitrary finite groups.
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Kishimoto’s result for the nonsimple case (infinite groups)
Recall that Kishimoto showed that if A is simple and separable, G is
discrete, and α : G → Aut(A) is pointwise outer, then C ∗r (G ,A, α) is
simple. In the nonsimple case, every invariant ideal of A gives an ideal in
the crossed product, so one should ask for the following property.

Definition

Let A be a C*-algebra and let G be a group. An action α : G → Aut(A) is
said to have only crossed product ideals if every ideal in C ∗r (G ,A, α) has
the form C ∗r (G , J, α) for some G -invariant ideal J ⊂ A

By abuse of terminology, we say C ∗r (G ,A, α) has only crossed product
ideals, with the particular way this algebra is thought of as being a crossed
product left implicit.

Problem

Is there a suitable version of pointwise outerness of an action
α : G → Aut(A) of a discrete group G which guarantees that C ∗r (G ,A, α)
has only crossed product ideals?
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Kishimoto without simplicity (continued)

Problem

Is there a suitable version of pointwise outerness of an action
α : G → Aut(A) which guarantees that C ∗r (G ,A, α) has only crossed
product ideals?

For G abelian, there is a necessary and sufficient condition in terms of the
strong Connes spectrum, but this is hard to compute. There also is an
analog of the strong Connes spectrum for actions of finite groups. But no
related construction is known for actions of general locally compact
groups, not even for general discrete groups.

If instead we ask for something like Kishimoto’s result, one might try
strong pointwise outerness. Recall that an action α : G → Aut(A) is
strongly pointwise outer if, for every g ∈ G \ {1} and any two αg -invariant
ideals I ⊂ J ⊂ A with I 6= J, the automorphism of J/I induced by αg is
outer.
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Kishimoto without simplicity (continued)
α : G → Aut(A) is strongly pointwise outer if, for every g ∈ G \ {1} and
any two αg -invariant ideals I ⊂ J ⊂ A with I 6= J, the automorphism of
J/I induced by αg is outer.

In order to prove that C ∗r (G ,A, α) has only crossed product ideals, one
needs at least that for every subgroup H ⊂ G and every H-invariant
subquotient J/I of A, the induced action of H on J/I is pointwise outer.
(There is a finite dimensional counterexample if one doesn’t consider
subgroups.)

If G is finite, then strong pointwise outerness is sufficient. If G is exact
and discrete, a condition we call “spectral freeness” seems appropriate and
works. If G is finite, they are equivalent. Exactness of the group (or at
least of the action) is necessary in any case.

Question
If G is exact and discrete, and α : G → Aut(A) is strongly pointwise outer,
does it follow that C ∗r (G ,A, α) has only crossed product ideals?
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