Math 246, Review problems for the Final Exam.

1. Find the derivative of $f(t)=\sin \left(k t^{2}+a t\right)$ assuming that a and k are constants.

Answer: $f^{\prime}(t)=(2 k t+a) \cos \left(k t^{2}+a t\right)$.
2. Find the derivative of $f(x)=\frac{\tan (x)+x}{x+1}$.

Answer: $f^{\prime}(x)=\frac{\left(1+\sec ^{2}(x)\right)(x+1)-\tan (x)-x}{(x+1)^{2}}$.
3. Find the second derivative of $f(x)=x^{2} \ln (x)$.

Answer: $f^{\prime \prime}(x)=2 \ln (x)+3$.
4. Find the tangent line to $y=e^{x}+\ln (x+1)-\sin (x)$ at $x=0$.

Answer: $y=x+1$.
5. Assume that $x^{3}+x y+y^{3}=4$. Find $\frac{d y}{d x}$.

Answer: $\frac{d y}{d x}=-\frac{3 x^{2}+y}{x+3 y^{2}}$.
6. Assume that $\sin (y)=x+y$. Find the second derivative of y with respect to x.

Answer: $y^{\prime \prime}=\frac{\sin (y)}{(\cos (y)-1)^{3}}$.
7. Find the tangent line to the curve $x^{4}+y^{3}=x+y$ at the point $(1,1)$.

Answer: $y-1=-\frac{3}{2}(x-1)$.
8. Assume that $\ln (x+y-3)=y(x-1)$. Find $\frac{d x}{d t}$ when $x=1$ and $\frac{d y}{d t}=3$.

Answer: for $x=1$ and $\frac{d y}{d t}=3$ we have $\frac{d x}{d t}=\frac{3}{2}$.
9. For which values of x the graph of function $f(x)=2 \ln (x+1)+x^{2}$ is concave up?

Answer: $x>0$ (notice that the function is defined for $x>-1$).
10. Consider the discrete time dynamical system $a_{n+1}=\frac{a_{n}}{0.5+a_{n}}$. Find the equilibria. Which of them are stable?

Answer: fixed points are $0,0.5$. The point 0 is unstable and 0.5 is stable.
11. Let $N_{t+1}=\frac{3}{6-N_{t}}$ with $N_{0}=2$. What is N_{100} approximately?

Answer: $N_{100} \approx 3-\sqrt{6}$.
12. Find the global maximum and minimum of $f(x)=x^{2}+x+1$ on the interval $[-1,1]$.

Answer: the global maximum is 3 (attained at $x=1$) and the global minimum is $\frac{3}{4}$ (attained at $x=-\frac{1}{2}$).
13. Find the critical points of $f(x)=x^{3}-2 x^{2}+x-3$ and determine their types (local maxima or minima).

Answer: the critical points are 1 and $\frac{1}{3}$; the point 1 is a local minimum and the point $\frac{1}{3}$ is a local maximum.
14. Find the global maximum of $f(x)=x^{2} \sqrt{1-x}$ on the interval $0 \leq x \leq 1$.

Answer: the global maximum is $\frac{16}{25 \sqrt{5}}$ (attained at $x=\frac{4}{5}$).
15. A sheet of cardboard 3 ft by 4 ft will be made into a box by cutting equal-sized squares from each corner and folding up the four edges. What will be the dimensions of the box with largest volume ?

Answer: let $x=\frac{7-\sqrt{13}}{6} \approx .57$. Then the dimensions of the optimal box are $(4-2 x) \times(3-2 x) \times x$, that is $2.96 \times 1.96 \times .57$.
16. Car B is 30 miles directly east of Car A and begins moving west at 90 mph . At the same moment car A begins moving north at 60 mph . What will be the minimum distance between the cars and at what time t does the minimum distance occur ?

Answer: $t=\frac{3}{13} \approx .23=13.8$ minutes; the minimum distance is 16.64 miles.
17. Find the limit $\lim _{x \rightarrow \infty} \frac{3 x+2}{2 x-3}$ and determine how large should be the values of x in order for the output to be within 0.01 of the limit.

Answer: $\lim _{x \rightarrow \infty} \frac{3 x+2}{2 x-3}=1.5$; the values of the output are within 0.01 of 1.5 for $x>326.5$.
18. Find the limit $\lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3}$.

Answer: $\lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3}=\frac{1}{4}$.
19. Find the limit $\lim _{x \rightarrow \infty} \frac{2 x^{3} \ln (x)-3 x^{2} e^{0.1 x}+7 e^{x / 11}}{2 x^{2} e^{x / 10}+6 x^{5} e^{x / 20}-99 \sqrt{x} \ln (x)^{10}}$.

Answer: $\lim _{x \rightarrow \infty} \frac{2 x^{3} \ln (x)-3 x^{2} e^{0.1 x}+7 e^{x / 11}}{2 x^{2} e^{x / 10}+6 x^{5} e^{x / 20}-99 \sqrt{x} \ln (x)^{10}}=-\frac{3}{2}$.
20. Find the limit $\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sin (x)}$.

Answer: $\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sin (x)}=1$.

