COURSE DESCRIPTION: CROSSED PRODUCTS OF C*-ALGEBRAS AND BANACH ALGEBRAS, UNIVERSITY OF TORONTO, SPRING SEMESTER 2014

N. CHRISTOPHER PHILLIPS

A crossed product is the functional analysts' version of a skew group ring. Thus, if $\alpha \colon G \to \operatorname{Aut}(A)$ is an action of a locally compact group G on a Banach algebra A, then a crossed product Banach algebra encodes the action of G on A, and its representation theory is related to pairs (u,π) consisting of a representation u of G and a representation π of A on the same Banach space such that $u_g\pi(a)u_g^{-1}=\pi(\alpha_g(a))$ for all $g\in G$ and $a\in A$.

There is an extensive theory of crossed product C*-algebras, with many active directions of research. Crossed product constructions are a very important way of producing new C*-algebras from old ones. By contrast, crossed products of other sorts of Banach algebras have received very little attention. Very recent work suggests that there are a number of interesting examples. There may be an interesting general theory of crossed products of algebras of operators on L^p spaces and possibly of other classes of Banach algebra crossed products.

This course will primarily be about the structure of C*-algebra and L^p operator algebra crossed products by discrete groups (although I hope to inspire interest in other classes of Banach algebra crossed products), and to some extent about the classification of simple nuclear C*-algebra arising as crossed products by \mathbb{Z} , \mathbb{Z}^d , and finite groups. I will give the basic construction and a number of examples, doing both the C* and L^p theories in parallel as far as the L^p theory currently goes. I will continue with further results in the C* theory. I will use the C* results as a source of ideas for possible new research directions for L^p operator crossed products and to some extent for other kinds of Banach algebra crossed products.

The C*-algebra part of the course will follow parts of my (still very incomplete) lecture notes [4]. (I hope to make further progress on them before the course starts, and I expect to continue to update them as the course proceeds.) I know of just one book on crossed products,

Date: 16 November 2013.

that of Williams [6], although one might also count Pedersen's book [2] (see the last two chapters). These sources go in a somewhat different direction than the course. There is nothing on Banach algebras in my lecture notes, so I have to refer to the original preprints. The main one is [3]. A basic general theory of Banach algebra crossed products is developed in [1]; this paper corresponds to some of the early part of [6]. I also intend to present a result from [5].

Students interested in C* crossed products should have a basic background in C*-algebras, such as could be obtained from a one quarter or one semester course on C*-algebras. I will occasionally use K-theory, but not in an essential way, and knowledge of K-theory is not required. Students interested in Banach algebra crossed products should have a basic background in Banach algebras, and for the C*-algebra parts be willing to take on faith some parts of the theory of C*-algebras, especially results about positive elements and continuous functional calculus.

References

- [1] S. Dirksen, M. de Jeu, and M. Wortel, *Crossed products of Banach algebras*. I, Dissertationes Math., to appear. (arXiv:1104.5151v2 [math.OA].)
- [2] G. K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press, London, New York, San Francisco, 1979.
- [3] N. C. Phillips, Crossed products of L^p operator algebras and the K-theory of Cuntz algebras on L^p spaces, preprint (arXiv: 1309.6406 [math.FA]).
- [4] N. C. Phillips, Crossed Product C*-Algebras and Minimal Dynamics (lecture notes), in preparation. Current version available at: http://pages.uoregon.edu/ncp/Courses/CRMCrPrdMinDyn/CRMCrPrdMinDyn.html.
- [5] S. Pooya and S. Hejazian, Simplicity of reduced L^p operator crossed products with Powers groups, in preparation.
- [6] D. P. Williams, Crossed Products of C*-Algebras, Mathematical Surveys and Monographs no. 134, American Mathematical Society, Providence RI, 2007.