
MATH 618 (SPRING 2024, PHILLIPS): SOLUTIONS TO

HOMEWORK 4

This assignment is due on Canvas on Wednesday 1 May 2024 at 9:00 pm.
Problems and all other items use two independent numbering sequences. This is

annoying, but necessary to preserve the problem numbers in the solutions files.
Little proofreading has been done.
Some parts of problems have several different solutions.

The following problem should be considered to be an example for Rudin, Chap-
ter 10, Problem 25, which was in a previous homework set. However, feel free to
use any correct method to solve it (with proof).

Problem 1 (Problem 21 in Chapter 10 of Rudin’s book). We want to expand the
function

f(z) =
1

1− z2
+

1

3− z
as a series of the form

∑∞
n=−∞ cnz

n.
How many such expansions are there? In which region is each of them valid?

Find the coefficients cn explicitly for each of these expansions.

Solution. The function f is holomorphic on C\{1,−1, 3}. According to Problem 25,
there are therefore expansions of the required form on the sets

A =
{
z ∈ C : |z| < 1

}
, B =

{
z ∈ C : 1 < |z| < 3

}
, and C =

{
z ∈ C : 3 < |z|

}
.

A series of the form
∑∞
n=−∞ cnz

n converges only if
∑∞
n=0 cnz

n and
∑∞
n=1 c−n

(
1
z

)n
both converge. Therefore the largest open set on which

∑∞
n=−∞ cnz

n converges is
an annulus or disk centered at 0, with outer radius equal to the radius of convergence
of
∑∞
n=0 cnz

n and inner radius equal to the reciprocal of the radius of convergence
of
∑∞
n=1 c−nw

n. (One gets a disk if cn = 0 for all n < 0.) In particular, since the
limits

lim
z→1

f(z), lim
z→−1

f(z), and lim
z→3

f(z)

are all infinite, no series of the required form can converge on any open set con-
taining any z with |z| = 1 or |z| = 3. Therefore there are three distinct series, one
valid on each of the regions A, B, and C.

In principle, one can find these series by contour integration as in Problem 25
in Chapter 10 of Rudin’s book. But the following procedure is easier. All four
expansions are based on the geometric series

1

1− z
=

∞∑
n=0

zn,

valid for |z| < 1.

Date: 1 May 2024.
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For |z| < 1, we have |z2| < 1, so

(1)
1

1− z2
=

∞∑
n=0

z2n.

For |z| > 1, we have |z−2| < 1, so

(2)
1

1− z2
= −

(
1

z2

)(
1

1− z−2

)
= −

−∞∑
n=−1

z2n.

For |z| < 3, we have |z/3| < 1, so

(3)
1

3− z
=

(
1

3

)(
1

1− z
3

)
=

∞∑
n=0

3−n−1zn.

For |z| > 3, we have |3/z| < 1, so

(4)
1

3− z
= −

(
1

z

)(
1

1− 3
z

)
= −

∞∑
n=0

3nz−(n+1) = −
−∞∑
n=−1

3−n−1zn.

For z ∈ A, we combine the series (1) and (3) to get f(z) =
∑∞
n=−∞ cnz

n with

cn =


3−n−1 + 1 n ≥ 0 and even

3−n−1 n ≥ 0 and odd

0 n < 0.

For z ∈ B, we combine the series (2) and (3) to get f(z) =
∑∞
n=−∞ cnz

n with

cn =


3−n−1 n ≥ 0

−1 n < 0 and even

0 n < 0 and odd.

For z ∈ C, we combine the series (2) and (4) to get f(z) =
∑∞
n=−∞ cnz

n with

cn =


−3−n−1 n < 0 and odd

−3−n−1 − 1 n < 0 and even

0 n ≥ 0.

In the last case, note that c0 = 0, c−1 = −1, c−2 = −4, c−3 = −9, c−4 = −28,
etc. �

Problem 2 (Problem 19 in Chapter 10 of Rudin’s book). Let f and g be holomor-
phic functions on B1(0), suppose that f(z) 6= 0 and g(z) 6= 0 for all z ∈ B1(0), and
suppose that

f ′
(

1
n

)
f
(

1
n

) =
g′
(

1
n

)
g
(

1
n

)
for all n ∈ Z>0 with n > 1. Find and prove another simple relation between f
and g.

Motivation for the relation: the statement appears to say that the functions
log ◦f and log ◦g have the same derivative on a set with a cluster point in B1(0), so
they have the same derivative everywhere on B1(0), so they differ by a constant. To
solve the problem this way requires proving that there are holomorphic branches of
log ◦f and log ◦g on B1(0). This follows easily from Theorem 13.11 of Rudin (which
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isn’t available to us at this stage), and there are proofs using convexity which are
accessible now, but there is an easier way to proceed.

Solution. The relation is that there is a nonzero constant c such that cf = g.
Nothing more can be said. Indeed, for any holomorphic function f on B1(0)

with no zeroes in B1(0), and any c ∈ C\{0}, taking g = cf gives a pair of functions
satisfying the condition in the problem.

Now let f and g satisfy the condition in the problem. Set h(z) = g(z)/f(z) for
z ∈ B1(0). Then for z ∈ B1(0) we have

h′(z) =
g′(z)f(z)− g(z)f ′(z)

f(z)2
=
g(z)

f(z)

(
g′(z)

g(z)
− f ′(z)

f(z)

)
.

This function vanishes on
{

1
2 ,

1
3 , . . .

}
, which has a cluster point in B1(0). Since

B1(0) is connected, h(z) = 0 for all z ∈ B1(0).
It follows (for example, by considering the power series for h), that h is constant,

that is, there is c ∈ C such that

g(z)

f(z)
= h(z) = c

for all z ∈ B1(0). So g(z) = cf(z) for all z ∈ B1(0). Since g(0) 6= 0, we must have
c 6= 0. �

The next problem counts as 1.5 ordinary problems.

Problem 3. Let Ω ⊂ C be open. Recall the following.

(1) We define C
(1)
1 (Ω) to be the free abelian group on the set of piecewise

C1 curves in Ω, with the element of C
(1)
1 (Ω) corresponding to γ : [α, β]→ Ω

being written [γ].

(2) If Γ =
∑n
k=1mk[γk] ∈ C(1)

1 (Ω), with γ1, γ2, . . . , γn distinct andm1,m2, . . . ,mn ∈
Z \ {0}, then Ran(Γ) =

⋃n
k=1 Ran(γk).

(3) We define C0(Ω) to be the free abelian group on Ω (not to be confused
with the algebra of continuous functions on Ω which vanish at infinity).
For z ∈ Ω, we write [z] for the corresponding element of C0(Ω).

(4) The homomorphism ∂ : C
(1)
1 (Ω)→ C0(Ω) is the abelian group extension of

the map sending [γ], for γ : [α, β]→ Ω, to [γ(β)]− [γ(α)].

(5) An element Γ ∈ C(1)
1 (Ω) is a cycle if ∂(Γ) = 0.

(6) An element Γ ∈ C(1)
1 (Ω) is an elementary cycle if there are n ∈ Z≥0 and

piecewise C1 curves γk : [αk, βk] → Ω, for k = 1, 2, . . . , n such that Γ =∑n
j=1[γj ] and:

γ2(α2) = γ1(β1), γ3(α3) = γ2(β2), . . . ,

γn(αn) = γn−1(βn−1), and γ1(α1) = γn(βn).

Prove (this counts as one ordinary problem) that for every cycle Γ ∈ C(1)
1 (Ω) there

are elementary cycles Γ1,Γ2, . . . ,Γn ∈ C
(1)
1 (Ω) such that Ran(Γj) ⊂ Ran(Γ) for

j = 1, 2, . . . , n and m1,m2, . . . ,mn ∈ Z such that Γ =
∑n
j=1mkΓj .

Further prove (this counts as half an ordinary problem) that if Γ ∈ C(1)
1 (Ω) and∫

Γ
f(z) dz = 0 for every continuous function f : Ran(Γ)→ C, then Γ is a cycle.
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Hint for the first part. Write Γ as a suitable formal integer combination of piece-
wise C1 curves. By replacing some of these with orientation reversing reparametriza-
tions, one can reduce to the case in which all the coefficients are strictly positive.
This case can be done by induction on the sum of the coefficients. Choose any
curve occurring in the sum. If it isn’t already closed, there is another curve in the
sum which starts at its endpoint. Continue. Eventually the endpoint of the newly
chosen curve must be the starting point of one of the curves you already have (but
not necessarily the first one).

The second part can in fact be done using holomorphic functions defined on the
whole complex plane.

Solution to the first part. For the purpose of this solution, call an element Γ ∈
C

(1)
1 (Ω) positive if one can write Γ =

∑n
j=1 rj [γj ] for n ∈ Z≥0, strictly positive

integers r1, r2, . . . , rn, and distinct piecewise C1 curves γ1, γ2, . . . , γn in Ω. (This
representation is obviously unique.) Further define the weight of such an element Γ
to be w(Γ) =

∑n
j=1 rj . According to this definition, 0 is positive and has weight 0;

moreover, if Γ is positive and w(Γ) = 0, then Γ = 0. Also, if Γ =
∑n
j=1 rj [γj ] with

rj ≥ 0 for j = 1, 2, . . . , n, regardless of whether γ1, γ2, . . . , γn are distinct, then Γ
is positive.

We first prove the statement for positive cycles Γ, by complete induction on
w(Γ). The statement is trivial if w(Γ) = 0. So suppose the result is known when
w(Γ) < N , and the Γ is a positive cycle and w(Γ) = N . Write Γ =

∑n
j=1 rj [γj ] as

above, with n ≥ 1 and γj : [αj , βj ]→ Ω for j = 1, 2, . . . , n.
We construct inductively, starting with l(1) = 1, a maximal finite sequence

l(1), l(2), . . . , l(t) in {1, 2, . . . , n} such that, for k = 1, 2, . . . , t−1, we have γl(k+1)(αl(k+1)) =
γl(k)(βl(k)), and such that the numbers

γl(1)(αl(1)), γl(2)(αl(2)), . . . , γl(t)(αl(t))

are distinct. Since ∂(Γ) = 0, there is some j ∈ {1, 2, . . . , n} such that γj(αj) =
γl(t)(βl(t)). By maximality of the sequence, there is s ∈ {1, 2, . . . , t} such that
γj(αj) = γl(s)(αl(s)). Thus γl(t)(βl(t)) = γl(s)(αl(s)). Therefore

∆ = [γl(s)] + [γl(s+1)] + · · ·+ [γl(t)]

is an elementary cycle. Since rl(k) > 0 for k = s, s+1, . . . , t, the expression Γ0 = Γ−
∆ is again positive, and is a cycle because ∂ : C

(1)
1 (Ω)→ C0(Ω) is a homomorphism.

Clearly w(Γ0) < w(Γ), so Γ0 is an integer combination of elementary cycles by the
induction hypothesis. Therefore Γ = ∆+Γ0 is an integer combination of elementary
cycles. This completes the induction step, and proves the result for positive cycles.

Now let Γ =
∑n
j=1 rj [γj ] ∈ C

(1)
1 (Ω) be an arbitrary cycle, with n ∈ Z≥0,

r1, r2, . . . , rn ∈ Z, and for piecewise C1 curves γ1, γ2, . . . , γn in Ω. Recall that
if γ : [α, β] → Ω is piecewise C1, then −γ : [−β, −α] → Ω is defined by (−γ)(t) =
γ(−t). Set

S =
{
j ∈ {1, 2, . . . , n} : rj < 0

}
.

Then set

Γ0 =
∑

j∈S\{1,2,...,n}

rj [γj ]−
∑
j∈S

rj [−γj ] and ∆ =
∑
j∈S

rj([−γj ] + [γj ]).
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Obviously [γ]+[−γ] is a elementary cycle for any γ, so ∆ is an integer combination of

elementary cycles. Also, Γ0 is positive, and is a cycle because ∂ : C
(1)
1 (Ω)→ C0(Ω)

is a homomorphism. Therefore the case already done shows that Γ0 is an integer
combination of elementary cycles. Since Γ0 +∆ = Γ, this shows that Γ is an integer
combination of elementary cycles. �

Solution to the second part. We prove the contrapositive. Recall that for any en-
tire function f and any piecewise C1 curve γ : [α, β] → C, we have (just by the
real variable fundamental Theorem of Calculus)

∫
γ
f ′(z) dz = f(γ(β)) − f(γ(α)).

Therefore, if Γ ∈ C(1)
1 (Ω) and

(5) ∂(Γ) =

n∑
j=1

mj [zj ],

with m1,m2, . . . ,mn ∈ Z and z1, z2, . . . , zn ∈ C, then∫
Γ

f ′(z) dz =

n∑
j=1

mjf(zj).

Now let Γ ∈ C(1)
1 (Ω) and suppose ∂(Γ) 6= 0. In (5), we can assume that z1, z2, . . . , zn

are distinct and m1,m2, . . . ,mn are nonzero. Also n ≥ 1. Define p(z) =
∏n
j=2(z −

zj) for z ∈ C. Then ∫
Γ

p′(z) dz =

n∑
j=1

mjp(zj) = m1p(z1) 6= 0.

This completes the solution. �

The following is a rewording (to be more careful) of Rudin, Chapter 10, Prob-
lem 28. Do this problem, but possibly with the modifications suggested afterwards.
It counts as 1.5 ordinary problems.

Problem 4 (Problem 28 in Chapter 10 of Rudin’s book). Let Γ be a closed curve
in the plane (continuous but not necessarily piecewise C1), with parameter interval
[0, 2π]. Let α ∈ C \ Ran(Γ). Choose a sequence (Γn)n∈Z>0

of closed curves given
by trigonometric polynomials which converges uniformly to Γ. Show that for all
sufficiently large m and n, we have IndΓm(α) = IndΓn(α). Define IndΓ(α) to be
this common value. Prove that it does not depend on the choice of the sequence
(Γn)n∈Z>0

. Prove that Lemma 10.39 now holds for closed curves which are merely
continuous. Use this result to prove that Theorem 10.40 holds for closed curves
which are merely continuous.

The problem says to use trigonometric polynomials for the approximation, but
feel free to use piecewise linear functions instead, or some other convenient ap-
proximation. Furthermore, it is probably better not to use sequences, despite the
statement of the problem. (Of course, don’t use Theorem 10.40 of Rudin, but you
will want Lemma 10.39.)

For reference, here are the statements of Lemma 10.39 and Theorem 10.40.

Lemma 1. Let Γ0,Γ1 : [0, 2π]→ C be piecewise C1 closed curves in C. Let α ∈ C.
Suppose that

|Γ1(t)− Γ0(t)| < |α− Γ0(t)|
for all t ∈ [0, 2π]. Then IndΓ0

(α) = IndΓ1
(α).
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Theorem 2. Let Ω ⊂ C be open, and let Γ0,Γ1 : [0, 2π]→ C be piecewise C1 closed
curves in Ω which are homotopic in Ω. Let α ∈ C \ Ω. Then IndΓ0(α) = IndΓ1(α).

We state the steps in the solution as several lemmas. The proofs are all short.

Lemma 3. Let Γ: [0, 2π] → C be a continuous closed curve in C. Let ε > 0.
Then there is a piecewise C1 closed curve γ in C such that |γ(t)− Γ(t)| < ε for all
t ∈ [0, 2π].

We omit the details of the proof. It is easy to do using approximation by trigono-
metric polynomials (as suggested by Rudin), piecewise linear functions (with care
taken to ensure that γ(2π) = γ(0)), or by using the Stone-Weierstrass Theorem
to show that the C∞ functions from the circle to C are uniformly dense in the
continuous functions from the circle to C.

Lemma 4. Let Γ: [0, 2π] → C be a continuous closed curve in C. Let α ∈ C \
Ran(Γ). Let γ1, γ2 : [0, 2π] → C be piecewise C1 closed curves in C such that for
all t ∈ [0, 2π], we have

|γ1(t)− Γ(t)| < 1
3dist(α, Ran(Γ)) and |γ2(t)− Γ(t)| < 1

3dist(α, Ran(Γ)).

Then Indγ1(α) = Indγ2(α).

It will later become clear that one can use dist(α, Ran(Γ)) in place of 1
3dist(α, Ran(Γ)),

but this result is easier and sufficient.

Proof of Lemma 4. The triangle inequality implies that for all t ∈ [0, 2π], we have

|α− γ1(t)| > 2
3dist(α, Ran(Γ)) and |γ2(t)− γ1(t)| < 2

3dist(α, Ran(Γ)).

Since γ1 and γ2 are piecewise C1 closed curves, the result now follows from Lemma
10.39 of Rudin. �

It follows from Lemma 3 that the quantity IndΓ(α) in the following definition
exists, and from Lemma 4 that it is well defined. Also, it is obvious that it agrees
with the original definition when Γ is already piecewise C1, since we can take γ = Γ.

Definition 5. Let Γ: [0, 2π] → C be a continuous closed curve in C. Let α ∈
C \ Ran(Γ). Let γ : [0, 2π] → C be a piecewise C1 closed curve in C such that for
all t ∈ [0, 2π], we have

|γ(t)− Γ(t)| < 1
3dist(α, Ran(Γ))

We define IndΓ(α) = Indγ(α).

We can now prove the generalization of Lemma 10.39 of Rudin to continuous
closed curves.

Lemma 6. Let Γ0,Γ1 : [0, 2π] → C be continuous closed curves in C. Let α ∈ C.
Suppose that

|Γ1(t)− Γ0(t)| < |α− Γ0(t)|
for all t ∈ [0, 2π]. Then IndΓ0

(α) = IndΓ1
(α).

Proof. Set

ρ = inf
t∈[0, 2π]

(
|α− Γ0(t)| − |Γ1(t)− Γ0(t)|

)
.
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Then ρ > 0 since [0, 2π] is compact. Set

ε = min

(
ρ

3
,

1

3
dist(α, Ran(Γ1)),

1

3
dist(α, Ran(Γ2))

)
.

Choose (Lemma 3) piecewise C1 closed curves γ0, γ1 : [0, 2π]→ C such that

|γ0(t)− Γ0(t)| < ε and |γ1(t)− Γ1(t)| < ε

for all t ∈ [0, 2π]. Then Indγ0(α) = IndΓ0
(α) and Indγ1(α) = IndΓ1

(α). The
triangle inequality implies that for all t ∈ [0, 2π], we have

|γ1(t)− γ0(t)| < 2ρ

3
+ |Γ1(t)− Γ0(t)| < 2ρ

3
|α− Γ0(t)| < 2ρ

3
+
ρ

3
+ |α− γ0(t)|.

So Lemma 10.39 of Rudin implies that Indγ0(α) = Indγ1(α). �

Now we can give the generalization of Theorem 10.40 of Rudin.

Theorem 7. Let Ω ⊂ C be open, and let Γ0,Γ1 : [0, 2π]→ C be continuous closed
curves in Ω which are homotopic in Ω. Let α ∈ C \ Ω. Then IndΓ0

(α) = IndΓ1
(α).

Proof. Let (s, t) 7→ Γs(t), for s ∈ [0, 1] and t ∈ [0, 2π], be a homotopy as in the
hypotheses, with Γ0 and Γ1 as already given. Let

K =
{

Γs(t) : s ∈ [0, 1] and t ∈ [0, 2π]
}

Then K ⊂ Ω and K is compact, so ε = dist(K, C \ Ω) > 0. Since (s, t) 7→ Γs(t) is
uniformly continuous, there exists δ > 0 such that, in particular, for all s1, s2 ∈ [0, 1]
and t ∈ [0, 2π] with |s1 − s2| < δ, we have |Γs1(t) − Γs2(t)| < ε. Choose n ∈ Z>0

such that 1
n < δ. For all t ∈ [0, 2π] and for j = 1, 2, . . . , n, we have

|Γj/n(t)− Γ(j−1)/n(t)| < ε ≤ dist(K, C \ Ω) ≤ dist(K, α) ≤ |α− Γ(j−1)/n(t)|.
Applying Lemma 6 repeatedly, we get

IndΓ0(α) = IndΓ1/n
(α) = · · · = IndΓ(n−1)/n

(α) = IndΓ1(α).

This completes the proof. �


