1. Find the limit $\lim _{x \rightarrow 3} \frac{x^{2}}{6-x^{2}}$. How close the input must be to 3 for the output to be within 0.01 of the limit?

Answer: $\lim _{x \rightarrow 3} \frac{x^{2}}{6-x^{2}}=-3$. The input must be in the interval $(2.99751,3.00251)$ for the output to be within 0.01 of the limit.
2. Set up the limit computing the instantaneous rate of change of the quantity $b(t)=\frac{t}{2+3 t}$ at the moment $t=2$. Simplify this expression and compute the limit.

Answer:

$$
\lim _{\Delta t \rightarrow 0} \frac{\frac{2+\Delta t}{2+3(2+\Delta t)}-\frac{2}{2+3 \cdot 2}}{\Delta t}=\frac{1}{32} .
$$

3. Find the derivative of $f(t)=t^{3}(3-2 \sqrt[5]{t})$. What are the critical points of this function?

Answer: $f^{\prime}(t)=9 t^{2}-\frac{32}{5} t^{11 / 5}$. The critical points are $t=0$ and $t=\left(\frac{45}{32}\right)^{5} \approx 5.499$.
4. Find the derivative of $f(x)=\frac{x}{\sqrt{x^{3}+a^{2}}}$ assuming that $a$ is a constant.

Answer: $f^{\prime}(x)=\frac{2 a^{2}-x^{3}}{2\left(x^{3}+a^{2}\right)^{3 / 2}}$.
5. Find the derivative of $f(x)=e^{0.3 x} \sin (2.7 x+3.5)$.

Answer: $f^{\prime}(x)=0.3 e^{0.3 x} \sin (2.7 x+3.5)+2.7 e^{0.3 x} \cos (2.7 x+3.5)$.
6. Find the second derivative of $f(x)=\ln \left(x^{2}+1\right)$. For which values of $x$ the graph of $f(x)$ is concave up or down?

Answer: $f^{\prime \prime}(x)=\frac{2\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}}$. The graph is concave up for $x \in(-1,1)$ and concave down for $x \in(-\infty,-1)$ and $x \in(1, \infty)$.
7. Find the tangent line to $y=\ln (x+1)$ at $x=1$.

Answer: $y-\ln (2)=\frac{1}{2}(x-1)$.
8. Assume that $\ln (y-x)=2 y$. Find $\frac{d y}{d x}$ by implicit differentiation.

Answer: $\frac{d y}{d x}=\frac{1}{1-2 y+2 x}$.
9. Assume that $x^{3}+y^{3}=9$. Find $\frac{d y}{d t}$ when $x=1$ and $\frac{d x}{d t}=-2$.

Answer: $\frac{d y}{d t}=\frac{1}{2}$.
10. Find the tangent line to the curve $x \ln (y)=2 y \ln (x)$ at $x=1$.

Answer: $y=2 x-1$.
11. The concentration of a chemical in a lake at the moment of time $t$ (time is measured in days) is given by $C(t)=\frac{t+1}{100(2+\cos (\pi t))}$. What is the rate of change of the concentration at the moment $t=10$ ?

Answer: the rate of change of the concentration at the moment $t=10$ is $C^{\prime}(10)=\frac{1}{300}$.
12. The position of a particle moving on the line is $s(t)=t^{3}-6 t^{2}+$ $9 t-4$ (time is positive and is measured in seconds; the position is measured in meters). What is velocity of the particle at $t=2$ ? When the particle moves to the left and when it moves to the right?

Answer: the velocity at $t=2$ is $s^{\prime}(2)=-3 \mathrm{~m} / \mathrm{s}$. The particle moves to the right when $t \in[0,1]$ and $t \in[3, \infty)$; it moves to the left when $t \in[1,3]$.

