1.Find the limit $\lim _{x \rightarrow 3} \frac{x^{2}}{6-x^{2}}$. How close the input must be to 3 for the output to be within 0.01 of the limit?
2. Set up the limit computing the instantaneous rate of change of the quantity $b(t)=\frac{t}{2+3 t}$ at the moment $t=2$. Simplify this expression and compute the limit.
3. Find the derivative of $f(t)=t^{3}(3-2 \sqrt[5]{t})$. What are the critical points of this function?
4. Find the derivative of $f(x)=\frac{x}{\sqrt{x^{3}+a^{2}}}$ assuming that a is a constant.
5. Find the derivative of $f(x)=e^{0.3 x} \sin (2.7 x+3.5)$.
6. Find the second derivative of $f(x)=\ln \left(x^{2}+1\right)$. For which values of x the graph of $f(x)$ is concave up or down?
7. Find the equation of the tangent line to $y=\ln (x+1)$ at $x=1$.
8. Assume that $\ln (y-x)=2 y$. Find $\frac{d y}{d x}$ by implicit differentiation.
9. Assume that $x^{3}+y^{3}=9$. Find $\frac{d y}{d t}$ when $x=1$ and $\frac{d x}{d t}=-2$.
10. Find the tangent line to the curve $x \ln (y)=2 y \ln (x)$ at $x=1$.
11. The concentration of a chemical in a lake at the moment of time t (time is measured in days) is given by $C(t)=\frac{t+1}{100(2+\cos (\pi t))}$. What is the rate of change of the concentration at the moment $t=10$?
12. The position of a particle moving on the line is $s(t)=t^{3}-6 t^{2}+$ $9 t-4$ (time is positive and is measured in seconds; the position is measured in meters). What is velocity of the particle at $t=2$? When the particle moves to the left and when it moves to the right?

