1. Consider a discrete time dynamical system $b_{t+1}=b_{t}-2$ with the initial condition $b_{0}=500$. Write a closed-form expression for b_{t}.

Answer: $b_{t}=500-2 t$.
2. Consider a discrete time dynamical system $M_{t+1}=2 \sqrt{M_{t}}+3$ with the initial condition $M_{0}=3$. What is M_{1000} approximately?

Answer: $M_{1000} \approx 9$ (via cobwebbing).
3. Find the fixed points and determine their stability for the dynamical system $a_{t+1}=a_{t}^{2}-1$.

Answer: fixed points are $\frac{1 \pm \sqrt{5}}{2}$, both unstable.
4. Find stable fixed points for the dynamical system $N_{t+1}=\frac{2 N_{t}}{2 N_{t}+1}$.

Answer: the only stable fixed point is $N=\frac{1}{2}$.
5. Find the global maximum and minimum of the function $f(x)=$ $x-\sqrt{x}$ on the interval $[0,1]$.

Answer: the global maximum is 0 , attained at $x=0$ and $x=1$; the global minimum is $-\frac{1}{4}$, attained at $x=\frac{1}{4}$.
6. Find the local maxima and minima of the function $f(x)=x^{3}-$ $3 x+2$.

Answer: there are two critical points $x=-1$ and $x=1 ; x=-1$ is local maximum and $x=1$ is local minimum.
7. What is global maximum of the function $f(t)=t^{2}(1-t)^{3}$ on the interval $[0,1]$?

Answer: the global maximum is $\frac{108}{3125}$, attained at $t=\frac{2}{5}$.
8. Find global extrema of the function $f(x)=x^{3}-x^{2}$ on the interval $[-1,1]$.

Answer: the global maximum is 0 , attained at $x=0$ and $x=1$; the global minimum is -2 , attained at $x=-1$.
9. Find two nonnegative numbers whose sum is 9 and so that the product of one number and the square of the other number is a maximum.

Answer: $9=3+6$ and the maximum product is $3 \cdot 6^{2}=108$.
10. An open rectangular box with square base is to be made from 48 square feet of material. What dimensions will result in a box with the largest possible volume ?

Answer: the optimal size is $4 \times 4 \times 2$.

