1. Consider a discrete time dynamical system $b_{t+1}=b_{t}-2$ with the initial condition $b_{0}=500$. Write a closed-form expression for b_{t}.
2. Consider a discrete time dynamical system $M_{t+1}=2 \sqrt{M_{t}}+3$ with the initial condition $M_{0}=3$. What is M_{1000} approximately?
3. Find the fixed points and determine their stability for the dynamical system $a_{t+1}=a_{t}^{2}-1$.
4. Find stable fixed points for the dynamical system $N_{t+1}=\frac{2 N_{t}}{2 N_{t}+1}$.
5. Find the global maximum and minimum of the function $f(x)=$ $x-\sqrt{x}$ on the interval $[0,1]$.
6. Find the local maxima and minima of the function $f(x)=x^{3}-$ $3 x+2$.
7. What is global maximum of the function $f(t)=t^{2}(1-t)^{3}$ on the interval $[0,1]$?
8. Find global extrema of the function $f(x)=x^{3}-x^{2}$ on the interval $[-1,1]$.
9. Find two nonnegative numbers whose sum is 9 and so that the product of one number and the square of the other number is a maximum.
10. An open rectangular box with square base is to be made from 48 square feet of material. What dimensions will result in a box with the largest possible volume?
