Math 246, Review problems for Midterm II.

1. Consider a discrete time dynamical system $b_{t+1} = b_t - 2$ with the initial condition $b_0 = 500$. Write a closed-form expression for b_t .

Answer: $b_t = 500 - 2t$.

2. Consider a discrete time dynamical system $M_{t+1} = 2\sqrt{M_t} + 3$ with the initial condition $M_0 = 3$. What is M_{1000} approximately?

Answer: $M_{1000} \approx 9$ (via cobwebbing).

3. Find the fixed points and determine their stability for the dynamical system $a_{t+1} = a_t^2 - 1$.

Answer: fixed points are $\frac{1\pm\sqrt{5}}{2}$, both unstable.

4. Find stable fixed points for the dynamical system $N_{t+1} = \frac{2N_t}{2N_t+1}$.

Answer: the only stable fixed point is $N = \frac{1}{2}$.

5. Find the global maximum and minimum of the function $f(x) = x - \sqrt{x}$ on the interval [0, 1].

Answer: the global maximum is 0, attained at x = 0 and x = 1; the global minimum is $-\frac{1}{4}$, attained at $x = \frac{1}{4}$.

6. Find the local maxima and minima of the function $f(x) = x^3 - 3x + 2$.

Answer: there are two critical points x = -1 and x = 1; x = -1 is local maximum and x = 1 is local minimum.

7. What is global maximum of the function $f(t) = t^2(1-t)^3$ on the interval [0,1]?

Answer: the global maximum is $\frac{108}{3125}$, attained at $t = \frac{2}{5}$.

8. Find global extrema of the function $f(x) = x^3 - x^2$ on the interval [-1, 1].

Answer: the global maximum is 0, attained at x = 0 and x = 1; the global minimum is -2, attained at x = -1.

9. Find two nonnegative numbers whose sum is 9 and so that the product of one number and the square of the other number is a maximum.

Answer: 9 = 3 + 6 and the maximum product is $3 \cdot 6^2 = 108$.

10. An open rectangular box with square base is to be made from 48 square feet of material. What dimensions will result in a box with the largest possible volume?

Answer: the optimal size is $4 \times 4 \times 2$.