MATH 618 (SPRING 2024, PHILLIPS): HOMEWORK 6

Problem 1 (Problem 21 in Chapter 10 of Rudin's book). Let $\Omega \subset \mathbb{C}$ be an open set which contains the closed unit disk. Let f be a holomorphic function on Ω such that |f(z)| < 1 for all $z \in \mathbb{C}$ such that |z| = 1. Determine, with proof, the possible numbers of fixed points of f (that is, solutions to the equation f(z) = z) in the open unit disk.

Problem 2 (Problem 20 in Chapter 10 of Rudin's book). Let $\Omega \subset \mathbb{C}$ be a region, let $f: \Omega \to \mathbb{C}$, and let $(f_n)_{n \in \mathbb{Z}_{>0}}$ be a sequence of holomorphic functions on Ω . Suppose that $f_n \to f$ uniformly on compact sets in Ω . If the functions f_n are all never zero on Ω , prove that either f(z) = 0 for all $z \in \Omega$ or $f(z) \neq 0$ for all $z \in \Omega$. If $U \subset \mathbb{C}$ is open and $f_n(\Omega) \subset U$ for all n, prove that f is constant or $f(\Omega) \subset U$.

Problem 3. Let $(f_n)_{n \in \mathbb{Z}_{>0}}$ be a sequence in $C^{\infty}(S^1)$, the set of C^{∞} functions from the circle S^1 to \mathbb{C} . Suppose that for every $m \in \mathbb{Z}_{>0}$, the quantity

$$\sup_{n\in\mathbb{Z}_{>0}}\sup_{t\in S^1}|f_n^{(m)}(t)|$$

is finite. Prove that there are $f \in C^{\infty}(S^1)$ and a subsequence $(f_{k(n)})_{n \in \mathbb{Z}_{>0}}$ of $(f_n)_{n \in \mathbb{Z}_{>0}}$ such that $f_{k(n)}^{(m)} \to f^{(m)}$ uniformly for every $m \in \mathbb{Z}_{\geq 0}$.

Derivatives of functions on S^1 are to be computed by identifying functions on S^1 with 2π -periodic functions on \mathbb{R} in the usual way.

Problem 4 (Problem 13 in Chapter 14 of Rudin's book). Let $\Omega \subset \mathbb{C}$ be a region, let $(f_n)_{n \in \mathbb{Z}_{>0}}$ be a sequence of injective holomorphic functions on Ω , and suppose that there is a function $f: \Omega \to \mathbb{C}$ such that $f_n \to f$ uniformly on compact subsets of Ω . Prove that f is constant or injective. Show by example that both cases can occur.

Problem 5 (Problem 15 in Chapter 14 of Rudin's book). Let $D = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk. Let F be the set of holomorphic functions $f: D \to \mathbb{C}$ such that $\operatorname{Re}(f(z)) > 0$ for all $z \in D$ and f(0) = 1. Prove that F is a normal family.

Can the condition "f(0) = 1" be omitted?

Can the condition "f(0) = 1" be replaced with " $|f(0)| \le 1$ "?

Date: 8 May 2024.