1. Find the derivative of $f(t)=\sin \left(k t^{2}+a t\right)$ assuming that a and k are constants.
2. Find the derivative of $f(x)=\frac{\tan (x)+x}{x+1}$.
3. Find the second derivative of $f(x)=x^{2} \ln (x)$.
4. Find the tangent line to $y=e^{x}+\ln (x+1)-\sin (x)$ at $x=0$.
5. Assume that $x^{3}+x y+y^{3}=4$. Find $\frac{d y}{d x}$.
6. Assume that $\sin (y)=x+y$. Find the second derivative of y with respect to x.
7. Find the tangent line to the curve $x^{4}+y^{3}=x+y$ at the point $(1,1)$.
8. Assume that $\ln (x+y-3)=y(x-1)$. Find $\frac{d x}{d t}$ when $x=1$ and $\frac{d y}{d t}=3$.
9. For which values of x the graph of function $f(x)=2 \ln (x+1)+x^{2}$ is concave up?
10. Consider the discrete time dynamical system $a_{n+1}=\frac{a_{n}}{0.5+a_{n}}$. Find the equilibria. Which of them are stable?
11. Let $N_{t+1}=\frac{3}{6-N_{t}}$ with $N_{0}=2$. What is N_{100} approximately?
12. Find the global maximum and minimum of $f(x)=x^{2}+x+1$ on the interval $[-1,1]$.
13. Find the critical points of $f(x)=x^{3}-2 x^{2}+x-3$ and determine their types (local maxima or minima).
14. Find the global maximum of $f(x)=x^{2} \sqrt{1-x}$ on the interval $0 \leq x \leq 1$.
15. A sheet of cardboard 3 ft by 4 ft will be made into a box by cutting equal-sized squares from each corner and folding up the four edges. What will be the dimensions of the box with largest volume?
16. Car B is 30 miles directly east of Car A and begins moving west at 90 mph . At the same moment car A begins moving north at 60 mph . What will be the minimum distance between the cars and at what time t does the minimum distance occur ?
17. Find the limit $\lim _{x \rightarrow \infty} \frac{3 x+2}{2 x-3}$ and determine how large should be the values of x in order for the output to be within 0.01 of the limit.
18. Find the limit $\lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3}$.
19. Find the limit $\lim _{x \rightarrow \infty} \frac{2 x^{3} \ln (x)-3 x^{2} e^{0.1 x}+7 e^{x / 11}}{2 x^{2} e^{x / 10}+6 x^{5} e^{x / 20}-99 \sqrt{x} \ln (x)^{10}}$.
20. Find the limit $\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sin (x)}$.
