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Abstract. We give a survey of large subalgebras of crossed product C*-

algebras, including some recent applications (by several people), mostly to the
transformation group C*-algebra C∗(Z, X, h) of a minimal homeomorphism h

of a compact metric space X:
• If there is a continuous surjective map from X to the Cantor set, then

C∗(Z, X, h) has stable rank one (regardless of the mean dimension of h).

• If there is a continuous surjective map from X to the Cantor set, then the
radius of comparison of C∗(Z, X, h) is at most half the mean dimension

of h.

• If h has mean dimension zero, then C∗(Z, X, h) is Z-stable.
• The “extended” irrational rotation algebras, obtained by “cutting” each

of the standard unitary generators at one or more points in its spectrum,

are AF algebras.
We include some background material, particularly on the Cuntz semigroup.

We give or sketch proofs of some of the basic results on large subalgebras,

including a much more direct proof than in the paper on large subalgebras
of the fact that a large subalgebra and its containing algebra have the same

radius of comparison. We describe a more direct proof than in the papers that
if h : X → X is a minimal homeomorphism of a compact metric space, Y ⊂ X

is compact, and hn(Y ) ∩ Y = ∅ for all n ∈ Z \ {0}, then the orbit breaking

subalgebra associated to Y is centrally large in C∗(Z, X, h). We sketch the
proof, using large subalgebras, that if there is a continuous surjective map

from X to the Cantor set, then the radius of comparison of C∗(Z, X, h) is at

most half the mean dimension of h. We state a number of open problems.

This is a draft. It has not been properly proofread, and Section 5 is missing
entirely.

Large and centrally large subalgebras are a technical tool which has played a
key role in several recent results on the structure of the C*-algebras of minimal
dynamical systems and some related algebras. These results include:

• The extended irrational rotation algebras are AF.
• Let X be an infinite compact metric space, and let h : X → X be a minimal

homeomorphism with mean dimension zero. Then C∗(Z, X, h) is Z-stable.
• Let X be a compact metric space such that there is a continuous surjection

from X to the Cantor set. Then rc
(
C∗(Z, X, h)

)
≤ 1

2mdim(h).
• Let X be a compact metric space such that there is a continuous surjection

from X to the Cantor set. Then C∗(Z, X, h) has stable rank one. (There
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are examples in which this holds but C∗(Z, X, h) does not have strict com-
parison of positive elements and is not Z-stable.)

Large subalgebras were also used to give the first proof that if X is a finite dimen-
sional compact metric space with a free minimal action of Zd, then C∗(Zd, X) has
strict comparison of positive elements.

Large subalgebras are a generalization and abstraction of a construction intro-
duced by Putnam in [44], where it was used to prove that if h is a minimal home-
omorphism of the Cantor set X, then K0(C∗(Z, X, h)) is order isomorphic to the
K0-group of a simple AF algebra (Theorem 4.1 and Corollary 5.6 of [44]). Putnam’s
construction and some generalizations (all of which are centrally large subalgebras
in our sense) also played key roles in proofs of other results:

• Let h : X → X be a minimal homeomorphism of the Cantor set. Then
C∗(Z, X, h) is an AT algebra. (Local approximation by circle algebras
was proved in Section 2 of [45]. Direct limit decomposition follows from
semiprojectivity of circle algebras.)
• Let h : X → X be a minimal homeomorphism of a finite dimensional com-

pact metric space. Then the order on projections over C∗(Z, X, h) is deter-
mined by traces ([29] and Section 4 of [39]).
• Let X be a finite dimensional infinite compact metric space, and let h : X →
X be a minimal homeomorphism such that the map K0

(
C∗(Z, X, h)

)
→

Aff
(
T
(
C∗(Z, X, h)

))
has dense range. Then C∗(Z, X, h) has tracial rank

zero ([28]).
• Let X be the Cantor set and let h : X × S1 → X × S1 be a minimal

homeomorphism. For any x ∈ X, the set Y = {x} × S1 intersects each
orbit at most once. The algebra C∗(Z, X × S1, h)Y (see Definition 1.7
for the notation) is introduced before Proposition 3.3 of [27], where it is
called Ax. It is a centrally large subalgebra which plays a key role in the
proofs of many of the results there.
• A similar construction, with X × S1 × S1 in place of X × S1 and with
Y = {x} × S1 × S1, appears in Section 1 of [48]. It plays a role in that
paper similar to that in the previous item.
• Let h : X → X be a minimal homeomorphism of an infinite compact met-

ric space. The large subalgebras C∗(Z, X, h)Y of C∗(Z, X, h) (as in Defini-
tion 1.7) with several choices of Y (several one point sets as well as {x1, x2}
with x1 and x2 on different orbits) have been used by Toms and Winter [52]
to prove that C∗(Z, X, h) has finite decomposition rank.
• Julian Buck has used large subalgebras in his study of crossed products
C∗(Z, C(X,D), α) in which D is simple and α “lies over” a minimal home-
omorphism of X.

There is a competing approach, the method of Rokhlin dimension of group ac-
tions [24], which can be used for some of the same problems large subalgebras are
good for. When it applies, it often gives stronger results. For example, Szabo
has used this method successfully for free minimal actions of Zd on finite dimen-
sional compact metric spaces [49]. For many problems involving crossed products
for which large subalgebras are a plausible approach, Rokhlin dimension methods
should also be considered. Rokhlin dimension has also been successfully applied
to problems involving actions on simple C*-algebras, a context in which no useful
large subalgebras are known. On the other hand, finite Rokhlin dimension requires
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some form of topological finite dimensionality. It seems plausible that there might
be a generalization of finite Rokhlin dimension which captures actions on infinite di-
mensional spaces which have mean dimension zero. Such a generalization might be
similar to the progression from the study of simple AH algebras with no dimension
growth to those with slow dimension growth.

It looks much less likely that Rokhlin dimension methods can be usefully applied
to minimal homeomorphisms which do not have mean dimension zero. Large subal-
gebras have been used to estimate the radius of comparison of C∗(Z, X, h) when h
does not have mean dimension zero (and the radius of comparison is nonzero); see
[23]. They have also been used to prove regularity properties of crossed products
C∗
(
Z, C(X,D), α

)
when D is simple, the automorphism α ∈ Aut(C(X,D)) “lies

over” a minimal homeomorphism of X with large mean dimension, and the regu-
larity properties of the crossed product come from D rather than from the action
of Z on X. See [10].

Unfortunately, we are not able to discuss Rokhlin dimension here.
In these lectures, we give an introduction to large subalgebras, and we illustrate

their use in the study of crossed products by minimal homeomorphisms.

1. Introduction, Motivation, and the Cuntz Semigroup

1.1. Definitions and the basic statements. We get to the definitions as quickly
as possible.

Definition 1.1. Let A be a C*-algebra, and let a, b ∈ (K ⊗A)+. We say that a is
Cuntz subequivalent to b over A, written a -A b, if there is a sequence (vn)∞n=1 in
K ⊗A such that limn→∞ vnbv

∗
n = a.

By convention, if we say that B is a unital subalgebra of a C*-algebra A, we
mean that B contains the identity of A.

Definition 1.2 (Definition 4.1 of [43]). Let A be an infinite dimensional simple
unital C*-algebra. A unital subalgebra B ⊂ A is said to be large in A if for every
m ∈ Z>0, a1, a2, . . . , am ∈ A, ε > 0, x ∈ A+ with ‖x‖ = 1, and y ∈ B+ \ {0}, there
are c1, c2, . . . , cm ∈ A and g ∈ B such that:

(1) 0 ≤ g ≤ 1.
(2) For j = 1, 2, . . . ,m we have ‖cj − aj‖ < ε.
(3) For j = 1, 2, . . . ,m we have (1− g)cj ∈ B.
(4) g -B y and g -A x.
(5) ‖(1− g)x(1− g)‖ > 1− ε.

We emphasize that the Cuntz subequivalence involving y in (4) is relative to B,
not A.

Condition (5) is needed to avoid triviality when A is purely infinite and simple.
With B = C · 1, we could then satisfy all the other conditions by taking g = 1. In
the stably finite case, we can dispense with (5) (see Proposition 2.3 below), but we
still need g -A x in (4). Otherwise, even if we require that B be simple and that
the restriction maps T(A)→ T(B) and QT(A)→ QT(B) on traces and quasitraces
be bijective, we can take A to be any UHF algebra and take B = C · 1. The choice
g = 1 would always work.

It is crucial to the usefulness of large subalgebras that g in Definition 1.2 need
not be a projection. Also, one can do a lot without any kind of approximate
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commutation condition. Such a condition does seem to be needed for some things.
Here is the relevant definition, although we will not make full use of it in these
notes.

Definition 1.3 (Definition 3.2 of [5]). Let A be an infinite dimensional simple
unital C*-algebra. A unital subalgebra B ⊂ A is said to be centrally large in A
if for every m ∈ Z>0, a1, a2, . . . , am ∈ A, ε > 0, x ∈ A+ with ‖x‖ = 1, and
y ∈ B+ \ {0}, there are c1, c2, . . . , cm ∈ A and g ∈ B such that:

(1) 0 ≤ g ≤ 1.
(2) For j = 1, 2, . . . ,m we have ‖cj − aj‖ < ε.
(3) For j = 1, 2, . . . ,m we have (1− g)cj ∈ B.
(4) g -B y and g -A x.
(5) ‖(1− g)x(1− g)‖ > 1− ε.
(6) For j = 1, 2, . . . ,m we have ‖gaj − ajg‖ < ε.

The difference between Definition 1.3 and Definition 1.2 is the approximate com-
mutation condition in Definition 1.3(6).

The following strengthening of Definition 1.3 will be more important in these
notes.

Definition 1.4 (Definition 5.1 of [43]). Let A be an infinite dimensional simple
unital C*-algebra. A unital subalgebra B ⊂ A is said to be stably large in A if
Mn(B) is large in Mn(A) for all n ∈ Z>0.

Proposition 1.5 (Proposition 5.6 of [43]). Let A1 and A2 be infinite dimensional
simple unital C*-algebras, and let B1 ⊂ A1 and B2 ⊂ A2 be large subalgebras.
Assume that A1⊗minA2 is finite. Then B1⊗minB2 is a large subalgebra of A1⊗min

A2.

In particular, if A is stably finite and B ⊂ A is large, then B is stably large. We
will give a direct proof (Proposition 2.10 below). We don’t know whether stable
finiteness of A is needed (Question 1.35 below).

We prepare to define the main example used in these notes.

Notation 1.6. For a locally compact Hausdorff space X and an open subset U ⊂
X, we use the abbreviation

C0(U) =
{
f ∈ C0(X) : f(x) = 0 for all x ∈ X \ U

}
⊂ C0(X).

This subalgebra is of course canonically isomorphic to the usual algebra C0(U)
when U is considered as a locally compact Hausdorff space in its own right. In
particular, if Y ⊂ X is closed, then

(1.1) C0(X \ Y ) =
{
f ∈ C0(X) : f(x) = 0 for all x ∈ Y

}
.

Definition 1.7. Let X be a locally compact Hausdorff space and let h : X → X
be a homeomorphism. Let u ∈ C∗(Z, X, h) be the standard unitary. (We say more
about crossed products at the beginning of Section 4.) Let Y ⊂ X be a nonempty
closed subset, and, following (1.1), define

C∗(Z, X, h)Y = C∗
(
C(X), C0(X \ Y )u

)
⊂ C∗(Z, X, h).

We call it the Y -orbit breaking subalgebra of C∗(Z, X, h).
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The idea of using subalgebras of this type is due to Putnam [44]. We have used
a different convention from that used most other places, where one usually takes

C∗(Z, X, h)Y = C∗
(
C(X), uC0(X \ Y )

)
.

The choice of convention in Definition 1.7 has the advantage that, when used in
connection with Rokhlin towers, the bases of the towers are subsets of Y rather
than of h(Y ).

Theorem 1.8. Let X be an infinite compact Hausdorff space and let h : X →
X be a minimal homeomorphism. Let Y ⊂ X be a compact subset such that
hn(Y )∩Y = ∅ for all n ∈ Z\{0}. Then C∗(Z, X, h)Y is a centrally large subalgebra
of C∗(Z, X, h) in the sense of Definition 1.3.

We give a proof in Section 4, along with proofs or sketches of proofs of the
lemmas which go into the proof.

The key fact about C∗(Z, X, h)Y which makes this theorem useful is that it
is a direct limit of recursive subhomogeneous C*-algebras (as in Definition 1.1
of [38]) whose base spaces are closed subsets of X. The structure of C∗(Z, X, h)Y
is therefore much more accessible than the structure of crossed products.

1.2. Theorems and applications. We state the main known results about large
subalgebras and some recent applications.

Proposition 1.9 (Proposition 5.2 and Proposition 5.5 of [43]). Let A be an infinite
dimensional simple unital C*-algebra, and let B ⊂ A be a large subalgebra. Then
B is simple and infinite dimensional.

Theorem 1.10 (Theorem 6.2 and Proposition 6.9 of [43]). Let A be an infinite di-
mensional simple unital C*-algebra, and let B ⊂ A be a large subalgebra. Then the
restriction maps T(A) → T(B) and QT(A) → QT(B), on traces and quasitraces,
are bijective.

The proofs of the two parts are quite different. We prove that T(A)→ T(B) is
bijective below (Theorem 2.11).

Let A be a C*-algebra. The Cuntz semigroup Cu(A) is defined below (Defini-
tion 1.20(3)). Let Cu+(A) denote the set of elements η ∈ Cu(A) which are not the
classes of projections. (Such elements are sometimes called purely positive.)

Theorem 1.11 (Theorem 6.8 of [43]). Let A be a stably finite infinite dimensional
simple unital C*-algebra, and let B ⊂ A be a large subalgebra. Let ι : B → A be
the inclusion map. Then Cu(ι) defines an order and semigroup isomorphism from
Cu+(B) ∪ {0} to Cu+(A) ∪ {0}.

It is not true that Cu(ι) defines an isomorphism from Cu(B) to Cu(A). Example
7.13 of [43] shows that Cu(ι) : Cu(B)→ Cu(A) need not be injective. We suppose
this map can also fail to be surjective, but we don’t know an example.

Theorem 1.12 (Theorem 6.14 of [43]). Let A be an infinite dimensional stably
finite simple separable unital C*-algebra. Let B ⊂ A be a large subalgebra. Let
rc(−) be the radius of comparison (Definition 3.1 below). Then rc(A) = rc(B).

We will prove this result in Section 3 when A is exact. See Theorem 3.2 below.
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Proposition 1.13 (Proposition 6.15, Corollary 6.16, and Proposition 6.17 of [43]).
Let A be an infinite dimensional simple unital C*-algebra, and let B ⊂ A be a large
subalgebra. Then:

(1) A is finite if and only if B is finite.
(2) If B is stably large in A, then A is stably finite if and only if B is stably

finite.
(3) A is purely infinite if and only if B is purely infinite.

Theorem 1.14 (Theorem 6.3 of [5]). Let A be an infinite dimensional simple unital
C*-algebra, and let B ⊂ A be a centrally large subalgebra. Then:

(1) If tsr(B) = 1 then tsr(A) = 1.
(2) If tsr(B) = 1 and RR(B) = 0, then RR(A) = 0.

The following two key technical results are behind many of the theorems stated
above. In particular, they are the basis for proving Theorem 1.11, which is used to
prove many of the other results.

Lemma 1.15 (Lemmas 6.3 and 6.5 of [43]). Let A be an infinite dimensional simple
unital C*-algebra, and let B ⊂ A be a stably large subalgebra.

(1) Let a, b, x ∈ (K ⊗A)+ satisfy x 6= 0 and a⊕ x -A b. Then for every ε > 0
there are n ∈ Z>0, c ∈ (Mn ⊗B)+, and δ > 0 such that (a− ε)+ -A c -A
(b− δ)+.

(2) Let a, b ∈ (K ⊗ B)+ and c, x ∈ (K ⊗ A)+ satisfy x 6= 0, a -A c, and
c⊕ x -A b. Then a -B b.

We state some of the applications. In the following theorem, rc(A) is the radius
of comparison of A (see Definition 3.1 below), and mdim(h) is the mean dimension
of h (see Section 5 below).

Theorem 1.16 ([23]). Let X be a compact metric space. Assume that there is a
continuous surjective map from X to the Cantor set. Let h : X → X be a minimal
homeomorphism. Then rc(C∗(Z, X, h)) ≤ 1

2mdim(h).

Theorem 1.17 (Theorem 7.1 of [5]). Let X be a compact metric space. Assume
that there is a continuous surjective map from X to the Cantor set. Let h : X → X
be a minimal homeomorphism. Then C∗(Z, X, h) has stable rank one.

There is no finite dimensionality assumption on X. We don’t even assume that
h has mean dimension zero. In particular, this theorem holds for the examples of
Giol and Kerr [21], for which the crossed products are known not to be Z-stable
and not to have strict comparison of positive elements. (It is shown in [23] that
rc(C∗(Z, X, h)) = 1

2mdim(h) for such systems, and in [21] that mdim(h) 6= 0. See
the discussion in Section 7 of [5] for details.)

The proof uses Theorem 1.8, Theorem 1.14(1), the fact that we can arrange
that C∗(Z, X, h)Y be the direct limit of an AH system with diagonal maps, and
Theorem 4.1 of [16] to show that simple direct limits of AH systems with diagonal
maps always have stable rank one, without any dimension growth hypotheses.

It is conjectured that rc(C∗(Z, X, h)) = 1
2mdim(h) for all minimal homeomor-

phisms. In [23], we also prove that rc(C∗(Z, X, h)) ≥ 1
2mdim(h) for a reasonably

large class of homomorphisms constructed using the methods of Giol and Kerr [21],
including the ones in that paper. For all minimal homeomorphisms of this type,
there is a continuous surjective map from the space to the Cantor set.
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The proof uses Theorem 1.8, Theorem 1.12, the fact that we can arrange that
C∗(Z, X, h)Y be the direct limit of an AH system with diagonal maps, and methods
of [34] (see especially Theorem 6.2 there) to estimate radius of comparison of simple
direct limits of AH systems with diagonal maps. We would like to use Theorem 6.2
of [34] directly. Unfortunately, the definition of mean dimension of an AH direct
system in [34] requires that the base spaces be connected. See Definition 3.6 of [34],
which refers to the setup described after Lemma 3.4 of [34].

Theorem 1.18 (Elliott and Niu [18]). The “extended” irrational rotation algebras,
obtained by “cutting” each of the standard unitary generators at one or more points
in its spectrum, are AF algebras.

We omit the precise descriptions of these algebras.
If one cuts just one of the generators, the resulting algebra is a crossed product

by a minimal homeomorphism of the Cantor set, with the other unitary playing
the role of the image of a generator of the group. If both are cut, the algebra is no
longer an obvious crossed product.

In the next theorem, Z is the Jiang-Su algebra. Being Z-stable is one of the
regularity conditions in the Toms-Winter conjecture, and for simple separable nu-
clear C*-algebras it is hoped, and known in many cases, that Z-stability implies
classifiability in the sense of the Elliott program.

Theorem 1.19 (Elliott and Niu [18]). Let X be a compact metric space, and
let h : X → X be a minimal homeomorphism with mean dimension zero. Then
C∗(Z, X, h) is Z-stable.

1.3. Cuntz comparison. We give a summary of Cuntz comparison and a few
facts about the Cuntz semigroup of a C*-algebra. We refer to [2] for an extensive
introduction. The material we need is also either summarized or proved in the first
two sections of [43].

Let M∞(A) denote the algebraic direct limit of the system (Mn(A))∞n=1 using
the usual embeddings Mn(A)→Mn+1(A), given by

a 7→
(
a 0
0 0

)
.

If a ∈Mm(A) and b ∈Mn(A), we write a⊕ b for the diagonal direct sum

a⊕ b =

(
a 0
0 b

)
.

By abuse of notation, we will also write a ⊕ b when a, b ∈ M∞(A) and we do not
care about the precise choice of m and n with a ∈Mm(A) and b ∈Mn(A).

The main object of study in these notes is how comparison in the Cuntz semi-
group of a C*-algebra A relates to comparison in the Cuntz semigroup of a large
subalgebra B. We therefore include the algebra in the notation for Cuntz compar-
ison and classes in the Cuntz semigroup.

Parts (1) and (2) of the following definition are originally from [13]. (Part (1) is
a restatement of Definition 1.1.)

Definition 1.20. Let A be a C*-algebra.

(1) For a, b ∈ (K⊗A)+, we say that a is Cuntz subequivalent to b over A, written
a -A b, if there is a sequence (vn)∞n=1 in K⊗A such that limn→∞ vnbv

∗
n = a.
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(2) We say that a and b are Cuntz equivalent over A, written a ∼A b, if a -A b
and b -A a. This relation is an equivalence relation, and we write 〈a〉A for
the equivalence class of a.

(3) The Cuntz semigroup of A is

Cu(A) = (K ⊗A)+/ ∼A,

together with the commutative semigroup operation

〈a〉A + 〈b〉A = 〈a⊕ b〉A
(the class does not depend on the choice of the isomorphism M2(K)→ K)
and the partial order

〈a〉A ≤ 〈b〉A ⇐⇒ a -A b.

It is taken to be an object of the category Cu given in Definition 4.1 of [2].
We write 0 for 〈0〉A.

(4) We also define the subsemigroup

W (A) = M∞(A)+/ ∼A,

with the same operations and order. (It will follow from Remark 1.21 that
the obvious map W (A)→ Cu(A) is injective.)

(5) Let A and B be C*-algebras, and let ϕ : A→ B be a homomorphism. We
use the same letter for the induced maps Mn(A) → Mn(B) for n ∈ Z>0,
M∞(A) → M∞(B), and K ⊗ A → K ⊗ B. We define Cu(ϕ) : Cu(A) →
Cu(B) and W (ϕ) : W (A) → W (B) by 〈a〉A 7→ 〈ϕ(a)〉B for a ∈ (K ⊗ A)+
or M∞(A)+ as appropriate.

It is easy to check that the maps Cu(ϕ) and W (ϕ) are well defined homomor-
phisms of ordered semigroups which send 0 to 0. Also, it follows from Lemma
1.23(14) below that if η1, η2, µ1, µ2 ∈ Cu(A) satisfy η1 ≤ µ1 and η2 ≤ µ2, then
η1 + η2 ≤ µ1 + µ2.

The semigroup Cu(A) generally has better properties than W (A). For example,
certain supremums exist (Theorem 4.19 of [2]), and, when understood as an object
of the category Cu, it behaves properly with respect to direct limits (Theorem 4.35
of [2]). In this exposition, we mainly use W (A) because, when A is unital, the
dimension function dτ associated to a normalized quasitrace τ (Definition 1.26
below) is finite on W (A) but usually not on Cu(A). In particular, the radius of
comparison (Definition 3.1 below) is easier to deal with in terms of W (A).

We will not need the definition of the category Cu.

Remark 1.21. We make the usual identifications

(1.2) A ⊂Mn(A) ⊂M∞(A) ⊂ K ⊗A.

It is easy to check, by cutting down to corners, that if a, b ∈ (K ⊗ A)+ satisfy
a -A b, then the sequence (vn)∞n=1 such that limn→∞ vnbv

∗
n = a can be taken to be

in the smallest of the algebras in (1.2) which contains both a and b. See Remark 1.2
of [43] for details.

The Cuntz semigroup of a separable C*-algebra can be very roughly thought of
as K-theory using open projections in matrices over A′′, that is, open supports of
positive elements in matrices over A, instead of projections in matrices over A. As
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justification for this heuristic, we note that if X is a compact Hausdorff space and
f, g ∈ C(X)+, then f -C(X) g if and only if{

x ∈ X : f(x) > 0
}
⊂
{
x ∈ X : g(x) > 0

}
.

There is a description of Cu(A) using Hilbert modules over A in place of finitely
generated projective modules. See [11].

Unlike K-theory, the Cuntz semigroup is not discrete. If p, q ∈ A are projections
such that ‖p−q‖ < 1, then p and q are Murray-von Neumann equivalent. However,
for a, b ∈ A+, the relation ‖a − b‖ < ε says nothing about the classes of a and b
in Cu(A) or W (A), however small ε > 0 is. We can see this in Cu(C(X)). Even
if
{
x ∈ X : g(x) > 0

}
is a very small subset of X, for every ε > 0 the function

f = g + ε
2 has 〈f〉C(X) = 〈1〉C(X). What is true when ‖f − g‖ < ε is that{

x ∈ X : f(x) > ε
}
⊂
{
x ∈ X : g(x) > 0

}
,

so that the function max(f − ε, 0) satisfies max(f − ε, 0) -C(X) g. This motivates
the systematic use of the elements (a− ε)+, defined as follows.

Definition 1.22. Let A be a C*-algebra, let a ∈ A+, and let ε ≥ 0. Let f : [0,∞)→
[0,∞) be the function

f(λ) = (λ− ε)+ =

{
0 0 ≤ λ ≤ ε
λ− ε ε < λ.

Then define (a− ε)+ = f(a) (using continuous functional calculus).

One must still be much more careful than with K-theory. First, a ≤ b does
not imply (a − ε)+ ≤ (b − ε)+ (although one does get (a − ε)+ -A (b − ε)+; see
Lemma 1.23(17) below). Second, a -A b does not imply any relation between
(a − ε)+ and (b − ε)+. For example, if A = C([0, 1]) and a ∈ C([0, 1]) is a(t) = t
for t ∈ [0, 1], then for any ε ∈ (0, 1) the element b = εa satisfies a -A b. But
(a − ε)+ 6-A (b − ε)+, since (a − ε)+ has open support (ε, 1] while (b − ε)+ = 0.
The best one can do is in Lemma 1.23(11) below.

We now list a collection of basic results about Cuntz comparison and the Cuntz
semigroup. There are very few such results about projections and the K0-group,
the main ones being that if ‖p − q‖ < 1, then p and q are Murray-von Neumann
equivalent; that p ≤ q if and only if pq = p; the relations between homotopy, unitary
equivalence, and Murray-von Neumann equivalence; and the fact that addition of
equivalence classes respects orthogonal sums. There are many more for Cuntz
comparison. We will not use all the facts listed below in these notes (although they
are all used in [43]); we include them all so as to give a fuller picture of Cuntz
comparison.

Parts (1) through (14) of Lemma 1.23 are mostly taken from [25], with some
from [12], [19], [36], and [47], and are summarized in Lemma 1.4 of [43]; we refer
to [43] for more on the attributions (although not all the attributions there are to
the original sources). Part (15) is Lemma 1.5 of [43]; part (16) is Corollary 1.6
of [43]; part (17) is Lemma 1.7 of [43]; and part (18) is Lemma 1.9 of [43].

We denote by A+ the unitization of a C*-algebra A. (We add a new unit even
if A is already unital.)

Lemma 1.23. Let A be a C*-algebra.

(1) Let a, b ∈ A+. Suppose a ∈ bAb. Then a -A b.
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(2) Let a ∈ A+ and let f : [0, ‖a‖]→ [0,∞) be a continuous function such that
f(0) = 0. Then f(a) -A a.

(3) Let a ∈ A+ and let f : [0, ‖a‖]→ [0,∞) be a continuous function such that
f(0) = 0 and f(λ) > 0 for λ > 0. Then f(a) ∼A a.

(4) Let c ∈ A. Then c∗c ∼A cc∗.
(5) Let a ∈ A+, and let u ∈ A+ be unitary. Then uau∗ ∼A a.
(6) Let c ∈ A and let α > 0. Then (c∗c− α)+ ∼A (cc∗ − α)+.
(7) Let v ∈ A. Then there is an isomorphism ϕ : v∗vAv∗v → vv∗Avv∗ such

that, for every positive element z ∈ v∗vAv∗v, we have z ∼A ϕ(z).
(8) Let a ∈ A+ and let ε1, ε2 > 0. Then

(
(a− ε1)+ − ε2

)
+

=
(
a− (ε1 + ε2)

)
+
.

(9) Let a, b ∈ A+ satisfy a -A b and let δ > 0. Then there is v ∈ A such that
v∗v = (a− δ)+ and vv∗ ∈ bAb.

(10) Let a, b ∈ A+. Then ‖a− b‖ < ε implies (a− ε)+ -A b.
(11) Let a, b ∈ A+. Then the following are equivalent:

(a) a -A b.
(b) (a− ε)+ -A b for all ε > 0.
(c) For every ε > 0 there is δ > 0 such that (a− ε)+ -A (b− δ)+.

(12) Let a, b ∈ A+. Then a+ b -A a⊕ b.
(13) Let a, b ∈ A+ be orthogonal (that is, ab = 0). Then a+ b ∼A a⊕ b.
(14) Let a1, a2, b1, b2 ∈ A+, and suppose that a1 -A a2 and b1 -A b2. Then

a1 ⊕ b1 -A a2 ⊕ b2.
(15) Let a, b ∈ A be positive, and let α, β ≥ 0. Then

(
(a+ b− (α+ β)

)
+
-A (a− α)+ + (b− β)+ -A (a− α)+ ⊕ (b− β)+.

(16) Let ε > 0 and λ ≥ 0. Let a, b ∈ A satisfy ‖a−b‖ < ε. Then (a−λ−ε)+ -A
(b− λ)+.

(17) Let a, b ∈ A satisfy 0 ≤ a ≤ b. Let ε > 0. Then (a− ε)+ -A (b− ε)+.
(18) Let a ∈ (K ⊗ A)+. Then for every ε > 0 there are n ∈ Z>0 and b ∈

(Mn ⊗A)+ such that (a− ε)+ ∼A b.

The following result is sufficiently closely tied to the ideas behind large subalge-
bras that we include the proof.

Lemma 1.24 (Lemma 1.8 of [43]). Let A be a C*-algebra, let a ∈ A+, let g ∈ A+

satisfy 0 ≤ g ≤ 1, and let ε ≥ 0. Then

(a− ε)+ -A
[
(1− g)a(1− g)− ε

]
+
⊕ g.

Proof. Set h = 2g− g2, so that (1− g)2 = 1− h. We claim that h ∼A g. Since 0 ≤
g ≤ 1, this follows from Lemma 1.23(3), using the continuous function λ 7→ 2λ−λ2
on [0, 1].

Set b =
[
(1 − g)a(1 − g) − ε

]
+

. Using Lemma 1.23(15) at the second step,

Lemma 1.23(6) and Lemma 1.23(4) at the third step, and Lemma 1.23(14) at the
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last step, we get

(a− ε)+ =
[
a1/2(1− h)a1/2 + a1/2ha1/2 − ε

]
+

-A
[
a1/2(1− h)a1/2 − ε

]
+
⊕ a1/2ha1/2

∼A
[
(1− g)a(1− g)− ε

]
+
⊕ h1/2ah1/2

= b⊕ h1/2ah1/2 ≤ b⊕ ‖a‖h -A b⊕ g.

This completes the proof. �

Notation 1.25. For a unital C*-algebra A, we denote by T(A) the set of tra-
cial states on A. We denote by QT(A) the set of normalized 2-quasitraces on A
(Definition II.1.1 of [8]; Definition 2.31 of [2]).

Definition 1.26. Let A be a stably finite unital C*-algebra, and let τ ∈ QT(A).
Define dτ : M∞(A)+ → [0,∞) by dτ (a) = limn→∞ τ(a1/n) for a ∈ M∞(A)+. Fur-
ther (the use of the same notation should cause no confusion) define dτ : (K⊗A)+ →
[0,∞] by the same formula, but now for a ∈ (K ⊗ A)+. We also use the same no-
tation for the corresponding functions on Cu(A) and W (A), as in Proposition 1.27
below.

Proposition 1.27. Let A be a stably finite unital C*-algebra, and let τ ∈ QT(A).
Then dτ as in Definition 1.26 is well defined on Cu(A) and W (A). That is, if
a, b ∈ (K ⊗A)+ satisfy a ∼A b, then dτ (a) = dτ (b).

Proof. This is part of Proposition 4.2 of [19]. �

Also see the beginning of Section 2.6 of [2], especially the proof of Theorem
2.32 there. It follows that dτ defines a state on W (A). Thus (see Theorem II.2.2
of [8], which gives the corresponding bijection between 2-quasitraces and dimension
functions which are not necessarily normalized but are finite everywhere), the map
τ 7→ dτ is a bijection from QT(A) to the lower semicontinuous dimension functions
on A.

1.4. Cuntz comparison in simple C*-algebras. We present some results re-
lated to Cuntz comparison specifically for simple C*-algebras.

Lemma 1.28 (Lemma 2.1 of [43]). Let A be a simple C*-algebra which is not of
type I. Then there exists a ∈ A+ such that sp(a) = [0, 1].

Proof. The discussion before (1) on page 61 of [1] shows that A is not scattered
in the sense of [1]. The conclusion therefore follows from the argument in (4) on
page 61 of [1]. �

Lemma 1.29 (Lemma 2.2 and Lemma 2.3 of [43]). Let A be a C*-algebra which
is not of type I. Let n ∈ Z>0. Then there exist a unitary u ∈ A (in A+ if A is not
unital) which is homotopic to 1, and a nonzero positive element a ∈ A, such that
the elements

a, uau−1, u2au−2, . . . , unau−n

are pairwise orthogonal.

The proof in [43] uses heavy machinery, and there ought to be a simpler proof,
particularly when A is simple.
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Sketch of the proof of Lemma 1.29. We describe the ideas. (For details, see [43].)
We do the unital case; the reduction from the nonunital case to the unital case is
easy.

First prove the result for the unitized cone (CMn+1)+ in place of A. This is
elementary. Then construct an injective unital homomorphism ϕ0 from (CMn+1)+

to D =
⊗∞

m=1Mn+1. (Use Lemma 1.28 to get started.) A result of Glimm (see
Corollary 6.7.4 of [37]) provides a subalgebra B ⊂ A and a surjective homomor-
phism π : B → D. We can assume that B contains the identity of A. Use pro-
jectivity of CMn+1 (see Theorem 10.2.1 of [31]) to lift ϕ0 to an injective unital
homomorphism from (CMn+1)+ to B, giving an injective unital homomorphism
ϕ : (CMn+1)+ → A. Now use the result for (CMn+1)+ to get the result for A. �

It is now easy to prove the next lemma (although there are shorter proofs).

Lemma 1.30 (Lemma 2.4 of [43]). Let A be a simple C*-algebra which is not of
type I. Let a ∈ A+ \ {0}, and let l ∈ Z>0. Then there exist b1, b2, . . . , bl ∈ A+ \ {0}
such that b1 ∼A b2 ∼A · · · ∼A bl, such that bjbk = 0 for j 6= k, and such that

b1 + b2 + · · ·+ bl ∈ aAa.

This lemma has the following corollary.

Corollary 1.31 (Corollary 2.5 of [43]). Let A be a simple unital infinite dimen-
sional C*-algebra. Then for every ε > 0 there is a ∈ A+ \ {0} such that for all
τ ∈ QT(A) we have dτ (a) < ε.

Lemma 1.32 (Lemma 2.6 of [43]). Let A be a simple C*-algebra, and let B ⊂ A
be a nonzero hereditary subalgebra. Let n ∈ Z>0, and let a1, a2, . . . , an ∈ A+ \{0}.
Then there exists b ∈ B+ \ {0} such that b -A aj for j = 1, 2, . . . , n.

Sketch of proof. The proof is by induction. The case n = 0 is trivial. The induction
step requires that for a, b0 ∈ A+ \{0} one find b ∈ A+ \{0} such that b ∈ b0Ab0 (so
that b -A b0 by Lemma 1.23(1)) and b -A a. Use simplicity to find x ∈ A such that
the element y = b0xa is nonzero, and take b = yy∗ ∈ b0Ab0. Using Lemma 1.23(5)
and Lemma 1.23(1), we get b ∼A y∗y -A a. �

Lemma 1.33 (Lemma 2.7 of [43]). Let A be a simple infinite dimensional C*-
algebra which is not of type I. Let b ∈ A+ \ {0}, let ε > 0, and let n ∈ Z>0. Then
there are c ∈ A+ and y ∈ A+ \ {0} such that, in W (A), we have

n〈(b− ε)+〉A ≤ (n+ 1)〈c〉A and 〈c〉A + 〈y〉A ≤ 〈b〉A.

Sketch of proof. We divide the proof into two cases. First assume that sp(b) ∩
(0, ε) 6= ∅. Then there is a continuous function f : [0,∞) → [0,∞) which is zero
on {0} ∪ [ε,∞) and such that f(b) 6= 0. We take c = (b− ε)+ and y = f(b).

Now suppose that sp(b)∩ (0, ε) = ∅. In this case, we might as well assume that
b is a projection, and that 〈(b− ε)+〉A, which is always dominated by 〈b〉A, is equal
to 〈b〉A. Cutting down by b, we can assume that b = 1 (in particular, A is unital),
and it is enough to find c ∈ A+ and y ∈ A+ \ {0} such that n〈1〉A ≤ (n + 1)〈c〉A
and 〈c〉A + 〈y〉A ≤ 〈1〉A.

Take the unitized cone over Mn+1 to be C = [CMn+1]+ = (C0((0, 1])⊗Mn+1)+,
and use the usual notation for matrix units. Lemma 1.29 provides a ∈ A+ \ {0}
and a unitary u ∈ A such that the elements

a, uau−1, u2au−2, . . . , unau−n
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are pairwise orthogonal. Without loss of generality ‖a‖ = 1. Let t ∈ C0((0, 1]) be
the function t(λ) = λ for λ ∈ (0, 1]. There is a unital homomorphism ψ : C → A
such that ψ(t ⊗ ek,k) = uk−1au−(k−1) for k = 1, 2, . . . , n + 1. Choose continuous
functions g1, g2, g3 ∈ C0((0, 1] such that 0 ≤ g3 ≤ g2 ≤ g1 ≤ 1, g3(1) = 1, g1g2 = g2,
and g2g3 = g3. Define

x = ψ(g2 ⊗ e1,1), c = 1− x, and y = ψ(g3 ⊗ e1,1).

Then xy = y so cy = 0. It follows from Lemma 1.23(13) that 〈c〉A + 〈y〉A ≤ 〈1〉A.
It remains to prove that n〈1〉A ≤ (n+ 1)〈c〉A, and it is enough to prove that in

W (C) we have n〈1〉C ≤ (n+ 1)〈1− g2 ⊗ e1,1〉C , that is, in Mn+1(C),

(1.3) diag(1, 1, . . . , 1, 0) -C diag
(
1− g2 ⊗ e1,1, 1− g2 ⊗ e1,1, . . . , 1− g2 ⊗ e1,1

)
.

To see why this should be true, view Mn+1(C) as a set of functions from [0, 1]
to M(n+1)2 with restrictions on the value at zero. Since g1g2 = g2, the function
1 − g2 ⊗ e1,1 is constant equal to 1 on a neighborhood U of 0, and at λ ∈ U the
right hand side of (1.3) therefore dominates the left hand side. Elsewhere, both
sides of (1.3) are diagonal, with the right hand side being a constant projection of
rank n(n+ 1) and the left hand side dominating

diag
(
1− e1,1, 1− e1,1, . . . , 1− e1,1

)
,

which is a (different) constant projection of rank n(n+ 1). It is in fact not hard to
construct an explicit formula for a unitary v ∈Mn+1(C) such that

diag(1, 1, . . . , 1, 0) ≤ v · diag
(
1− g2 ⊗ e1,1, 1− g2 ⊗ e1,1, . . . , 1− g2 ⊗ e1,1

)
· v∗.

See [43] for the details (arranged a little differently). �

1.5. Open problems. We discuss some open problems. We start with some which
are motivated by particular applications, and then give some which are suggested
by results already proved but for which we don’t have immediate applications.

The first question is motivated by the hope that large subalgebras can be used
to get more information about crossed products than we now know how to get. In
most parts, we expect that positive answers would require special hypotheses, if
they can be gotten at all.

Question 1.34. Let A be an infinite dimensional simple separable unital C*-
algebra, and let B ⊂ A be a large (or centrally large) subalgebra.

(1) Suppose that B has tracial rank zero. Does it follow that A has tracial
rank zero?

(2) Suppose that B is quasidiagonal. Does it follow that A is quasidiagonal?
(3) Suppose that B has finite decomposition rank. Does it follow that A has

finite decomposition rank?
(4) Suppose that B has finite nuclear dimension. Does it follow that A has

finite nuclear dimension?

It seems likely that “tracial” versions of these properties pass from a large sub-
algebra to the containing algebra, at least if the tracial versions are defined using
cutdowns by positive elements rather than by projections. But we don’t know how
useful such properties are. As far as we know, they have not been studied.

Next, we ask whether being stably large is automatic.
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Question 1.35. Let A be an infinite dimensional simple separable unital C*-
algebra, and let B ⊂ A be a large (or centrally large) subalgebra. Does it follow
that Mn(B) is large (or centrally large) in Mn(A) for n ∈ Z>0?

We know that this is true if A is stably finite. (See Proposition 2.10 below.) Not
having the general statement is a technical annoyance. This result would be helpful
when dealing with large subalgebras of C∗(Z, C(X,D), α) when D is simple unital,
X is compact metric, and the homeomorphism of Prim(C(X,D)) ∼= X induced by
α is minimal. Some results on large subalgebras of such crossed products can be
found in [4]; also see Theorem 4.4.

More generally, does Proposition 1.5 still hold without the finiteness assumption?

Question 1.36. Let A be an infinite dimensional simple separable unital C*-
algebra, and let α : Z → Aut(A) have the tracial Rokhlin property. Is there a
useful large or centrally large subalgebra of C∗(Z, A, α)?

We want a centrally large subalgebra of C∗(Z, A, α) which “locally looks like
matrices over corners of A”. The paper [35] proves that crossed products by auto-
morphisms with the tracial Rokhlin property preserve the combination of real rank
zero, stable rank one, and order on projections determined by traces. The methods
were inspired by those of [40], which used large subalgebras (without the name).
The proof in [35] does not, however, construct a single large subalgebra. Instead,
it constructs a suitable subalgebra (analogous to C∗(Z, X, h)Y for a small closed
subset Y ⊂ X with int(Y ) 6= ∅) for every choice of finite set F ⊂ C∗(Z, A, α) and
every choice of ε > 0. It is far from clear how to choose these subalgebras to form
an increasing sequence so that a direct limit can be built.

The first intended application is simplification of [35].

Problem 1.37. Let X be a compact metric space, and let G be a countable
amenable group which acts minimally and essentially freely on X. Construct a
(centrally) large subalgebra B ⊂ C∗(G,X) which is a direct limit of recursive
subhomogeneous C*-algebras as in [38] whose base spaces are closed subsets of X,
and which is the (reduced) C*-algebra of an open subgroupoid of the transformation
group groupoid obtained from the action of G on X.

In a precursor to the theory of large subalgebras, this is in effect done in [40] when
G = Zd and X is the Cantor set, following ideas of [20]. The resulting centrally
large subalgebra is used in [40] to prove that C∗(Zd, X) has stable rank one, real
rank zero, and order on projections determined by traces. (More is now known.)

We also know how to construct a centrally large subalgebra of this kind when
G = Zd and X is finite dimensional. This gave the first proof that, in this case,
C∗(Zd, X) has stable rank one and strict comparison of positive elements. (Again,
more is now known.) Unlike for actions of Z, there are no known explicit formulas
like that in Theorem 1.8; instead, centrally large subalgebras must be proved to
exist via constructions involving many choices. They are direct limits of C*-algebras
of open subgroupoids of the transformation group groupoid as in Problem 1.37. In
each open subgroupoid, there is a finite upper bound on the size of the orbits;
this is why they are recursive subhomogeneous C*-algebras. (In fact, the original
motivation for the definition of a large subalgebras was to describe the essential
properties of these subalgebras, as a substitute for an explicit description.)

We presume, as suggested in Problem 1.37, that the construction can be done
in much greater generality.
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Problem 1.38. Develop the theory of large subalgebras of not necessarily simple
C*-algebras.

One can’t just copy Definition 1.2. Suppose B is a nontrivial large subalgebra
of A. We surely want B⊕B to be a large subalgebra of A⊕A. Take x0 ∈ A+ \{0},
and take the element x ∈ A ⊕ A in Definition 1.2 to be x = (x0, 0). Writing
g = (g1, g2), we have forced g2 = 0. Thus, not only would B ⊕ B not be large in
A⊕A, but even A⊕B would not be large in A⊕A.

In this particular case, the solution is to require that x and y be full elements in
A and B. What to do is much less clear if, for example, A is a unital extension of
the form

0 −→ K ⊗D −→ A −→ E −→ 0,

even if D and E are simple, to say nothing of the general case.
The following problem goes just a small step away from the simple case, and just

asking that x and y be full might possibly work for it.

Question 1.39. Let X be an infinite compact metric space and let h : X → X be
a homeomorphism which has a factor system which is a minimal homeomorphism
of an infinite compact metric space (or, stronger, a minimal homeomorphism of the
Cantor set). Can one use large subalgebra methods to relate the mean dimension
of h to the radius of comparison of C∗(Z, X, h)?

We point out that Lindenstrauss’s embedding result for systems of finite mean
dimension in shifts built from finite dimensional spaces (Theorem 5.1 of [30]) is
proved for homeomorphisms having a factor system which is a minimal homeomor-
phism of an infinite compact metric space.

Problem 1.40. Develop the theory of large subalgebras of simple but not neces-
sarily unital C*-algebras.

One intended application is to crossed products C∗
(
Z, C(X,D), α

)
when X is an

infinite compact metric space, D is simple but not unital. and the induced action on
X is given by a minimal homeomorphism. (Compare with Theorem 4.4.) Another
possible application is to the structure of crossed products C∗(Z, X, h) when h is
a minimal homeomorphism of a noncompact version of the Cantor set. Minimal
homeomorphisms of noncompact Cantor sets have been studied in [32] and [33],
but, as far as we know, almost nothing is known about their transformation group
C*-algebras.

Can the technique of large subalgebras be adapted to Lp operator crossed prod-
ucts, as in [42]? For example, consider the following question.

Question 1.41. Let p ∈ [1,∞) \ {2}. Let X be an infinite compact metric space
and let h : X → X be a minimal homeomorphism. Suppose that dim(X) is finite,
or that X has a surjective continuous map to the Cantor set. Does it follow that
the Lp operator crossed product F p(Z, X, h) has stable rank one?

It is at least known (Theorem 5.6 of [42]) that F p(Z, X, h) is simple.
The answer to Question 1.41 is unknown even when X is the Cantor set. Put-

nam’s original argument (Section 2 of [45]) depends on continuous deformation of
unitaries in Mn(C). The analogous construction for isometries in the Lp version of
Mn(C) is not possible. (The only isometries are products of permutation matrices
and diagonal isometries.) It seems likely that the machinery will fail if one must
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replace isometries with more general invertible elements. It also seems likely that
a theory of Lp AH algebras will only work if the maps in the direct system are
assumed to be diagonal (in a sense related to that at the beginning of Section 2.2
of [16]), and that F p(Z, X, h) is unlikely to be such a direct limit even when X
is the Cantor set. On the other hand, in many cases C∗(Z, X, h) has a large sub-
algebra C∗(Z, X, h)Y which is AH with diagonal maps. See Lemma 5.12 of [23].
The idea for Question 1.41 is to adapt C* proofs to show that an Lp AH algebra
with no dimension growth and diagonal maps has stable rank one (possibly, fol-
lowing [16], even without assumptions on dimension growth), and to prove that if
hn(Y ) ∩ Y = ∅ for all n ∈ Z \ {0} then the algebra one might call F p(Z, X, h)Y is
large in F p(Z, X, h) in a suitable sense. It isn’t clear what the abstract definition
of a centrally large subalgebra of an Lp operator algebra should be, since we don’t
know anything about an Lp analog of Cuntz comparison, but possibly one can work
with the explicitly given inclusion F p(Z, X, h)Y ⊂ F p(Z, X, h).

For a large subalgebra B ⊂ A, the proofs of most of the relations between A and
B do not need B to be centrally large. The exceptions so far are for stable rank
one. Do we really need centrally large for the results on stable rank?

Question 1.42. Let A be an infinite dimensional simple separable unital C*-
algebra, and let B ⊂ A be a large subalgebra (not necessarily centrally large).
If B has stable rank one, does it follow that A has stable rank one?

That is, can Theorem 1.14 be generalized from centrally large subalgebras to
large subalgebras?

It is not clear how important this question is. In all applications so far, with the
single exception of [17], the large subalgebras used are known to be centrally large.
In particular, all known useful large subagebras of crossed products are already
known to be centrally large.

Question 1.43. Does there exist a large subagebra which is not centrally large?
Are there natural examples?

The results of [17] depend on large subagebras which are not proved there to be
centrally large, but it isn’t known that they are not centrally large.

Question 1.44. Let A be an infinite dimensional simple separable unital C*-
algebra, and let B ⊂ A be a large subalgebra. If RR(B) = 0, does it follow
that RR(A) = 0? What about the converse? Does it help to assume that B is
centrally large in the sense of Definition 1.3?

If B has both stable rank one and real rank zero, and is centrally large in A,
then A has real rank zero (as well as stable rank one) by Theorem 1.14. The main
point of Question 1.44 is to ask what happens if B is not assumed to have stable
rank one. The proof in [40] of real rank zero for the crossed product C∗(Zd, X) of
a free minimal action of Zd on the Cantor set X (see Theorem 6.11(2) of [40]; the
main part is Theorem 4.6 of [40]) gives reason to hope that if B is large in A and
RR(B) = 0, then one does indeed get RR(A) = 0.

Applications to crossed products may be unlikely. It seems possible that C∗(G,X)
has stable rank one for every minimal essentially free action of a countable amenable
group G on a compact metric space X.
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Question 1.45. Let A be an infinite dimensional simple separable unital C*-
algebra. Let B ⊂ A be centrally large in the sense of Definition 1.3. Does it
follow that K0(B)→ K0(A) is an isomorphism mod infinitesimals?

In other places where this issue occurs (in connection with tracial approximate
innerness; see Proposition 6.2 and Theorem 6.4 of [41]), it seems that everything
in K1 should be considered to be infinitesimal.

A six term exact sequence for the K-theory of some orbit breaking subalgebras
is given in Example 2.6 of [46].

A positive answer to Question 1.45 would shed some light on both directions in
Question 1.44.

Question 1.46. Let A be an infinite dimensional stably finite simple separable
unital C*-algebra. Let B ⊂ A be centrally large in the sense of Definition 1.3. If A
has stable rank one, does it follow that B has stable rank one?

That is, does Theorem 1.14 have a converse? In many other results in Section 1.2,
B has an interesting property if and only if A does.

Question 1.47. Let A be an infinite dimensional simple separable unital C*-
algebra, and let B ⊂ A be a centrally large subalgebra. Let n ∈ Z>0. If tsr(B) ≤ n,
does it follow that tsr(A) ≤ n? If tsr(B) is finite, does it follow that tsr(A) is finite?

That is, can Theorem 1.14 be generalized to other values of the stable rank?
The proof of Theorem 1.14 uses tsr(B) = 1 in two different places, one of which is
not directly related to tsr(A), so an obvious approach seems unlikely to succeed.

As with Question 1.44, applications to crossed products seem unlikely.

2. Large Subalgebras and their Basic Properties

Recall that, by convention, if we say that B is a unital subalgebra of a C*-
algebra A, we mean that B contains the identity of A.

We repeat Definition 1.2.

Definition 2.1 (Definition 4.1 of [43]). Let A be an infinite dimensional simple
unital C*-algebra. A unital subalgebra B ⊂ A is said to be large in A if for every
m ∈ Z>0, a1, a2, . . . , am ∈ A, ε > 0, x ∈ A+ with ‖x‖ = 1, and y ∈ B+ \ {0}, there
are c1, c2, . . . , cm ∈ A and g ∈ B such that:

(1) 0 ≤ g ≤ 1.
(2) For j = 1, 2, . . . ,m we have ‖cj − aj‖ < ε.
(3) For j = 1, 2, . . . ,m we have (1− g)cj ∈ B.
(4) g -B y and g -A x.
(5) ‖(1− g)x(1− g)‖ > 1− ε.

We emphasize that the Cuntz subequivalence involving y in (4) is relative to B,
not A.

Lemma 2.2. In Definition 2.1, it suffices to let S ⊂ A be a subset whose linear
span is dense in A, and verify the hypotheses only when a1, a2, . . . , am ∈ S.

Unlike other approximation properties (such as tracial rank), it seems not to be
possible to take S in Lemma 2.2 to be a generating subset, or even a selfadjoint
generating subset. (We can do this for the definition of a centrally large subalgebra,
Definition 1.3. See Proposition 3.10 of [5].)
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By Proposition 4.4 of [43], in Definition 2.1 we can omit mention of c1, c2, . . . , cm,
and replace (2) and (3) by the requirement that dist

(
(1 − g)cj , B

)
< ε for j =

1, 2, . . . ,m. So far, however, most verifications of Definition 2.1 proceed by con-
structing elements c1, c2, . . . , cm as in Definition 2.1.

When A is finite, we do not need condition (5) of Definition 2.1.

Proposition 2.3 (Proposition 4.5 of [43]). Let A be a finite infinite dimensional
simple unital C*-algebra, and let B ⊂ A be a unital subalgebra. Suppose that for
m ∈ Z>0, a1, a2, . . . , am ∈ A, ε > 0, x ∈ A+ \ {0}, and y ∈ B+ \ {0}, there are
c1, c2, . . . , cm ∈ A and g ∈ B such that:

(1) 0 ≤ g ≤ 1.
(2) For j = 1, 2, . . . ,m we have ‖cj − aj‖ < ε.
(3) For j = 1, 2, . . . ,m we have (1− g)cj ∈ B.
(4) g -B y and g -A x.

Then B is large in A.

The proof of Proposition 2.3 needs Lemma 2.5 below, which is a version for
Cuntz comparison of Lemma 1.15 of [41].

We describe the idea of the proof. (Most of the details are given below.) Given
x ∈ A+ with ‖x‖ = 1, we want x0 ∈ A+ \ {0} such that g -A x0 and otherwise
as above implies ‖(1 − g)x(1 − g)‖ > 1 − ε. (We then use x0 in place of x in the
definition of a large subalgebra.) Choose a sufficiently small number ε0 > 0. (It
will be much smaller than ε.) Choose f : [0, 1]→ [0, 1] such that f = 0 on [0, 1−ε0]

and f(1) = 1. Construct bj , cj , dj ∈ f(x)Af(x) for j = 1, 2 such that

0 ≤ dj ≤ cj ≤ bj ≤ 1, abj = bj , bjcj = cj , cjdj = dj , and dj 6= 0,

and b1b2 = 0. Take x0 = d1. If ε0 is small enough, g -A d1, and ‖(1−g)x(1−g)‖ ≤
1− ε, this gives

‖(1− g)(b1 + b2)(1− g)‖ < 1− ε

3
.

One then gets c1+c2 -A d1. (This is the calculation (2.1) in the proof below.) Now
r = (1− c1 − c2) + d1 satisfies r -A 1, so there is v ∈ A such that ‖vrv∗ − 1‖ < 1

2 .

Then vr1/2 is right invertible, but vr1/2d2 = 0, so vr1/2 is not left invertible. This
contradicts finiteness of A.

We now give a more detailed argument.

Lemma 2.4 (Lemma 2.8 of [43]). Let A be a C*-algebra, let x ∈ A+ satisfy
‖x‖ = 1, and let ε > 0. Then there are positive elements a, b ∈ xAx with ‖a‖ =
‖b‖ = 1, such that ab = b, and such that whenever c ∈ bAb satisfies ‖c‖ ≤ 1, then
‖xc− c‖ < ε.

Sketch of proof. Choose continuous functions f0, f1 : [0, 1]→ [0, 1] such that f1(1) =
1, f1 is supported near 1, |f0(λ) − λ| < ε for all λ ∈ [0, 1], and f0 = 1 near 1 (so
that f0f1 = f1). Take a = f0(x) and b = f1(x). Then ‖x− a‖ < ε and ab = b. �

Lemma 2.5 (Lemma 2.9 of [43]). Let A be a finite simple infinite dimensional
unital C*-algebra. Let x ∈ A+ satisfy ‖x‖ = 1. Then for every ε > 0 there is
x0 ∈

(
xAx

)
+
\ {0} such that whenever g ∈ A+ satisfies 0 ≤ g ≤ 1 and g -A x0,

then ‖(1− g)x(1− g)‖ > 1− ε.
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Proof. Choose positive elements a, b ∈ x1/2Ax1/2 as in Lemma 2.4, with x1/2 in

place of x and ε
3 in place of ε. Then a, b ∈ xAx since x1/2Ax1/2 = xAx. Since

b 6= 0, Lemma 1.30 provides nonzero positive orthogonal elements z1, z2 ∈ bAb
(with z1 ∼A z2). We may require ‖z1‖ = ‖z2‖ = 1.

Choose continuous functions f0, f1, f2 : [0,∞)→ [0, 1] such that

f0(0) = 0, f0f1 = f1, f1f2 = f2, and f2(1) = 1.

For j = 1, 2 define

bj = f0(zj), cj = f1(zj), and dj = f2(zj).

Then

0 ≤ dj ≤ cj ≤ bj ≤ 1, abj = bj , bjcj = cj , cjdj = dj , and dj 6= 0.

Also b1b2 = 0. Define x0 = d1. Then x0 ∈
(
xAx

)
+

.

Let g ∈ A+ satisfy 0 ≤ g ≤ 1 and g -A x0. We want to show that

‖(1− g)x(1− g)‖ > 1− ε,
so suppose that ‖(1− g)x(1− g)‖ ≤ 1− ε. The choice of a and b, and the relations
(b1 + b2)1/2 ∈ bAb and

∥∥(b1 + b2)1/2
∥∥ = 1, imply that∥∥x1/2(b1 + b2)1/2 − (b1 + b2)1/2

∥∥ < ε

3
.

Using this relation and its adjoint at the second step, we get∥∥(1− g)(b1 + b2)(1− g)
∥∥ =

∥∥(b1 + b2)1/2(1− g)2(b1 + b2)1/2
∥∥

<
∥∥(b1 + b2)1/2x1/2(1− g)2x1/2(b1 + b2)1/2

∥∥+
2ε

3

≤
∥∥x1/2(1− g)2x1/2

∥∥+
2ε

3

= ‖(1− g)x(1− g)‖+
2ε

3
≤ 1− ε

3
.

Using the equation (b1 + b2)(c1 + c2) = c1 + c2 and taking C to be the commutative
C*-algebra generated by b1 + b2 and c1 + c2, one easily sees that for every β ∈ [0, 1)
we have c1 + c2 -C [(b1 + b2)− β]+. Take β = 1− ε

3 , use this fact and Lemma 1.24
at the first step, use the estimate above at the second step, and use g -A x0 = d1
at the third step, to get

(2.1) c1 + c2 -A
[
(1− g)(b1 + b2)(1− g)− β

]
+
⊕ g = 0⊕ g -A d1.

Set r = (1− c1− c2) +d1. Use Lemma 1.23(12) at the first step, (2.1) at the second
step, and Lemma 1.23(13) and d1(1− c1 − c2) = 0 at the third step, to get

1 -A (1− c1 − c2)⊕ (c1 + c2) -A (1− c1 − c2)⊕ d1 ∼A (1− c1 − c2) + d1 = r.

Thus there is v ∈ A such that ‖vrv∗ − 1‖ < 1
2 . It follows that vr1/2 has a right

inverse. But vr1/2d2 = 0, so vr1/2 is not invertible. We have contradicted finiteness
of A, and thus proved the lemma. �

Proof of Proposition 2.3. Let a1, a2, . . . , am ∈ A, let ε > 0, let x ∈ A+ \ {0}, and
let y ∈ B+ \ {0}. Without loss of generality ‖x‖ = 1.

Apply Lemma 2.5, obtaining x0 ∈
(
xAx

)
+
\ {0} such that whenever g ∈ A+

satisfies 0 ≤ g ≤ 1 and g -A x0, then ‖(1−g)x(1−g)‖ > 1−ε. Apply the hypothesis
with x0 in place of x and everything else as given, getting c1, c2, . . . , cm ∈ A and
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g ∈ B. We need only prove that ‖(1− g)x(1− g)‖ > 1− ε. But this is immediate
from the choice of x0. �

The following strengthening of the definition is often convenient. First, we can
always require ‖cj‖ ≤ ‖aj‖. Second, if we cut down on both sides instead of on
one side, and the elements aj are positive, then we may take the elements cj to be
positive.

Lemma 2.6 (Lemma 4.8 of [43]). Let A be an infinite dimensional simple unital C*-
algebra, and let B ⊂ A be a large subalgebra. Let m,n ∈ Z≥0, let a1, a2, . . . , am ∈
A, let b1, b2, . . . , bn ∈ A+, let ε > 0, let x ∈ A+ satisfy ‖x‖ = 1, and let y ∈ B+\{0}.
Then there are c1, c2, . . . , cm ∈ A, d1, d2, . . . , dn ∈ A+, and g ∈ B such that:

(1) 0 ≤ g ≤ 1.
(2) For j = 1, 2, . . . ,m we have ‖cj − aj‖ < ε, and for j = 1, 2, . . . , n we have
‖dj − bj‖ < ε.

(3) For j = 1, 2, . . . ,m we have ‖cj‖ ≤ ‖aj‖, and for j = 1, 2, . . . , n we have
‖dj‖ ≤ ‖bj‖.

(4) For j = 1, 2, . . . ,m we have (1 − g)cj ∈ B, and for j = 1, 2, . . . , n we have
(1− g)dj(1− g) ∈ B.

(5) g -B y and g -A x.
(6) ‖(1− g)x(1− g)‖ > 1− ε.

Sketch of proof. To get ‖cj‖ ≤ ‖aj‖ for j = 1, 2, . . . ,m, one takes ε > 0 to be a bit
smaller in the definition, and scales down cj for any j for which ‖cj‖ is too big.
Given that one can do this, following the definition, approximate

a1, a2, . . . , am, b
1/2
1 , b

1/2
2 , . . . , b1/2n

sufficiently well by

c1, c2, . . . , cm, r1, r2, . . . , rn,

and take dj = rjr
∗
j for j = 1, 2, . . . , n. �

In Definition 4.9 of [43] we defined a “large subalgebra of crossed product type”,
a strengthening of the definition of a large subalgebra, and in Proposition 4.11
of [43] we gave a convenient way to verify that a subalgebra is a large subalgebra of
crossed product type. The large subalgebras we have constructed in crossed prod-
ucts are of crossed product type. Theorem 4.6 of [5] shows that a large subalgebra
of crossed product type is in fact centrally large. We will show directly (proof of
Theorem 1.8, in Section 4 below) that if X is an infinite compact Hausdorff space,
h : X → X is a minimal homeomorphism, and Y ⊂ X is a compact subset such
that hn(Y ) ∩ Y = ∅ for all n ∈ Z \ {0}, then C∗(Z, X, h)Y is centrally large in
C∗(Z, X, h). This procedure is easier than using large subalgebras of crossed prod-
uct type. The abstract version is more useful for subalgebras of crossed products
by more complicated groups, but we don’t consider these in these notes.

We prove the simplicity statement in Proposition 1.9. The infinite dimensionality
statement is easier to prove (provided it is done afterwards), and we refer to the
proof of Proposition 5.5 in [43].

Proposition 2.7 (Proposition 5.2 of [43]). Let A be an infinite dimensional simple
unital C*-algebra, and let B ⊂ A be a large subalgebra. Then B is simple.

We need some preliminary work.
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Lemma 2.8 (Lemma 1.12 of [43]). Let A be a C*-algebra, let n ∈ Z>0, and let
a1, a2, . . . , an ∈ A. Set a =

∑n
k=1 ak and x =

∑n
k=1 a

∗
kak. Then a∗a ∈ xAx.

Sketch of proof. Assume ‖ak‖ ≤ 1 for k = 1, 2, . . . , n. Choose c ∈ xAx such that
‖c‖ ≤ 1 and ‖ca∗kak − a∗kak‖ is small for k = 1, 2, . . . , n. Check that ‖ca∗k −
a∗k‖2 ≤ 2‖ca∗kak − a∗kak‖, so ‖ca∗k − a∗k‖ is small. Thus ‖ca∗ − a∗‖ is small, whence

‖ca∗ac− a∗a‖ is small. Therefore a∗a is arbitrarily close to xAx. �

Lemma 2.9 (Lemma 1.13 of [43]). Let A be a C*-algebra and let a ∈ A+. Let b ∈
AaA be positive. Then for every ε > 0 there exist n ∈ Z>0 and x1, x2, . . . , xn ∈ A
such that

∥∥b−∑n
k=1 x

∗
kaxk

∥∥ < ε.

This result is used without proof in the proof of Proposition 2.7(v) of [25]. We
prove it when A is unital and b = 1, which is the case needed here. In this case, we
can get

∑n
k=1 x

∗
kaxk = 1. In particular, we get Corollary 1.14 of [43] this way.

Proof of Lemma 2.9 when b = 1. Choose

n ∈ Z>0 and y1, y2, . . . , yn, z1, z2, . . . , zn ∈ A

such that the element c =
∑n
k=1 ykazk satisfies ‖c− 1‖ < 1. Set

r =

n∑
k=1

z∗kay
∗
kykazk, M = max

(
‖y1‖, ‖y2‖, . . . , ‖yn‖

)
, and s = M2

n∑
k=1

z∗ka
2zk.

Lemma 2.8 implies that c∗c ∈ rAr. The relation ‖c − 1‖ < 1 implies that c
is invertible, so r is invertible. Since r ≤ s, it follows that s is invertible. Set
xk = Ma1/2zks

−1/2 for k = 1, 2, . . . , n. Then
∑n
k=1 x

∗
kaxk = s−1/2ss−1/2 = 1. �

Sketch of proof of Proposition 2.7. Let b ∈ B+ \ {0}. We show that there are n ∈
Z>0 and r1, r2, . . . , rn ∈ B such that

∑n
k=1 rkbr

∗
k is invertible.

Since A is simple, Lemma 2.9 provides m ∈ Z>0 and x1, x2, . . . , xm ∈ A such
that

∑m
k=1 xkbx

∗
k = 1. Set

M = max
(
1, ‖x1‖, ‖x2‖, . . . , ‖xm‖, ‖b‖

)
and δ = min

(
1,

1

3mM(2M + 1)

)
.

By definition, there are y1, y2, . . . , ym ∈ A and g ∈ B+ such that 0 ≤ g ≤ 1, such
that ‖yj − xj‖ < δ and (1 − g)yj ∈ B for j = 1, 2, . . . ,m, and such that g -B b.
Set z =

∑m
k=1 yjby

∗
j . The number δ has been chosen to ensure that ‖z − 1‖ < 1

3 ;

the estimate is carried out in [43]. It follows that
∥∥(1− g)z(1− g)− (1− g)2

∥∥ < 1
3 .

Set h = 2g − g2. Lemma 1.23(3), applied to the function λ 7→ 2λ − λ2, implies
that h ∼B g. Therefore h -B b. So there is v ∈ B such that ‖vbv∗ − h‖ < 1

3 .
Now take n = m + 1, take rj = (1 − g)yj for j = 1, 2, . . . ,m, and take rm+1 =
v. Then r1, r2, . . . , rn ∈ B. One can now check, using (1 − g)2 + h = 1, that
‖1−

∑n
k=1 rkbr

∗
k‖ < 2

3 . Therefore
∑n
k=1 rkbr

∗
k is invertible, as desired. �

Proposition 2.10 (Corollary 5.8 of [43]). Let A be a stably finite infinite dimen-
sional simple unital C*-algebra, and let B ⊂ A be a large subalgebra. Let n ∈ Z>0.
Then Mn(B) is large in Mn(A).

In [43], this result is obtained as a corollary of a more general result (Proposi-
tion 1.5 here). A direct proof is easier, and we give it here.
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Proof of Proposition 2.10. Let m ∈ Z>0, let a1, a2, . . . , am ∈ Mn(A), let ε > 0, let
x ∈Mn(A)+\{0}, and let y ∈Mn(B)+\{0}. There are bk,l ∈ A for k, l = 1, 2, . . . , n
such that

x1/2 =

n∑
k,l=1

ek,l ⊗ bk,l ∈Mn ⊗A.

Choose k, l ∈ {1, 2, . . . , n} such that bk,l 6= 0. Set x0 = b∗k,lbk,l ∈ A+ \ {0}. Using

selfadjointness of x1/2, we find that

e1,1 ⊗ x0 = (el,1 ⊗ 1)∗x1/2(ek,k ⊗ 1)x1/2(el,1 ⊗ 1) ≤ (el,1 ⊗ 1)∗x(el,1 ⊗ 1) -A x.

Similarly, there is y0 ∈ B+ \ {0} such that e1,1 ⊗ y0 -B y.
Use Lemma 1.30 and simplicity of B (Proposition 2.7) to find systems of nonzero

mutually orthogonal and mutually Cuntz equivalent positive elements

x1, x2, . . . , xn ∈ x0Ax0 and y1, y2, . . . , yn ∈ y0By0.

For j = 1, 2, . . . ,m, choose elements aj,k,l ∈ A for k, l = 1, 2, . . . , n such that

aj =

n∑
k,l=1

ek,l ⊗ aj,k,l ∈Mn ⊗A.

Apply Proposition 2.3 with mn2 in place of m, with the elements aj,k,l in place of
a1, a2, . . . , am, with ε/n2 in place of ε, with x1 in place of x, and with y1 in place
of y, getting g0 ∈ A+ and cj,k,l ∈ A for j = 1, 2, . . . ,m and k, l = 1, 2, . . . , n. Define
cj =

∑n
k,l=1 ek,l ⊗ cj,k,l for j = 1, 2, . . . ,m and define g = 1 ⊗ g0. It is clear that

0 ≤ g ≤ 1, that ‖cj − aj‖ < ε and (1− g)cj ∈Mn(B) for j = 1, 2, . . . ,m. We have
g -A 1 ⊗ x1 and g -B 1 ⊗ y1, so Lemma 1.23(1) and Lemma 1.23(13) imply that
g -A x0 and g -B y0. So g -A x and g -B y. �

We prove the statement about traces in Theorem 1.10.

Theorem 2.11 (Theorem 6.2 of [43]). Let A be an infinite dimensional simple
unital C*-algebra, and let B ⊂ A be a large subalgebra. Then the restriction map
T(A)→ T(B) is bijective.

Again, we need a lemma.

Lemma 2.12. Let A be an infinite dimensional simple unital C*-algebra, and let
B ⊂ A be a large subalgebra. Let τ ∈ T(B). Then there exists a unique state ω
on A such that ω|B = τ .

Proof. Existence of ω follows from the Hahn-Banach Theorem.
For uniqueness, let ω1 and ω2 be states on A such that ω1|B = ω2|B = τ , let

a ∈ A+, and let ε > 0. We prove that |ω1(a)−ω2(a)| < ε. Without loss of generality
‖a‖ ≤ 1.

It follows from Proposition 2.7 that B is simple and infinite dimensional. So

Corollary 1.31 provides y ∈ B+ \ {0} such that dτ (y) < ε2

64 (for the particular
choice of τ we are using). Use Lemma 2.6 to find c ∈ A+ and g ∈ B+ such that

‖c‖ ≤ 1, ‖g‖ ≤ 1, ‖c− a‖ < ε

4
, (1− g)c(1− g) ∈ B, and g -B y.

For j = 1, 2, the Cauchy-Schwarz inequality gives

(2.2) |ωj(rs)| ≤ ωj(rr∗)1/2ωj(s∗s)1/2
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for all r, s ∈ A. Also, by Lemma 1.23(3) we have g2 ∼B g -B y. Since ‖g2‖ ≤ 1

and ωj |B = τ is a tracial state, it follows that ωj(g
2) ≤ dτ (y) < ε2

64 . Using ‖c‖ ≤ 1,
we then get

|ωj(gc)| ≤ ωj(g2)1/2ωj(c
2)1/2 <

ε

8
and

|ωj((1− g)cg)| ≤ ωj
(
(1− g)c2(1− g)

)1/2
ωj(g

2)1/2 <
ε

8
.

So ∣∣ωj(c)− τ((1− g)c(1− g))
∣∣ =

∣∣ωj(c)− ωj((1− g)c(1− g))
∣∣

≤ |ωj(gc)|+ |ωj((1− g)cg)| < ε

4
.

Also |ωj(c)− ωj(a)| < ε
4 . So∣∣ωj(a)− τ((1− g)c(1− g))

∣∣ < ε

2
.

Thus |ω1(a)− ω2(a)| < ε. �

Proof of Theorem 2.11. Let τ ∈ T(B). We show that there is a unique ω ∈ T(A)
such that ω|B = τ . Lemma 2.12 shows that there is a unique state ω on A such
that ω|B = τ , and it suffices to show that ω is a trace. Thus let a1, a2 ∈ A satisfy
‖a1‖ ≤ 1 and ‖a2‖ ≤ 1, and let ε > 0. We show that |ω(a1a2)− ω(a2a1)| < ε.

It follows from Proposition 2.7 that B is simple and infinite dimensional. So

Corollary 1.31 provides y ∈ B+ \ {0} such that dτ (y) < ε2

64 . Use Lemma 2.6 to find
c1, c2 ∈ A and g ∈ B+ such that

‖cj‖ ≤ 1, ‖cj − aj‖ <
ε

8
, and (1− g)cj ∈ B

for j = 1, 2, and such that ‖g‖ ≤ 1 and g -B y. By Lemma 1.23(3) we have
g2 ∼ g -B y. Since ‖g2‖ ≤ 1 and ω|B = τ is a tracial state, it follows that

ω(g2) ≤ dτ (y) < ε2

64 .
We claim that ∣∣ω((1− g)c1(1− g)c2)− ω(c1c2)

∣∣ < ε

4
.

Using the Cauchy-Schwarz inequality ((2.2) in the previous proof), we get

|ω(gc1c2)| ≤ ω(g2)1/2ω(c∗2c
∗
1c1c2)1/2 ≤ ω(g2)1/2 <

ε

8
.

Similarly, and also at the second step using ‖c2‖ ≤ 1, (1− g)c1g ∈ B, and the fact
that ω|B is a tracial state,∣∣ω((1− g)c1gc2)

∣∣ ≤ ω((1− g)c1g
2c∗1(1− g)

)1/2
ω(c∗2c2)1/2

≤ ω
(
gc∗1(1− g)2c1g

)1/2 ≤ ω(g2)1/2 <
ε

8
.

The claim now follows from the estimate∣∣ω((1− g)c1(1− g)c2)− ω(c1c2)
∣∣ ≤ ∣∣ω((1− g)c1gc2)

∣∣+ |ω(gc1c2)|.
Similarly ∣∣ω((1− g)c2(1− g)c1)− ω(c2c1)

∣∣ < ε

4
.

Since (1− g)c1, (1− g)c2 ∈ B and ω|B is a tracial state, we get

ω((1− g)c1(1− g)c2) = ω((1− g)c2(1− g)c1).
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Therefore |ω(c1c2)− ω(c2c1)| < ε
2 .

One checks that ‖c1c2 − a1a2‖ < ε
4 and ‖c2c1 − a2a1‖ < ε

4 . It now follows that
|ω(a1a2)− ω(a2a1)| < ε. �

3. Large Subalgebras and the Radius of Comparison

Let A be a simple unital C*-algebra. We say that the order on projections over A
is determined by traces if, as happens for type II1 factors, whenever p, q ∈M∞(A)
are projections such that for all τ ∈ T(A) we have τ(p) < τ(q), then p is Murray-
von Neumann equivalent to a subprojection of q. The question of whether this
holds is also known as Blackadar’s Second Fundamental Comparability Question
(FCQ2; see 1.3.1 of [7]). Without knowing whether every quasitrace is a trace, it
is more appropriate to use a condition involving quasitraces. Of course. for exact
C*-algebras, it is known that every quasitrace is a trace (Corollary 9.18 of [22]), so
it makes no difference.

Simple C*-algebras need not have very many projections, so a more definitive
version of this condition is to ask for strict comparison of positive elements, that
is, whenever a, b ∈ M∞(A) (or K ⊗ A) are positive elements such that for all
τ ∈ QT(A) we have dτ (a) < dτ (b), then a -A b. (By Proposition 6.12 of [43], it
does not matter whether one uses M∞(A) or K ⊗A, but this is not as easy to see
as with projections.)

Simple AH algebras with slow dimension growth have strict comparison, but
other simple AH algebras need not. Strict comparison is necessary for any reason-
able hope of classification in the sense of the Elliott program. According to the
Toms-Winter Conjecture, when A is simple, separable, nuclear, unital, and stably
finite, it should imply Z-stability, and this is known to hold in a number of cases.

The radius of comparison rc(A) of A (for a C*-algebra which is unital and stably
finite but not necessarily simple) measures the failure of strict comparison. (See [9]
for what to do in more general C*-algebras.) For additional context, we point out
the following special case of Theorem 5.1 of [51] (which will be needed in Section 5):
if X is a compact metric space and n ∈ Z>0, then

rc(Mn ⊗ C(X)) ≤ dim(X)− 1

2n
.

When X is a finite complex, this inequality is at least approximately an equality.
The following definition of the radius of comparison is adapted from Defini-

tion 6.1 of [50].

Definition 3.1. Let A be a stably finite unital C*-algebra.

(1) Let r ∈ [0,∞). We say that A has r-comparison if whenever a, b ∈M∞(A)+
satisfy dτ (a) + r < dτ (b) for all τ ∈ QT(A), then a -A b.

(2) The radius of comparison of A, denoted rc(A), is

rc(A) = inf
({
r ∈ [0,∞) : A has r-comparison

})
.

(We take rc(A) =∞ if there is no r such that A has r-comparison.)

Definition 6.1 of [50] actually uses lower semicontinuous dimension functions
on A instead of dτ for τ ∈ QT(A), but these are the same functions by Theorem
II.2.2 of [8]. It is also stated in terms of the order on the Cuntz semigroup W (A)
rather than in terms of Cuntz subequivalence; this is clearly equivalent.
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We also note (Proposition 6.3 of [50]) that if every element of QT(A) is faithful,
then the infimum in Definition 3.1(2) is attained, that is, A has rc(A)-comparison.
In particular, this is true when A is simple. (See Lemma 1.23 of [43].)

We warn that r-comparison and rc(A) are sometimes defined using tracial states
rather than quasitraces.

It is equivalent to use K ⊗A in place of M∞(A). See Proposition 6.12 of [43].
We prove here the following special case of Theorem 1.12.

Theorem 3.2. Let A be an infinite dimensional stably finite simple separable
unital exact C*-algebra. Let B ⊂ A be a large subalgebra. Then rc(A) = rc(B).

The extra assumption is that A is exact, so that every quasitrace is a trace by
Corollary 9.18 of [22].

We will give a proof directly from the definition of a large subalgebra. We
describe the heuristic argument, using the following simplifications:

(1) The algebra A, and therefore also B, has a unique tracial state τ .
(2) We consider elements of A+ and B+ instead of elements of M∞(A)+ and

M∞(B)+.
(3) For a ∈ A+, when needed, instead of getting (1− g)c(1− g) ∈ B for some

c ∈ A+ which is close to a, we can actually get (1−g)a(1−g) ∈ B. Similarly,
for a ∈ A we can get (1− g)a ∈ B.

(4) For a, b ∈ A+ with a -A b, we can find v ∈ A such that v∗bv = a (not just
such that ‖v∗bv − a‖ is small).

(5) None of the elements we encounter are Cuntz equivalent to projections,
that is, we never encounter anything for which 0 is an isolated point of, or
not in, the spectrum.

The most drastic simplification is (3). In the actual proof, to compensate for the fact
that we only get approximation, we will need to make systematic use of elements
(a − ε)+ for carefully chosen, and varying, values of ε > 0. Avoiding this gives
a much better view of the idea behind the argument, and the usefulness of large
subalgebras in general.

We first consider the inequality rc(A) ≤ rc(B). So let a, b ∈ A+ satisfy dτ (a) +
rc(B) < dτ (b). The essential idea is to replace b by something slightly smaller which
is in B+, say y, and replace a by something slightly larger which is in B+, say x,
in such a way that we still have dτ (x) + rc(B) < dτ (y). Then use the definition
of rc(B). With g sufficiently small in the sense of Cuntz comparison, we will take
y = (1− g)b(1− g) and (following Lemma 1.24) x = (1− g)a(1− g)⊕ g.

Choose δ > 0 such that

(3.1) dτ (a) + rc(B) + δ ≤ dτ (b).

Applying (3) of our simplification, we can find g ∈ B with 0 ≤ g ≤ 1, such that

(1− g)a(1− g) ∈ B and (1− g)b(1− g) ∈ B,

and so small in W (A) that

(3.2) dτ (g) <
δ

3
.

Using Lemma 1.23(4) at the first step, we get

(3.3) (1− g)b(1− g) ∼A b1/2(1− g)2b1/2 ≤ b.
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Similarly, (1− g)b(1− g) -A b, and this relation implies

(3.4) dτ
(
(1− g)a(1− g)

)
≤ dτ (a).

Also, b -A (1− g)b(1− g)⊕ g by Lemma 1.24, so

(3.5) dτ
(
(1− g)b(1− g)

)
+ dτ (g) ≥ dτ (b).

Using (3.4) at the first step, using (3.1) at the second step, using (3.5) at the
third step, and using (3.2) at the fourth step, we get

dτ
(
(1− g)a(1− g)⊕ g

)
+ rc(B) +

δ

3
≤ dτ (a) + dτ (g) + rc(B) +

δ

3

≤ dτ (b) + dτ (g)− 2δ

3

≤ dτ
(
(1− g)b(1− g)

)
+ 2dτ (g)− 2δ

3

≤ dτ
(
(1− g)b(1− g)

)
.

So, by the definition of rc(B),

(1− g)a(1− g)⊕ g -B (1− g)b(1− g).

Therefore, using Lemma 1.24 at the first step and (3.3) at the third step, we get

a -A (1− g)a(1− g)⊕ g -B (1− g)b(1− g) -A b,

that is, a -A b, as desired.
Now we consider the inequality rc(A) ≥ rc(B). Let a, b ∈ B+ satisfy dτ (a) +

rc(A) < dτ (b). Choose δ > 0 such that dτ (a) + rc(B) + δ ≤ dτ (b). By lower
semicontinuity of dτ , we always have

dτ (b) = sup
ε>0

dτ
(
(b− ε)+

)
.

So there is ε > 0 such that

(3.6) dτ
(
(b− ε)+

)
> dτ (a) + rc(A).

Define a continuous function f : [0,∞) → [0,∞) by f(λ) = max(0, ε−1λ(ε − λ))
for λ ∈ [0,∞). Then f(b) and (b− ε)+ are orthogonal positive elements such that
f(b) 6= 0 (by (5)) and f(b) + (b − ε)+ ≤ b. We have a -A (b − ε)+ by (3.6) and
the definition of rc(A). Applying (4) of our simplification, we can find v ∈ A such
that v∗(b − ε)+v = a. Applying (3) of our simplification, we can find g ∈ B with
0 ≤ g ≤ 1 such that (1− g)v∗ ∈ B and g -B f(b). Since

v(1− g) ∈ B and [v(1− g)]∗(b− ε)+[v(1− g)] = (1− g)a(1− g),

we get (1− g)a(1− g) -B (b− ε)+. Therefore, using Lemma 1.24 at the first step,

a -B (1− g)a(1− g)⊕ g -B (b− ε)+ ⊕ g -B (b− ε)+ ⊕ f(b) -B b,

as desired.
The original proof of Theorem 3.2 followed the heuristic arguments above, and

this is the proof we give below. The proof in [43] uses the same basic ideas, but gives
much more. The heuristic arguments above are the basis for the technical results in
Lemma 1.15. In [43], these are used to prove Theorem 1.11, which states that, after
deleting the classes of the nonzero projections from the Cuntz semigroups Cu(B)
and Cu(A), the inclusion of B in A is an order isomorphism on what remains.
(The inclusion need not be an isomorphism if the classes of the nonzero projections
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are included. See Example 7.13 of [43].) In Section 3 of [43], it is shown that, in
our situation, the part of the Cuntz semigroup without the classes of the nonzero
projections is enough to determine the quasitraces, so that the restriction map
QT(A)→ QT(B) is bijective. It follows that the radius of comparison in this part
of the Cuntz semigroup is the same for both A and B, and it turns out that the
radius of comparison in this part of the Cuntz semigroup is the same as in the entire
Cuntz semigroup.

We will use the characterizations of rc(A) in the following theorem, which is a
special case of results in [9]. The difference between (1) and (3) is that (3) has n+1
in one of the places where (1) has n. This result substitutes for the observation
that if a, b ∈ A+ satisfy τ(a) < τ(b) for all τ ∈ QT(A), then, by compactness
of QT(A) and continuity, we have infτ∈QT(A)[τ(b) − τ(a)] > 0. The difficulty is
that we need an analog using dτ instead of τ , and τ 7→ dτ (a) is in general only
lower semicontinuous, so that τ 7→ dτ (b) − dτ (a) may be neither upper nor lower
semicontinuous.

Unfortunately, the results in [9] are stated in terms of Cu(A) rather than W (A).

Theorem 3.3. Let A be a stably finite simple unital C*-algebra. Then:

(1) The radius of comparison rc(A) is the infimum of all m/n with m,n ∈ Z>0

such that whenever a, b ∈M∞(A)+ and n〈a〉A +m〈1〉A ≤ n〈b〉A in W (A),
then a -A b.

(2) The radius of comparison rc(A) is the least number s ∈ [0,∞] such that
whenever m,n ∈ Z>0 satisfy m/n > s, and a, b ∈M∞(A)+ satisfy n〈a〉A +
m〈1〉A ≤ n〈b〉A in W (A), then a -A b.

(3) The radius of comparison rc(A) is the least number t ∈ [0,∞] such that
whenever m,n ∈ Z>0 satisfy m/n > t, and a, b ∈ M∞(A)+ satisfy (n +
1)〈a〉A +m〈1〉A ≤ n〈b〉A in W (A), then a -A b.

Proof. It is easy to check that there is in fact a least s ∈ [0,∞] satisfying the
condition in (2), and similarly that there is a least t ∈ [0,∞] as in (3).

We will first prove this for K ⊗A and Cu(A) in place of M∞(A) and W (A). So
let r be the infimum in (1), let s and t be the numbers given in (2) and (3), and
let r0, s0, and t0 be the numbers defined the same way but with K ⊗A and Cu(A)
in place of M∞(A) and W (A). Clearly s0 ≥ r0 ≥ t0. Since A is simple and stably
finite and 〈1〉A is a full element of Cu(A), Proposition 3.2.3 of [9], the preceding
discussion in [9], and Definition 3.2.2 of [9] give t0 = rc(A). So we need to show
that s0 ≤ t0.

We thus assume m,n ∈ Z>0 and m/n > t0, and that a, b ∈ (K ⊗ A)+ satisfy
n〈a〉A+m〈1〉A ≤ n〈b〉A in Cu(A). We must prove that a - b. For any functional ω
on Cu(A) (as at the beginning of Section 2.4 of [9]), we have nω(〈a〉A)+mω(〈1〉A) ≤
nω(〈b〉A), so ω(〈a〉A)+(m/n)ω(〈1〉A) ≤ ω(〈b〉A). Since m/n > t0, Proposition 3.2.1
of [9] implies that a -A b.

It remain to prove that r0 = r, s0 = s, and t0 = t. The proofs of all three are
the same as the proof of Proposition 6.12 of [43]. �

Lemma 3.4. Let M ∈ (0,∞), let f : [0,∞) → C be a continuous function such
that f(0) = 0, and let ε > 0. Then there is δ > 0 such that whenever A is a
C*-algebra and a, b ∈ Asa satisfy ‖a‖ ≤M and ‖a− b‖ < δ, then ‖f(a)−f(b)‖ < ε.
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This is a standard polynomial approximation argument. We have not found it
written down (although there are similar arguments in [43] and many other places).
We therefore give it for completeness.

Proof of Lemma 3.4. Choose n ∈ Z>0 and α1, α2, . . . , αn ∈ C such that the polyno-
mial function g(λ) =

∑n
k=1 αkλ

k satisfies |g(λ)−f(λ)| < ε
3 for λ ∈ [−M−1, M+1].

Define

δ = min

(
1,

ε

1 + 3
∑n
k=1 |αk|k(M + 1)k−1

)
.

Now let A be a C*-algebra and let a, b ∈ Asa satisfy ‖a‖ ≤ M and ‖a − b‖ < δ.
Then ‖b‖ ≤M + 1. So for m ∈ Z>0 we have

‖am − bm‖ ≤
m∑
k=1

‖ak−1‖ · ‖a− b‖ · ‖bm−k‖ < m(M + 1)m−1δ.

Therefore

‖g(a)− g(b)‖ ≤
n∑
k=1

|αk|k(M + 1)k−1δ <
ε

3
.

So

‖f(a)− f(b)‖ ≤ ‖f(a)− g(a)‖+ ‖g(a)− g(b)‖+ ‖g(b)− f(b)‖ < ε

3
+
ε

3
+
ε

3
= ε.

This completes the proof. �

Proposition 3.5. Let A be an infinite dimensional stably finite simple separable
unital exact C*-algebra. Let B ⊂ A be a large subalgebra. Then rc(A) ≤ rc(B).

Proof. We use the criterion of Theorem 3.3(2). Thus, let m,n ∈ Z>0 satisfy m/n >
rc(B), and let a, b ∈ M∞(A)+ satisfy n〈a〉A + m〈1〉A ≤ n〈b〉A in W (A). We want
to prove that a -A b. Without loss of generality ‖a‖, ‖b‖ ≤ 1. It suffices to prove
that (a− ε)+ -A b for every ε > 0.

So let ε > 0. We may assume ε < 1. Let x ∈ M∞(A)+ be the direct sum
of n copies of a, let y ∈ M∞(A)+ be the direct sum of n copies of b, and let
q ∈ M∞(A)+ be the direct sum of m copies of the identity of A. The relation
n〈a〉A +m〈1〉A ≤ n〈b〉A means that x⊕ q -A y. By Lemma 1.23(11b), there exists
δ > 0 such that (

(x⊕ q)− 1
3ε
)
+
-A (y − δ)+.

Since ε < 3, this is equivalent to

(3.7)
(
x− 1

3ε
)
+
⊕ q -A (y − δ)+.

Choose l ∈ Z>0 so large that a, b ∈Ml⊗A. Since m/n > rc(B), there is k ∈ Z>0

such that

rc(B) <
m

n
− 2

k
.

Set
ε0 = min

(
1
3ε,

1
2δ
)
.

Using Lemma 3.4, choose ε1 > 0 with ε1 ≤ ε0 and so small whenever D is a
C*-algebra and z ∈ D+ satsifies ‖z‖ ≤ 1, then ‖z0 − z‖ < ε1 implies

‖(z0 − ε0)+ − (z − ε0)+‖ < ε0,
∥∥(z0 − 1

3ε
)
+
−
(
z − 1

3ε
)
+

∥∥ < ε0,

and ∥∥(z0 − (ε0 + 1
3ε
))

+
−
(
z −

(
ε0 + 1

3ε
))

+

∥∥ < ε0.



LARGE SUBALGEBRAS 29

Since A is infinite dimensional and simple, Lemma 1.30 provides z ∈ A+ \ {0}
such that (k + 1)〈z〉A ≤ 〈1〉A. Using Proposition 2.10, choose g ∈ Ml(B)+ and
a0, b0 ∈Ml(A)+ satisfying

0 ≤ g, a0, b0 ≤ 1, ‖a0 − a‖ < ε1, ‖b0 − b‖ < ε1, g -A z,

and such that

(1− g)a0(1− g), (1− g)b0(1− g) ∈Ml ⊗B.
From g -A z and (k + 1)〈z〉A ≤ 〈1〉A we get

(3.8) sup
τ∈T(A)

dτ (g) <
1

k
.

Set

a1 =
[
(1− g)a0(1− g)−

(
ε0 + 1

3ε
)]

+
and b1 =

[
(1− g)b0(1− g)− ε0

]
+
,

which are in Ml⊗B. We claim that a0, a1, b0, and b1 have the following properties:

(1) (a− ε)+ -A
[
a0 −

(
ε0 + 1

3ε
)]

+
.

(2)
[
a0 −

(
ε0 + 1

3ε
)]

+
-B a1 ⊕ g.

(3) a1 -A
(
a− 1

3ε
)
+

.

(4) (b− δ)+ -A (b0 − ε0)+.
(5) (b0 − ε0)+ -B b1 ⊕ g.
(6) b1 -A b.

We give full details of the proofs for (1), (2), and (3) (involving a0 and a1). The
proofs for (4), (5), and (6) (involving b0 and b1) are a bit more sketchy.

We prove (1). The choice of ε1 implies∥∥[a0 − ( 13ε+ ε0
)]

+
−
[
a−

(
1
3ε+ ε0

)]
+

∥∥ < ε0 ≤ 1
3ε.

At the last step in the following computation use this and Lemma 1.23(10), at the
first step use ε0 ≤ 1

3ε, and at the second step use Lemma 1.23(8), to get

(a− ε)+ ≤
[
a−

(
2
3ε+ ε0

)]
+

=
[(
a−

(
1
3ε+ ε0

))
+
− 1

3ε
]
+
-A

[
a0 −

(
1
3ε+ ε0

)]
+
.

For (4) (the corresponding argument for b0), we use ε0 ≤ 1
2δ at the first step;

since

‖(b− ε0)+ − (b0 − ε0)+‖ < ε0,

we get

(b− δ)+ ≤ (b− 2ε0)+ =
[
(b− ε0)+ − ε0

]
+
-A (b0 − ε0)+.

For (2), we use Lemma 1.24 with a0 in place of a and with 1
3ε+ ε0 in place of ε.

For (5), we use Lemma 1.24 with b0 in place of a and with ε0 in place of ε.
For (3), begin by recalling that ‖a0 − a‖ < ε1, whence

‖(1− g)a0(1− g)− (1− g)a(1− g)‖ < ε1.

Therefore ∥∥[(1− g)a0(1− g)− 1
3ε
]
+
−
[
(1− g)a(1− g)− 1

3ε
]
+

∥∥ < ε0.
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Using Lemma 1.23(8) at the first step, this fact and Lemma 1.23(10) at the second
step, Lemma 1.23(6) at the third step, and Lemma 1.23(17) and a1/2(1−g)2a1/2 ≤ a
at the last step, we get

a1 =
[[

(1− g)a0(1− g)− 1
3ε
]
+
− ε0

]
+

-A
[
(1− g)a(1− g)− 1

3ε
]
+
∼A

[
a1/2(1− g)2a1/2 − 1

3ε
]
+
-A

(
a− 1

3ε
)
+
,

as desired.
For (6) (the corresponding part involving b1), just use

‖(1− g)b0(1− g)− (1− g)b(1− g)‖ < ε1 ≤ ε0
to get, using Lemma 1.23(4) at the second step,

b1 -A (1− g)b(1− g) ∼A b1/2(1− g)2b1/2 ≤ b.
The claims (1)–(6) are now proved.
Now let τ ∈ T(A). Recall that x and y are the direct sums of n copies of a and b.

Therefore
(
x− 1

3ε
)
+

is the direct sum of n copies of
(
a− 1

3ε
)
+

and (y − δ)+ is the

direct sum of n copies of (b− δ)+. So the relation (3.7) implies

(3.9) n · dτ
((
a− 1

3ε
)
+

)
+m ≤ n · dτ

(
(b− δ)+

)
.

Using (4) and (5) at the first step and (3.8) at the third step, we get the estimate

(3.10) dτ
(
(b− δ)+

)
≤ dτ (b1) + dτ (g) < dτ (b1) + k−1.

The relation (3) implies

(3.11) dτ (a1) ≤ dτ
((
a− 1

3ε
)
+

)
.

Using (3.8) at the second step, (3.11) at the third step, (3.9) at the fourth step,
and (3.10) at the fifth step, we get

n · dτ (a1 ⊕ g) +m = n · dτ (a1) +m+ n · dτ (g)

≤ n · dτ (a1) +m+ nk−1

≤ n · dτ
((
a− 1

3ε
)
+

)
+m+ nk−1

≤ n · dτ
(
(b− δ)+

)
+ nk−1

≤ n · dτ (b1) + 2nk−1.

It follows that

dτ (a1 ⊕ g) +
m

n
− 2

k
≤ dτ (b1).

This holds for all τ ∈ T(A), and therefore, by Theorem 2.11, for all τ ∈ T(B).
Subalgebras of exact C*-algebras are exact so Corollary 9.18 of [22] implies that

QT(B) = T(B). Since
m

n
− 2

k
> rc(B),

and since a1, b1, g ∈Ml⊗B, it follows that a1⊕ g -B b1. Using this relation at the
third step, (1) at the first step, (2) at the second step, and (6) at the last step, we
then get

(a− ε)+ -A
[
a0 −

(
ε0 + 1

3ε
)]

+
-A a1 ⊕ g -B b1 -A b.

This completes the proof that rc(A) ≤ rc(B). �

Proposition 3.6. Let A be an infinite dimensional stably finite simple separable
unital exact C*-algebra. Let B ⊂ A be a large subalgebra. Then rc(A) ≥ rc(B).
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Proof. We use Theorem 3.3(3). Thus, let m,n ∈ Z>0 satisfy m/n > rc(A). Let
l ∈ Z>0, and let a, b ∈ (Ml ⊗B)+ satisfy

(n+ 1)〈a〉B +m〈1〉B ≤ n〈b〉B
in W (B). We must prove that a -B b. Without loss of generality ‖a‖ ≤ 1.
Moreover, by Lemma 1.23(11), it is enough to show that for every ε > 0 we have
(a− ε)+ -B b. So let ε > 0. Without loss of generality ε < 1.

Choose k ∈ Z>0 such that

km

kn+ 1
> rc(A).

Then in W (B) we have

(kn+ 1)〈a〉B + km〈1〉B ≤ k(n+ 1)〈a〉B + km〈1〉B ≤ kn〈b〉B .

Let x ∈M∞(B)+ be the direct sum of kn+ 1 copies of a, let z ∈M∞(B)+ be the
direct sum of kn copies of b, and let q ∈ M∞(B)+ be the direct sum of km copies
of 1. Then, by definition, x ⊕ q -B z. Therefore Lemma 1.23(11) provides δ > 0
such that

(
x⊕ q − 1

4ε
)
+
-B (z − δ)+. Since ε < 4, we have(

x⊕ q − 1
4ε
)
+

=
(
x− 1

4ε
)
+
⊕
(
q − 1

4ε
)
+
∼B

(
x− 1

4ε
)
+
⊕ q,

so

(kn+ 1)
〈(
a− 1

4ε
)
+

〉
+ km〈1〉 ≤ kn〈(b− δ)+〉.

Lemma 1.33 provides c ∈ (Ml ⊗B)+ and y ∈ (Ml ⊗B)+ \ {0} such that

(3.12) kn〈(b− δ)+〉B ≤ (kn+ 1)〈c〉B and 〈c〉B + 〈y〉B ≤ 〈b〉B
in W (B). Then

(kn+ 1)
〈(
a− 1

4ε
)
+

〉
B

+ km〈1〉B ≤ (kn+ 1)〈c〉B .

Applying the map W (A)→W (B), we get

(kn+ 1)
〈(
a− 1

4ε
)
+

〉
A

+ km〈1〉A ≤ (kn+ 1)〈c〉A.

For τ ∈ T(A), we apply dτ and divide by kn+ 1 to get

dτ
(〈(

a− 1
4ε
)
+

〉)
+

km

kn+ 1
≤ dτ (c).

Since QT(A) = T(A) (by Corollary 9.18 of [22]) and

km

kn+ 1
> rc(A),

it follows that
(
a− 1

4ε
)
+
-A c. In particular, there is v ∈Ml ⊗A such that∥∥vcv∗ − (a− 1

4ε
)
+

∥∥ < 1
4ε.

Since B is large in A, we can apply Proposition 2.10 and Lemma 2.6 to find
v0 ∈Ml ⊗A and g ∈Ml ⊗B with 0 ≤ g ≤ 1 and such that

g -B y, ‖v0‖ ≤ ‖v‖, ‖v0 − v‖ <
ε

4‖v‖ · ‖c‖+ 1
, and (1− g)v0 ∈Ml ⊗B.

It follows that ‖v∗0cv0 − v∗cv‖ < ε
2 , so

(3.13)
∥∥(1− g)v0c[(1− g)v0]∗ − (1− g)

(
a− 1

4ε
)
+

(1− g)
∥∥ < 3

4ε.
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Therefore, using Lemma 1.23(10) at the first step,

(3.14)
[
(1− g)

(
a− 1

4ε
)
+

(1− g)− 3
4ε
]
+
-B (1− g)v0c[(1− g)v0]∗ -B c.

Using Lemma 1.24 at the first step, with
(
a− 1

4ε
)
+

in place of a and 3
4ε in place

of ε, as well as Lemma 1.23(8), using (3.14) at the second step, using (3.13) at the
third step, and using the second part of (3.12) at the fourth step, we get

(a− ε)+ -B
[
(1− g)

(
a− 1

4ε
)
+

(1− g)− 3
4ε
]
+
⊕ g -B c⊕ g -B c⊕ y -B b.

This is the relation we need, and the proof is complete. �

Proof of Theorem 3.2. Combine Proposition 3.5 and Proposition 3.6. �

4. Large Subalgebras in Crossed Products by Z

In this section, we let h : X → X be a homeomorphism of a compact Hausdorff
space X. Following Putnam [44], for Y ⊂ X closed we define the Y -orbit breaking
subalgebra C∗(Z, X, h)Y ⊂ C∗(Z, X, h). We prove that if X is infinite, h is minimal,
and Y intersects each orbit at most once, then C∗(Z, X, h)Y is a centrally large
subalgebra of C∗(Z, X, h). In order to state more general results, we generalize the
construction of Definition 1.7 in Section 1.1.

Notation 4.1. Let A be a C*-algebra, and let α ∈ Aut(A). We identify A with a
subalgebra of C∗(Z, A, α) in the standard way. We let u ∈ M(C∗(Z, A, α)) be the
standard unitary corresponding to the generator 1 ∈ Z. Following standard nota-
tion for discrete groups, we let A[Z] denote the dense *-subalgebra of C∗(Z, A, α)
consisting of sums

∑n
k=−n aku

k with n ∈ Z≥0 and a−n, a−n+1, . . . , an ∈ A. We let
Eα : C∗(Z, A, α)→ A denote the standard conditional expectation, defined on A[Z]
by Eα

(∑n
k=−n aku

k
)

= a0. When α is understood, we just write E.
For a locally compact Hausdorff space X and a homeomorphism h : X → X,

we use obvious analogs of this notation for C∗(Z, X, h), with the automorphism of
C(X) being given by α(f)(x) = f(h−1(x)) for f ∈ C(X) and x ∈ X. In particular,
we have ufu∗ = f ◦ h−1.

Notation 4.2 and Definition 4.3 below differ from Notation 1.6 and Definition 1.7
in that they consider C0(X,D) for a C*-algebra D instead of just C0(X).

Notation 4.2. For a locally compact Hausdorff space X, a C*-algebra D, and an
open subset U ⊂ X, we use the abbreviation

C0(U,D) =
{
f ∈ C0(X,D) : f(x) = 0 for all x ∈ X \ U

}
⊂ C0(X,D).

This subalgebra is of course canonically isomorphic to the usual algebra C0(U,D)
when U is considered as a locally compact Hausdorff space in its own right. As in
Notation 1.6, if D = C we omit it from the notation.

In particular, if Y ⊂ X is closed, then

(4.1) C0(X \ Y, D) =
{
f ∈ C0(X,D) : f(x) = 0 for all x ∈ Y

}
.

Definition 4.3. Let X be a locally compact Hausdorff space, let D be a unital
C*-algebra, and let h : X → X be a homeomorphism. Let α ∈ Aut(C(X,D)) be
an automorphism which “lies over h”, in the sense that there exists a function
x 7→ αx from X to Aut(D) such that α(a)(x) = αx(a(h−1(x))) for all x ∈ X and
a ∈ C0(X,D). Let Y ⊂ X be a nonempty closed subset, and, following (4.1), define

C∗
(
Z, C0(X,D), α

)
Y

= C∗
(
C0(X,D), C0(X \ Y, D)u

)
⊂ C∗

(
Z, C0(X,D), α

)
.
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We call it the Y -orbit breaking subalgebra of C∗
(
Z, C0(X,D), α

)
.

We give a sketch of the proof of Theorem 1.8, namely that if h : X → X is a
minimal homeomorphism and Y ⊂ X is a compact subset such that hn(Y )∩Y = ∅
for all n ∈ Z \ {0}, then C∗(Z, X, h)Y is a centrally large subalgebra of C∗(Z, X, h)
in the sense of Definition 1.3.

Under some technical conditions on α and D, similar methods can be used to
prove the analogous result for C∗

(
Z, C(X,D), α

)
Y

. The following theorem is a

consequence of results in [4].

Theorem 4.4. Let X be an infinite compact metric space, let h : X → X be a
minimal homeomorphism, let D be a simple unital C*-algebra which has a tracial
state, and let α ∈ Aut(C(X,D)) lie over h. Assume that D has strict compar-
ison of positive elements, or that the automorphisms αx in Definition 4.3 are all
approximately inner. Let Y ⊂ X be a compact subset such that hn(Y ) ∩ Y = ∅
for all n ∈ Z \ {0}. Then C∗

(
Z, C(X,D), α

)
Y

is a centrally large subalgebra of

C∗
(
Z, C(X,D), α

)
in the sense of Definition 1.3.

The ideas of the proof of Theorem 1.8 are all used in the proof of the general the-
orem behind Theorem 4.4, but additional work is needed to deal with the presence
of D.

Proposition 4.5 (Proposition 7.5 of [43]). LetX be a compact Hausdorff space and
let h : X → X be a homeomorphism. Let u ∈ C∗(Z, X, h) and E : C∗(Z, X, h) →
C(X) be as in Notation 4.1. Let Y ⊂ X be a nonempty closed subset. For n ∈ Z,
set

Yn =


⋃n−1
j=0 h

j(Y ) n > 0

∅ n = 0⋃−n
j=1 h

−j(Y ) n < 0.

Then

(4.2) C∗(Z, X, h)Y =
{
a ∈ C∗(Z, X, h) : E(au−n) ∈ C0(X \ Yn) for all n ∈ Z

}
and

(4.3) C∗(Z, X, h)Y ∩ C(X)[Z] = C∗(Z, X, h)Y .

Sketch of proof. Define

B =
{
a ∈ C∗(Z, X, h) : E(au−n) ∈ C0(X \ Yn) for all n ∈ Z

}
and

B0 = B ∩ C(X)[Z].

We claim that B0 is dense in B. To see this, let b ∈ B and for k ∈ Z define
bk = E(bu−k) ∈ C0(X \ Yk). Then for n ∈ Z>0, the element

an =

n−1∑
k=−n+1

(
1− |k|

n

)
bku

k.

is clearly in B0, and Theorem VIII.2.2 of [14] implies that limn→∞ an = b. The
claim follows. In particular, (4.3) will now follow from (4.2), so we need only
prove (4.2).

Next, one proves that B0 is a *-algebra. It is enough to prove that if f ∈
C0(X\Ym) and g ∈ C0(X\Yn), then (fum)(gun) ∈ B0 and (fum)∗ ∈ B0. The proof
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involves manipulations with h and the sets Yn, and the proof that (fum)(gun) ∈ B0

must be broken into six cases: all combinations of signs of m, n, and m+ n which
can actually occur. We refer to [43] for the details.

Since C(X) ⊂ B0 and C0(X \Y )u ⊂ B0, it follows that C∗(Z, X, h)Y ⊂ B0 = B.
The next step is to show that for all n ∈ Z and f ∈ C0(X \ Yn), we have

fun ∈ C∗(Z, X, h)Y . For n = 0 this is trivial. Let n > 0, and let f ∈ C0(X \ Yn).
Define f0 = (sgn ◦ f)|f |1/n and for j = 1, 2, . . . , n − 1 define fj = |f ◦ hj |1/n. The
definition of Yn implies that f0, f1, . . . , fn−1 ∈ C0(X \ Y ). Therefore the element

a = (f0u)(f1u) · · · (fn−1u)

is in C∗(Z, X, h)Y . A computation (carried out in [43]) shows that a = fun. The
case n < 0 is reduced to the case n > 0 by taking adjoints; see [43] for details.

It now follows that B0 ⊂ C∗(Z, X, h)Y . Combining this result with B0 = B and
C∗(Z, X, h)Y ⊂ B, we get C∗(Z, X, h)Y = B. �

Corollary 4.6 (Corollary 7.6 of [43]). Let X be a compact Hausdorff space and let
h : X → X be a homeomorphism. Let Y ⊂ X be a nonempty closed subset. Let u ∈
C∗(Z, X, h) be the standard unitary, as in Notation 4.1, and let v ∈ C∗(Z, X, h−1)
be the analogous standard unitary in C∗(Z, X, h−1). Then there exists a unique
homomorphism ϕ : C∗(Z, X, h−1)→ C∗(Z, X, h) such that ϕ(f) = f for f ∈ C(X)
and ϕ(v) = u∗, the map ϕ is an isomorphism, and

ϕ
(
C∗(Z, X, h−1)h−1(Y )

)
= C∗(Z, X, h)Y .

See [43] for the straightforward proof.

Lemma 4.7 (Lemma 7.4 of [43]). Let X be an infinite compact Hausdorff space
and let h : X → X be a minimal homeomorphism. Let K ⊂ X be a compact set
such that hn(K)∩K = ∅ for all n ∈ Z\{0}. Let U ⊂ X be a nonempty open subset.
Then there exist l ∈ Z≥0, compact sets K1,K2, . . . ,Kl ⊂ X, and n1, n2, . . . , nl ∈
Z>0, such that K ⊂

⋃l
j=1Kj and such that hn1(K1), hn2(K2), . . . , hnl(Kl) are

disjoint subsets of U .

Sketch of proof. Choose a nonempty open subset V ⊂ X such that V is compact
and contained in U . Use minimality of h to cover K with the images of V under
finitely many negative powers of h, say h−n1(V ), h−n2(V ), . . . , h−nl(V ). Set Kj =

h−nj
(
V
)
∩K for j = 1, 2, . . . , l. �

The next lemma is one of the key steps. It is straightforward if one only asks
that f -C∗(Z,X,h) g. Getting f -C∗(Z,X,h)Y g for both positive n and negative n is
a key step in showing C∗(Z, X, h)Y a large subalgebra of C∗(Z, X, h).

Lemma 4.8 (Lemma 7.7 of [43]). Let X be an infinite compact Hausdorff space
and let h : X → X be a minimal homeomorphism. Let Y ⊂ X be a compact subset
such that hn(Y ) ∩ Y = ∅ for all n ∈ Z \ {0}. Let U ⊂ X be a nonempty open
subset and let n ∈ Z. Then there exist f, g ∈ C(X)+ such that

f |hn(Y ) = 1, 0 ≤ f ≤ 1, supp(g) ⊂ U, and f -C∗(Z,X,h)Y g.

Proof. We first prove this when n = 0.
Apply Lemma 4.7 with Y in place of K, obtaining l ∈ Z≥0, compact sets

Y1, Y2, . . . , Yl ⊂ X, and n1, n2, . . . , nl ∈ Z>0. Set N = max(n1, n2, . . . , nl). Choose
disjoint open sets V1, V2, . . . , Vl ⊂ U such that hnj (Yj) ⊂ Vj for j = 1, 2, . . . , l.
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Then Yj ⊂ h−nj (Vj), so the sets h−n1(V1), h−n2(V2), . . . , h−nl(Vl) cover Y . For
j = 1, 2, . . . , l, define

Wj = h−nj (Vj) ∩

(
X \

N⋃
n=1

h−n(Y )

)
.

Then W1,W2, . . . ,Wl form an open cover of Y . Therefore there are f1, f2, . . . , fl ∈
C(X)+ such that for j = 1, 2, . . . , l we have supp(fj) ⊂ Wj and 0 ≤ fj ≤ 1, and

such that the function f =
∑l
j=1 fj satisfies f(x) = 1 for all x ∈ Y and 0 ≤ f ≤ 1.

Further define g =
∑l
j=1 fj ◦ h−nj . Then supp(g) ⊂ U .

Let u ∈ C∗(Z, X, h) be as in Notation 4.1. For j = 1, 2, . . . , l, set aj = f
1/2
j u−nj .

Since fj vanishes on
⋃nj

n=1 h
−n(Y ), Proposition 4.5 implies that aj ∈ C∗(Z, X, h)Y .

Therefore, in C∗(Z, X, h)Y we have

fj ◦ h−nj = a∗jaj ∼C∗(Z,X,h)Y aja
∗
j = fj .

Consequently, using Lemma 1.23(12) at the second step and Lemma 1.23(13) and
disjointness of the supports of the functions fj ◦ h−nj at the last step, we have

f =

l∑
j=1

fj -C∗(Z,X,h)Y

l⊕
j=1

fj ∼C∗(Z,X,h)Y

l⊕
j=1

fj ◦ h−nj ∼C∗(Z,X,h)Y g.

This completes the proof for n = 0.
Now suppose that n > 0. Choose functions f and g for the case n = 0, and call

them f0 and g. Since f0(x) = 1 for all x ∈ Y , and since Y ∩
⋃n
l=1 h

−l(Y ) = ∅,
there is f1 ∈ C(X) with 0 ≤ f1 ≤ f0, f1(x) = 1 for all x ∈ Y , and f1(x) = 0

for x ∈
⋃n
l=1 h

−l(Y ). Set v = f
1/2
1 u−n and f = f1 ◦ h−n. Then f(x) = 1 for all

x ∈ hn(Y ) and 0 ≤ f ≤ 1. Proposition 4.5 implies that v ∈ C∗(Z, X, h)Y . We have

v∗v = unf1u
−n = f1 ◦ h−n = f and vv∗ = f1.

Using Lemma 1.23(4), we thus get

f ∼C∗(Z,X,h)Y f1 ≤ f0 -C∗(Z,X,h)Y g.

This completes the proof for the case n > 0.
Finally, we consider the case n < 0. In this case, we have −n−1 ≥ 0. Apply the

cases already done with h−1 in place of h. We get f, g ∈ C∗(Z, X, h−1)h−1(Y ) such

that f(x) = 1 for all x ∈ (h−1)−n−1(h−1(Y )) = hn(Y ), such that 0 ≤ f ≤ 1, such
that supp(g) ⊂ U , and such that f -C∗(Z,X,h−1)h−1(Y )

g. Let ϕ : C∗(Z, X, h−1) →
C∗(Z, X, h) be the isomorphism of Corollary 4.6. Then

ϕ(f) = f, ϕ(g) = g, and ϕ
(
C∗(Z, X, h−1)h−1(Y )

)
= C∗(Z, X, h)Y .

Therefore f -C∗(Z,X,h)Y g. �

The following result is a special case of Lemma 7.9 of [43]. The basic idea has
been used frequently; related arguments can be found, for example, in the proofs
of Theorem 3.2 of [15], Lemma 2 and Theorem 1 in [3], Lemma 10 of [26], and
Lemma 3.2 of [36]. (The papers listed are not claimed to be representative or to be
the original sources; they are ones I happen to know of.)
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Lemma 4.9. Let X be an infinite compact space, and let h : X → X be a minimal
homeomorphism. Let B ⊂ C∗(Z, X, h) be a unital subalgebra such that C(X) ⊂ B
and B∩C(X)[Z] is dense in B. Let a ∈ B+\{0}. Then there exists b ∈ C(X)+\{0}
such that b -B a.

Sketch of proof. Without loss of generality ‖a‖ ≤ 1. The conditional expectation
Eα : C∗r (G,X) → C(X) is faithful. Therefore Eα(a) ∈ C(X) is a nonzero positive
element. Set ε = 1

6‖Eα(a)‖. Choose c ∈ B ∩ C(X)[Z] such that ‖c − a1/2‖ < ε
and ‖c‖ ≤ 1. One can check that ‖Eα(c∗c)‖ > 4ε. There are n ∈ Z≥0 and
g−n, g−n+1, . . . , gn ∈ C(X) such that c∗c =

∑n
k=−n gku

k. We have g0 = Eα(c∗c) ∈
C(X)+ and ‖g0‖ > 4ε. Therefore there is x ∈ X such that g0(x) > 4ε. Choose
f ∈ C(X) such that 0 ≤ f ≤ 1, f(x) = 1, and the sets hk(supp(f)) are disjoint
for k = −n, −n + 1, . . . , n. One can then check that fc∗cf = fg0f , so that
‖fc∗cf‖ > 4ε. Therefore (fc∗cf − 2ε)+ is a nonzero element of C(X). Using
Lemma 1.23(6) at the first step, Lemma 1.23(17) and cf2c∗ ≤ cc∗ at the second
step, and Lemma 1.23(10) and ‖cc∗ − a‖ < 2ε at the last step, we then have

(fc∗cf − 2ε)+ ∼B (cf2c∗ − 2ε)+ -B (cc∗ − 2ε)+ -B a.

This completes the proof. �

Corollary 4.10. Let X be an infinite compact Hausdorff space, and let h : X → X
be a minimal homeomorphism. Let B ⊂ C∗(Z, X, h) be a unital subalgebra such
that C(X) ⊂ B and B∩C(X)[Z] is dense in B. Let a ∈ A+\{0} and let b ∈ B+\{0}.
Then there exists f ∈ C(X)+ \ {0} such that f -C∗(Z,X,h) a and f -B b.

Lemma 4.11. Let A be a C*-algebra, and let S ⊂ A be a subset which generates
A as a C*-algebra. Then for every finite subset F ⊂ A and every ε > 0 there are
a finite subset F0 ⊂ S and ε0 > 0 such that whenever b ∈ A satisfies ‖b‖ ≤ 1 and
‖ba− ab‖ < ε0 for all a ∈ F0, then ‖ba− ab‖ < ε for all a ∈ F .

Proof of Theorem 1.8. Since h is minimal, it is well known that A is simple and
finite. Also clearly A is infinite dimensional.

We claim that it suffices to do the following. Let m ∈ Z>0, let a1, a2, . . . , am ∈ A,
let ε > 0, and let f ∈ C(X)+ \ {0}. We find c1, c2, . . . , cm ∈ A and g ∈ C(X) such
that:

(1) 0 ≤ g ≤ 1.
(2) For j = 1, 2, . . . ,m we have ‖cj − aj‖ < ε.
(3) For j = 1, 2, . . . ,m we have (1− g)cj ∈ C∗(Z, X, h)Y .
(4) g -B f .
(5) ‖gu− ug‖ < ε.

To see this, first observe that if in (5) we required ‖gaj−ajg‖ < ε for j = 1, 2, . . . ,m,
then the claim would follow from Corollary 4.10 and Lemma 2.5 (as in the proof of
Proposition 2.3). There is no need to require that the finite set used in (2) and (3)
be the same as the finite set used in (5). Applying Lemma 4.11 and choosing a
smaller value of ε, in (5) we can replace ‖gaj − ajg‖ < ε for j = 1, 2, . . . ,m by
‖ga − ag‖ < ε for all a in a finite subset of the generating set C(X) ∪ {u}. Since
g ∈ C(X), it is automatic that g commutes exactly with the elements of C(X). So
we need only require that ‖gu− ug‖ < ε. This proves the claim.

Choose c1, c2, . . . , cm ∈ C(X)[Z] such that ‖cj − aj‖ < ε for j = 1, 2, . . . ,m.
(This estimate is condition (2).) Choose N ∈ Z>0 such that for j = 1, 2, . . . ,m
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there are cj,l ∈ C(X) for l = −N, −N + 1, . . . , N − 1, N with

cj =

N∑
l=−N

cj,lu
l.

Choose N0 ∈ Z>0 such that 1
N0

< ε. Define

I =
{
−N −N0, −N −N0 + 1, . . . , N +N0 − 1, N +N0

}
.

Set U = {x ∈ X : f(x) 6= 0}, and choose nonempty disjoint open sets Ul ⊂ U for
l ∈ I. For each such l, use Lemma 4.8 to choose fl, rl ∈ C(X)+ such that rl(x) = 1
for all x ∈ hl(Y ), such that 0 ≤ rl ≤ 1, such that supp(fl) ⊂ Ul, and such that
rl -B fl.

Choose an open set W containing Y such that the sets hl(W ) are disjoint, for
l ∈ I, and choose r ∈ C(X) such that

0 ≤ r ≤ 1, r|Y = 1, and supp(r) ⊂W.
Set

g0 = r ·
N+N0∏

l=−N−N0

rl ◦ hl.

Set gl = g0 ◦ h−l for l = −N −N0, −N −N0 + 1, . . . , N +N0 − 1, N +N0. Then
0 ≤ gl ≤ rl ≤ 1. Define λl for l ∈ I by

λ−N−N0 = 0, λ−N−N0+1 =
1

N0
, λ−N−N0+2 =

2

N0
, . . . , λ−N−1 = 1− 1

N0
,

λ−N = λ−N+1 = · · · = λN−1 = λN = 1,

λN+1 = 1− 1

N0
, λN+2 = 1− 2

N0
, . . . , λN+N0−1 =

1

N0
, λN+N0

= 0.

Set g =
∑
l∈I λlgl. The supports of the functions gl are disjoint, so 0 ≤ g ≤ 1.

This is condition (1). Using Lemma 1.23(13) at the first and fourth steps and
Lemma 1.23(14) at the third step, we get

g -B
⊕
l∈I

gl ≤
⊕
l∈I

rl -B
⊕
l∈I

fl ∼C(X)

∑
l∈I

fl -C(X) f.

This is condition (4).
We check condition (5). We have

‖gu− ug‖ = ‖g − ugu∗‖ = ‖g − g ◦ h−1‖ =

∥∥∥∥∥∑
l∈I

λlg0 ◦ h−l −
∑
l∈I

λlg0 ◦ h−l−1
∥∥∥∥∥ .

In the second sum in the last term, we change variables to get
∑
l+1∈I λl−1g0 ◦h−l.

Use λ−N−N0 = λN+N0 = 0 and combine terms to get

‖gu− ug‖ =

∥∥∥∥∥
N+N0∑

l=−N−N0+1

(λl − λl−1)g0 ◦ h−l
∥∥∥∥∥ .

The expressions g0 ◦ h−l are orthogonal and have norm 1, so

‖gu− ug‖ = max
−N−N0+1≤l≤N+N0

|λl − λl−1| =
1

N0
< ε.

It remains to verify condition (3). Since 1− g vanishes on the sets

h−N (Y ), h−N+1(Y ), . . . , hN−2(Y ), hN−1(Y ),
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Proposition 4.5 implies that (1− g)ul ∈ B for l = −N, −N + 1, . . . , N − 1, N . For
j = 1, 2, . . . ,m, since cj,l ∈ C(X) ⊂ B for l = −N, −N + 1, . . . , N − 1, N , we get

(1− g)cj =

N∑
l=−N

cj,l · (1− g)ul ∈ B.

This completes the verification of condition (3), and the proof of the theorem. �

5. Application to the Radius of Comparison of Crossed Products by
Minimal Homeomorphisms

This section has not yet been written.
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