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Lecture 1 (1 June 2015): Introduction, Motivation, and the Cuntz
Semigroup.

Lecture 2 (2 June 2015): Large Subalgebras and their Basic
Properties.

Lecture 3 (4 June 2015): Large Subalgebras and the Radius of
Comparison.

Lecture 4 (5 June 2015 [morning]): Large Subalgebras in Crossed
Products by Z.

Lecture 5 (5 June 2015 [afternoon]): Application to the Radius of
Comparison of Crossed Products by Minimal Homeomorphisms.
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A rough outline of all five lectures
Introduction: what large subalgebras are good for.
Definition of a large subalgebra.
Statements of some theorems on large subalgebras.
A very brief survey of the Cuntz semigroup.
Open problems.
Basic properties of large subalgebras.
A very brief survey of radius of comparison.
Description of the proof that if B is a large subalgebra of A, then A
and B have the same radius of comparison.
A very brief survey of crossed products by Z.
Orbit breaking subalgebras of crossed products by minimal
homeomorphisms.
Sketch of the proof that suitable orbit breaking subalgebras are large.
A very brief survey of mean dimension.
Description of the proof that for minimal homeomorphisms with
Cantor factors, the radius of comparison is at most half the mean
dimension.
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Definition

Let A be a C*-algebra, and let a, b ∈ (K ⊗ A)+. We say that a is Cuntz
subequivalent to b over A, written a -A b, if there is a sequence (vn)∞n=1

in K ⊗ A such that limn→∞ vnbv
∗
n = a.

Definition

Let A be an infinite dimensional simple unital C*-algebra. A unital
subalgebra B ⊂ A is said to be large in A if for every m ∈ Z>0,
a1, a2, . . . , am ∈ A, ε > 0, x ∈ A+ with ‖x‖ = 1, and y ∈ B+ \ {0}, there
are c1, c2, . . . , cm ∈ A and g ∈ B such that:

1 0 ≤ g ≤ 1.

2 For j = 1, 2, . . . ,m we have ‖cj − aj‖ < ε.

3 For j = 1, 2, . . . ,m we have (1− g)cj ∈ B.

4 g -B y and g -A x .

5 ‖(1− g)x(1− g)‖ > 1− ε.
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Dense subsets
B ⊂ A is large in A if for a1, a2, . . . , am ∈ A, ε > 0, x ∈ A+ with ‖x‖ = 1,
and y ∈ B+ \ {0}, there are c1, c2, . . . , cm ∈ A and g ∈ B such that:

1 0 ≤ g ≤ 1.

2 For j = 1, 2, . . . ,m we have ‖cj − aj‖ < ε.

3 For j = 1, 2, . . . ,m we have (1− g)cj ∈ B.

4 g -B y and g -A x .

5 ‖(1− g)x(1− g)‖ > 1− ε.

Lemma

In the definition, it suffices to let S ⊂ A be a subset whose linear span is
dense in A, and verify the hypotheses only when a1, a2, . . . , am ∈ S .

Unlike other approximation properties (such as tracial rank), it seems not
to be possible to take S to be a generating subset, or even a selfadjoint
generating subset. (We can do this for the definition of a centrally large
subalgebra.)
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When A is finite

B ⊂ A is large in A if for a1, a2, . . . , am ∈ A, ε > 0, x ∈ A+ with ‖x‖ = 1,
and y ∈ B+ \ {0}, there are c1, c2, . . . , cm ∈ A and g ∈ B such that:

1 0 ≤ g ≤ 1.

2 For j = 1, 2, . . . ,m we have ‖cj − aj‖ < ε.

3 For j = 1, 2, . . . ,m we have (1− g)cj ∈ B.

4 g -B y and g -A x .

5 ‖(1− g)x(1− g)‖ > 1− ε.

Proposition

Let A be a finite infinite dimensional simple unital C*-algebra, and let
B ⊂ A be a unital subalgebra satisfying the definition of a large subalgebra
except for condition (5). Then B is large in A.
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When A is finite (continued)

From the previous slide:

Proposition

Let A be a finite infinite dimensional simple unital C*-algebra, and let
B ⊂ A be a unital subalgebra satisfying the definition of a large subalgebra
except for the condition ‖(1− g)x(1− g)‖ > 1− ε. Then B is large in A.

It suffices to prove:

Lemma

Let A be a finite simple infinite dimensional unital C*-algebra. Let x ∈ A+

satisfy ‖x‖ = 1. Then for every ε > 0 there is x0 ∈
(
xAx

)
+
\ {0} such

that whenever g ∈ A+ satisfies 0 ≤ g ≤ 1 and g -A x0, then
‖(1− g)x(1− g)‖ > 1− ε.

If we also require x0 -A x , then we can use x0 in place of x in the
definition.
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When A is finite (continued)
To show: x ∈ A+ with ‖x‖ = 1, ε > 0. Then there is y ∈

(
xAx

)
+
\ {0}

such that whenever g ∈ A+ satisfies 0 ≤ g ≤ 1 and g -A y , then
‖(1− g)x(1− g)‖ > 1− ε.

Choose a sufficiently small number ε0 > 0. Choose f : [0, 1]→ [0, 1] such
that f = 0 on [0, 1− ε0] and f (1) = 1. Construct a, bj , cj , dj ∈ f (x)Af (x)
for j = 1, 2 such that

0 ≤ dj ≤ cj ≤ bj ≤ a ≤ 1, abj = bj , bjcj = cj , cjdj = dj , and dj 6= 0,

and b1b2 = 0. Take x0 = d1.

If ε0 is small enough, g -A d1, and ‖(1− g)x(1− g)‖ ≤ 1− ε, use∥∥(1− g)(b1 + b2)(1− g)
∥∥ =

∥∥(b1 + b2)1/2(1− g)2(b1 + b2)1/2
∥∥,

‖(1− g)x(1− g)‖ =
∥∥x1/2(1− g)2x1/2

∥∥, and (b1 + b2)1/2x1/2 ≈ x1/2

to get (details omitted)∥∥(1− g)(b1 + b2)(1− g)
∥∥ > 1− ε

3
.
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When A is finite (continued)
We assumed g -A d1 and ‖(1− g)x(1− g)‖ ≤ 1− ε, and we want a
contradiction. We have

0 ≤ dj ≤ cj ≤ bj ≤ a ≤ 1, abj = bj , bjcj = cj , cjdj = dj , and dj 6= 0

for j = 1, 2, and b1b2 = 0. We also have∥∥(1− g)(b1 + b2)(1− g)
∥∥ > 1− ε

3
. (1)

From (b1 + b2)(c1 + c2) = c1 + c2 one gets, for any β ∈ [0, 1),

c1 + c2 -A [(b1 + b2)− β]+. (2)

(If we are in C (X ), whenever (c1 + c2)(x) 6= 0, we have
(b1 + b2)(x) = 1 > β.) Take β = 1− ε

3 . Combine (2) with the second
lemma on the list of basic results on Cuntz equivalence at the first step,
(1) at the second step, and g -A d1 at the last step, to get

c1 + c2 -A

[
(1− g)(b1 + b2)(1− g)− β

]
+
⊕ g = 0⊕ g -A d1.
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When A is finite (continued)
In search of a contradiction, we have gotten

c1 + c2 -A d1

with
c1d1 = d1, c1c2 = 0, and c2 6= 0.

This looks rather suspicious.

Set r = (1− c1 − c2) + d1. Use basic result (12) at the first step,
c1 + c2 -A d1 at the second step, and basic result (13) and
d1(1− c1 − c2) = 0 at the third step, to get

1 -A (1−c1−c2)⊕(c1+c2) -A (1−c1−c2)⊕d1 ∼A (1−c1−c2)+d1 = r .

Thus, there is v ∈ A such that ‖vrv∗ − 1‖ < 1
2 . It follows that vr1/2 has a

right inverse. Recall that c2d2 = d2 and d2 6= 0. So rd2 = 0, whence
vr1/2d2 = 0. Thus vr1/2 is not invertible. We have contradicted finiteness
of A, and thus proved the lemma.
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Lemma
Let A be a finite infinite dimensional simple unital C*-algebra, and let
B ⊂ A be a large subalgebra. Let m, n ∈ Z≥0, let a1, a2, . . . , am ∈ A, let
b1, b2, . . . , bn ∈ A+, let ε > 0, let x ∈ A+ satisfy ‖x‖ = 1, and let
y ∈ B+ \ {0}. Then there are c1, c2, . . . , cm ∈ A, d1, d2, . . . , dn ∈ A+, and
g ∈ B such that:

1 0 ≤ g ≤ 1.

2 ‖cj − aj‖ < ε and ‖dj − bj‖ < ε.

3 ‖cj‖ ≤ ‖aj‖ and ‖dj‖ ≤ ‖bj‖.
4 (1− g)cj ∈ B and (1− g)dj(1− g) ∈ B.

5 g -B y and g -A x .

Sketch of proof.

To get ‖cj‖ ≤ ‖aj‖ one takes ε > 0 to be a bit smaller, and scales down cj

for any j for which ‖cj‖ is too big. To get dj , approximate b
1/2
j sufficiently

well by rj (without increasing the norm), and take dj = rj r
∗
j .
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Simplicity of a large subalgebra
Recall from Lecture 1:

Proposition

Let A be an infinite dimensional simple unital C*-algebra, and let B ⊂ A
be a large subalgebra. Then B is simple.

(The result stated in Lecture 1 also included infinite dimensionality. Once
one has simplicity, infinite dimensionality is easy to prove, and we omit it.)
The proof of this proposition uses two preliminary lemmas.

Lemma

Let A be a C*-algebra, let n ∈ Z>0, and let a1, a2, . . . , an ∈ A. Set
a =

∑n
k=1 ak and x =

∑n
k=1 a

∗
kak . Then a∗a ∈ xAx .

Lemma

Let A be a unital C*-algebra and let a ∈ A+. Suppose AaA = A. Then
there exist n ∈ Z>0 and x1, x2, . . . , xn ∈ A such that

∑n
k=1 x

∗
k axk = 1.
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The first lemma

From the previous slide:

Lemma

Let A be a C*-algebra, let n ∈ Z>0, and let a1, a2, . . . , an ∈ A. Set
a =

∑n
k=1 ak and x =

∑n
k=1 a

∗
kak . Then a∗a ∈ xAx .

Sketch of proof.

Assume ‖ak‖ ≤ 1 for k = 1, 2, . . . , n. Choose c ∈ xAx such that ‖c‖ ≤ 1
and ‖ca∗kak − a∗kak‖ is small for k = 1, 2, . . . , n. Check that
‖ca∗k − a∗k‖2 ≤ 2‖ca∗kak − a∗kak‖, so ‖ca∗k − a∗k‖ is small. Then ‖ca∗ − a∗‖
is small, so that ‖ca∗ac − a∗a‖ is small. Therefore a∗a is arbitrarily close
to xAx .
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The second lemma
From the slide before the previous slide:

Lemma

Let A be a unital C*-algebra and let a ∈ A+. Suppose AaA = A. Then
there exist n ∈ Z>0 and x1, x2, . . . , xn ∈ A such that

∑n
k=1 x

∗
k axk = 1.

Proof.

Choose n ∈ Z>0 and y1, y2, . . . , yn, z1, z2, . . . , zn ∈ A such that the
element c =

∑n
k=1 ykazk satisfies ‖c − 1‖ < 1. Set

r =
n∑

k=1

z∗kay
∗
k ykazk , M = max

k
‖yk‖, and s = M2

n∑
k=1

z∗ka
2zk .

The previous lemma implies that c∗c is in the hereditary subalgebra
generated by r . The relation ‖c − 1‖ < 1 implies that c is invertible, so r
is invertible. Since r ≤ s, it follows that s is invertible. Set
xk = Ma1/2zks

−1/2. Then check that
∑n

k=1 x
∗
k axk = s−1/2ss−1/2 = 1.
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Proof of simplicity of B
Recall that we want to prove:

Proposition

Let A be an infinite dimensional simple unital C*-algebra, and let B ⊂ A
be a large subalgebra. Then B is simple.

Let b ∈ B+ \ {0}. We show that there are n ∈ Z>0 and r1, r2, . . . , rn ∈ B
such that

∑n
k=1 rkbr

∗
k is invertible.

Use the previous lemma to find x1, x2, . . . , xm ∈ A such that∑m
k=1 xkbx

∗
k = 1. Set

M = max
(
1, ‖x1‖, . . . , ‖xm‖, ‖b‖

)
and δ = min

(
1,

1

3mM(2M + 1)

)
.

By definition, there are y1, y2, . . . , ym ∈ A and g ∈ B+ such that
0 ≤ g ≤ 1, ‖yj − xj‖ < δ, (1− g)yj ∈ B, and g -B b. Set
z =

∑m
k=1 yjby

∗
j . The number δ has been chosen to ensure that

‖z − 1‖ < 1
3 ; we omit details. Then

∥∥(1− g)z(1− g)− (1− g)2
∥∥ < 1

3 .
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Proof of simplicity of B (continued)
We are proving:

Proposition

Let A be an infinite dimensional simple unital C*-algebra, and let B ⊂ A
be a large subalgebra. Then B is simple.

We took b ∈ B+ \ {0}. We got y1, y2, . . . , ym ∈ A and g ∈ B+ such that
0 ≤ g ≤ 1, ‖yj − xj‖ < δ, (1− g)yj ∈ B, and g -B b. We defined
z =

∑m
k=1 yjby

∗
j , and got

∥∥(1− g)z(1− g)− (1− g)2
∥∥ < 1

3 .

Set h = 2g − g2. Use basic result (3) on Cuntz comparison on the map
λ 7→ 2λ− λ2 on [0, 1], to get h ∼B g . So h -B b. Choose v ∈ B such
that ‖vbv∗ − h‖ < 1

3 .

Take n = m + 1, take rj = (1− g)yj for j = 1, 2, . . . ,m, and take
rm+1 = v . Then r1, r2, . . . , rn ∈ B. One can now check, using
(1− g)2 + h = 1, that ‖1−

∑n
k=1 rkbr

∗
k ‖ <

2
3 . Therefore

∑n
k=1 rkbr

∗
k is

invertible. This proves simplicity of B.
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Traces
For a unital C*-algebra A, we denote by T(A) the set of tracial states
on A. We denote by QT(A) the set of normalized 2-quasitraces on A.

If you haven’t heard of quasitraces, just pretend they are all tracial states.
This is true on exact C*-algebras (in particular, on nuclear ones), and it is
possible that it is always true.

Let A be a stably finite unital C*-algebra, and let τ ∈ QT(A). Define
dτ : M∞(A)+ → [0,∞) by dτ (a) = limn→∞ τ(a1/n).

To understand this, take A = C (X ) and g ∈ C (X ) with 0 ≤ g ≤ 1, and
take τ to be given by a probability measure µ on X . (τ(f ) =

∫
X f dµ.)

Set U = {x ∈ X : g(x) 6= 0}. Then g1/n ↗ χU and dτ (g) = µ(U).

Some facts: dτ gives a well defined functional dτ : W (A)→ [0,∞) (and
also dτ : Cu(A)→ [0,∞]) such that dτ (〈a〉A) is “the trace of the open
support of a”. It preserves order and addition, and commutes with
countable increasing supremums when they exist. In particular,
dτ (a) = supε>0 dτ ((a− ε)+). Also, 0 ≤ a ≤ 1 implies τ(a) ≤ dτ (a).

N. C. Phillips (U of Oregon) Large Subalgebras: Basics 2 June 2015 17 / 24

Bijection on traces

Recall from Lecture 1:

Theorem

Let A be an infinite dimensional simple unital C*-algebra, and let B ⊂ A
be a large subalgebra. Then the restriction map T(A)→ T(B) is bijective.

(The result stated in Lecture 1 also included the same thing for
quasitraces. That result requires much more work, since it depends on the
fact that the inclusion of A in B induces an isomorphism on the
subsemigroups of purely positive elements.)

The proof of this proposition uses a preliminary lemma.

Lemma

Let A be an infinite dimensional simple unital C*-algebra, and let B ⊂ A
be a large subalgebra. Let τ ∈ T(B). Then there exists a unique state ω
on A such that ω|B = τ .
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From the previous slide:

Lemma
Let A be an infinite dimensional simple unital C*-algebra, and let B ⊂ A
be a large subalgebra. Let τ ∈ T(B). Then there exists a unique state ω
on A such that ω|B = τ .

Existence of ω follows from the Hahn-Banach Theorem.

For uniqueness, let ω1 and ω2 be states with ω1|B = ω2|B = τ , let a ∈ A+,
and let ε > 0. We show |ω1(a)− ω2(a)| < ε. We can assume ‖a‖ ≤ 1.

We saw above that B is simple and infinite dimensional. The third lemma
on the list of basic results on Cuntz equivalence can be used to find
y ∈ B+ \ {0} such that supσ∈QT(B) dσ(y) is as small as we want. (For
orthogonal elements with b1 ∼B b2 ∼B · · · ∼B bn, we must have
dσ(b1) = dσ(b2) = · · · = dσ(bn), so ndσ(b1) ≤ 1.) Choose y ∈ B+ \ {0}
such that dτ (y) < ε2

64 . Since B is large, there are c ∈ A+ and g ∈ B+ such
that ‖c‖ ≤ 1, ‖g‖ ≤ 1, ‖c − a‖ < ε

4 , (1− g)c(1− g) ∈ B, and g -B y .

So ωj(g
2) = τ(g2) ≤ dτ (g2) < ε2

64 .
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We have a ∈ A and we want to prove that |ω1(a)− ω2(a)| < ε. We have

‖c‖ ≤ 1, ‖g‖ ≤ 1, ‖c−a‖ < ε
4 , (1−g)c(1−g) ∈ B, ωj(g

2) < ε2

64 .

The Cauchy-Schwarz inequality gives

|ωj(rs)| ≤ ωj(rr
∗)1/2ωj(s

∗s)1/2

for all r , s ∈ A. Using ‖c‖ ≤ 1, we then get

|ωj(gc)| ≤ ωj(g
2)1/2ωj(c

2)1/2 < ε
8 ,

|ωj((1− g)cg)| ≤ ωj

(
(1− g)c2(1− g)

)1/2
ωj(g

2)1/2 < ε
8 .

So (omitting some algebra at the second step)∣∣ωj(c)− τ((1− g)c(1− g))
∣∣ =

∣∣ωj(c)− ωj((1− g)c(1− g))
∣∣

≤ |ωj(gc)|+ |ωj((1− g)cg)| < ε
4 .

Also |ωj(c)− ωj(a)| < ε
4 . So∣∣ωj(a)− τ((1− g)c(1− g))

∣∣ < ε
2 .

Thus |ω1(a)− ω2(a)| < ε, as desired. The lemma is proved.
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Bijection on traces
Recall that we want to prove:

Theorem

Let A be an infinite dimensional simple unital C*-algebra, and let B ⊂ A
be a large subalgebra. Then the restriction map T(A)→ T(B) is bijective.

Let τ ∈ T(B). We show that there is a unique ω ∈ T(A) such that
ω|B = τ . We know that there is a unique state ω on A such that ω|B = τ ,
and it suffices to show that ω is a trace. Thus let a1, a2 ∈ A satisfy
‖a1‖ ≤ 1 and ‖a2‖ ≤ 1, and let ε > 0. We show that
|ω(a1a2)− ω(a2a1)| < ε.

As in the proof of the lemma, find y ∈ B+ \ {0} such that dτ (y) < ε2

64 .
Since B is large, there are c1, c2 ∈ A and g ∈ B+ such that

‖cj‖ ≤ 1, ‖cj − aj‖ <
ε

8
, and (1− g)cj ∈ B

for j = 1, 2, and such that ‖g‖ ≤ 1 and g -B y . As before,

ω(g2) ≤ dτ (y) < ε2

64 .
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Bijection on traces (continued)
We got 0 ≤ g ≤ 1, ‖cj‖ ≤ 1, ‖cj − aj‖ < ε

8 , (1− g)cj ∈ B, ω(g2) < ε2

64 .

We claim that ∣∣ω((1− g)c1(1− g)c2)− ω(c1c2)
∣∣ < ε

4
.

Using the Cauchy-Schwarz inequality as in the proof of the lemma, we get

|ω(gc1c2)| ≤ ω(g2)1/2ω(c∗2c
∗
1c1c2)1/2 ≤ ω(g2)1/2 <

ε

8
.

Similarly, and also at the second step using ‖c2‖ ≤ 1, (1− g)c1g ∈ B, and
the fact that ω|B is a tracial state,∣∣ω((1− g)c1gc2)

∣∣ ≤ ω((1− g)c1g
2c∗1 (1− g)

)1/2
ω(c∗2c2)1/2

≤ ω
(
gc∗1 (1− g)2c1g

)1/2 ≤ ω(g2)1/2 <
ε

8
.

The claim now follows from the estimate (an algebra step is omitted)∣∣ω((1− g)c1(1− g)c2)− ω(c1c2)
∣∣ ≤ ∣∣ω((1− g)c1gc2)

∣∣+ |ω(gc1c2)|.
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Bijection on traces (continued)
We got ‖aj‖ ≤ 1, ‖cj‖ ≤ 1, ‖cj − aj‖ < ε

8 , (1− g)cj ∈ B, and (at the
bottom of the previous slide)∣∣ω((1− g)c1(1− g)c2)− ω(c1c2)

∣∣ < ε

4
.

A similar argument gives∣∣ω((1− g)c2(1− g)c1)− ω(c2c1)
∣∣ < ε

4
.

Since (1− g)c1, (1− g)c2 ∈ B and ω|B is a tracial state, we get

ω((1− g)c1(1− g)c2) = ω((1− g)c2(1− g)c1).

Therefore |ω(c1c2)− ω(c2c1)| < ε
2 .

One checks that ‖c1c2 − a1a2‖ < ε
4 and ‖c2c1 − a2a1‖ < ε

4 . It now follows
that |ω(a1a2)− ω(a2a1)| < ε.

We have |ω(a1a2)− ω(a2a1)| < ε for all ε > 0, so ω(a1a2) = ω(a2a1).
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Bijection on traces

We have thus proved:

Theorem

Let A be an infinite dimensional simple unital C*-algebra, and let B ⊂ A
be a large subalgebra. Then the restriction map T(A)→ T(B) is bijective.
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