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1. DIJKGRAAF–WITTEN INVARIANTS

In 1990, Dijkgraaf and Witten [1] proposed a new
approach to constructing invariants of closed topolog�
ical manifolds; for our purposes, it is convenient to
describe this approach as follows. Consider a finite
group G and its classifying space B = B(G). Let M be a
closed connected 3�manifold of dimension n ≥ 1. We
choose two base points, in M and in B, and consider
the set S = S(M, B) of all pointed (i.e., preserving the
base points) continuous maps M → B. We consider
these maps up to pointed homotopies. Note that S can
be naturally identified with the set Hom(π1(M), G) of
all homomorphisms of the group π1(M) to G. There�
fore, this set is finite.

Let U be a subgroup of the multiplicative group
U(1) of all complex numbers with absolute value 1.
Choose any element h in the group Hn(G; U) = Hn(B; U).
If M is oriented, then to each map f ∈ S we can assign
the value 〈f *(h), [M]〉 ∈ U of the element f *(h)
of Hn(M; U) at the fundamental class [M] of the man�
ifold M.

Definition 1. The Dijkgraaf–Witten invariant Z(M, h)
of M is defined by

The values of this invariant are complex numbers.
Determining the Dijkgraaf–Witten invariants

requires calculating and summing many terms, the
number of which exponentially increases with the first
Betti number of M.

In this paper, we consider only the special case
where n = 3 and both groups G and U have order 2 and
are identified with the group �2. For the classifying
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space B of �2 we can take the infinite�dimensional
projective space RP∞. Its cohomology ring with coeffi�
cients in U = �2 is very simple: this is the polynomial
ring in a variable α, which represents the unique non�
trivial element of the group H1(B; �2) = �2. In partic�
ular, the group H3(B; �2) contains only one nontrivial
element h = α3, too. In this situation, the value 〈f *(h),
[M]〉 belongs to �2, and the formula given above
acquires the form

and becomes applicable to nonorientable manifolds. If

H1(M; �2) = 0, then Z(M) = . In all other cases, the

number of terms in the above sum is even; therefore,
Z(M) is an integer.

2. THE ARF INVARIANT

Let V be a finite�dimensional vector space over the
field �2. Recall that a function q: V → �2 is said to be qua�
dratic if the pairing �q: V × V → �2 defined by �q(x, y) =
q(x + y) – q(x) – q(y), where x, y ∈ V, is bilinear. Cer�
tainly, �q is symmetric, and �q(0, 0) = 0. A function q is
said to be non�degenerate if the annihilator A of �q,
which consists of all x ∈ V such that �q(x, V) = �q(V, x)
= 0, is trivial, i.e., contains only 0. Apropos, any linear
function q: V → �2 is quadratic but degenerate,
because the annihilator of �q coincides with the entire
space V. This refers to any quadratic function on a
one�dimensional space. 

For a nonsingular quadratic function q: V → �2,
there always exists a basis a1, b1, …, ak, bk such that
�q(ai, aj) = �q(bi, bj) = 0 and �q(ai, bj) = δi, j for all i, j =
1, 2, …, k; here, δi, j is the Kronecker symbol.

Definition 2. The element Arf(q) of the group �2
defined by

is called the Arf invariant of q. 
It is well known that the Arf invariant does not

depend on the choice of the basis a1, b1, …, ak, bk. We
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need a slight generalization of this definition to the
case of a quadratic function q: V → �2 such that the
annihilator A ⊂ V of its bilinear pairing �q is nontrivial
and the restriction q|A of q is identically zero. If A ≠ V,
then any basis c1, …, cm of A can be extended to a basis
a1, b1, …, ak, bk, c1, …, cm of V so that �q (ai, aj) =
�q(bi, bj) = 0 and �q(ai, bj) = δi, j for all i, j = 1, 2, …, k.
Then q induces a nondegenerate quadratic function q':
V/A → �2, and we set Arf(q) = Arf(q'), i.e., use the same

formula Arf(q) = (ai)q(bi). If A = V, then we set

Arf(q) = 0. Note that if q|A is not identically zero, then

the value of (ai)q(bi) may depend on the choice of

the basis a1, b1, …, ak, bk, c1, …, cm, but we do not need
it in this case.

3. MAIN THEOREM

Let M be a closed 3�manifold. Consider the func�
tion QM: H1(M; �2) → �2 defined by QM(x) = 〈x3, [M]〉,
where x ∈ H1(M; �2), [M] is the fundamental class of
M, and x3 ∈ H3(M; �2) denotes the cube of x in the
sense of multiplication in cohomology. We claim that
QM is quadratic. To prove this, it suffices to note that,
for any x, y ∈ H1(M; �2), we have

and the rule �M(x, y) = 〈x2y + xy2, [M]〉 defines a bilin�
ear pairing on H1(M; �2). This follows from the obvi�
ous relation

which means linearity in the second argument and, by
symmetry, in the first.

Theorem 1. Let M be a closed connected 3�manifold,
and let A ⊂ H1(M; �2) be the annihilator of the bilinear
pairing �M corresponding to the function QM. If there exists
an element x ∈ A such that x3 ≠ 0, then Z(M) = 0. If there

are no such elements, then Z(M) = 2k + m – 1(–1 ,
where m is the dimension of A and k equals half the
dimension of the quotient space H1(M; �2)/A.

4. GAUSSIAN SUMS

Let V be a finite�dimensional vector space over �2,
and let q: V → �2 be a quadratic function. To this func�

tion we assign the integer σ(q) = . This

expression is a special case of a nonnormalized Gaus�
sian sum; see, e.g., [2]. The main property of such
sums is their multiplicativity. Suppose that a quadratic

q
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function q: V1 ⊕ V2 → �2 is composed of two quadratic
functions q1: V1 → �2 and q2: V2 → �2 by the rule
q(x1, x2) = q1(x1) + q2(x2). Then σ(q) = σ(q1)σ(q2). For
our purposes, Gaussian sums are useful for two rea�
sons. First, they can be calculated in terms of the Arf
invariants of the corresponding quadratic functions.
Secondly, the Gaussian sum of the above quadratic
function QM: H1(M; �2) → �2 on the cohomology of
any closed connected 3�manifold M is directly related
to the invariant Z(M). 

Lemma 1. Let q: V → �2 be a quadratic function on
a vector space V over �2, and let a1, b1, …, ak, bk, c1, …,
cm be a basis of V such that the vectors c1, …, cm generate
the annihilator of the pairing �q and, moreover, �q(ai, aj) =
�q(bi, bj) = 0 and �q(ai, bj) = δi, j for all i, j = 1, 2, …, k.

Then σ(q) = 2k + m(–1)Arf(q) 1 – q(cj)).

The proof is based on the fact that the pair (V, q) is
the direct sum of k + m quadratic functions obtained
by restricting q to the 2�spaces Vi = �2ai ⊕ �2bi for 1 ≤ i ≤
k and to the 1�spaces Cj = �2cj for 1 ≤ j ≤ m. 

Let us show that σ( ) = 2 · (–1 . Indeed,

the space Vi consists of the vectors 0, ai, bi, and ai + bi.

Therefore, σ( ) = (–1)0 + (–1  + (–1  +

(–1 , which, together with the relations q(ai +
bi) – q(ai) – q(bi) = �(ai, bi) = 1, gives 

The last relation is easy to verify: if at least one of the
values q(ai) and q(bi) equals 0, then both sides of the
relation are equal to 2, and if q(ai) = q(bi) = 1, then
both sides are equal to –2. Similarly, for the 1�space Cj

= {0, cj}, we have σ( ) = 1 + (–1  = 2 · (1 –

q(cj)), because both sides of the last equality equal 2 if
q(cj) = 0 and 0 if q(cj) = 1. Using the multiplicativity of
Gaussian sums mentioned above, we obtain

5. IDEA OF THE PROOF 
OF THE MAIN THEOREM

First, we show that Z(M) = σ(QM). Let f: M → B

be any map. Then
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where the first relation holds because f * preserves
multiplication in cohomology and the second, by the
definition of QM. Note that the sets S(M, B) and
H1(M; �2), over which the summation in the expres�

sions for Z(M) and σ(QM) is performed, admit a nat�

ural identification by taking each map f ∈ S(M, B) to
the elements x = f*(α) of the group H1(M; �2). Thus,
the expressions

are the sums of the same terms, and therefore they are
equal.

Now, suppose that there exists an element x of
the annihilator A of the pairing �M such that QM(x) = 1.
Then we can take this element for, say, the first basis
vector c1 of A. Since QM(c1) = 1 and the difference (1 –
QM(c1)) = 0 is contained in the expression for σ(QM) as
one of the factors, it follows that Z(M) = 0 by Lemma 1.

If there are no such elements, then Z(M) = σ(QM) =

2k + m – 1(–1 , where m = (A) and k equals

half the dimension of the coset space H1(M; �2)/A.
Let us say a few words about the practical calcula�

tion of the Dijkgraaf–Witten invariants. Let M be a
closed orientable 3�manifold. It is well known (see,
e.g., [3]) that, for all x, y ∈ H1(M; �2), we have x2y +
xy2 = wxy, where w = w1(M) ∈ H1(M; �2) is the first
Stiefel–Whitney class of M. Since M is orientable, it
follows that w = 0. Therefore, �M(x, y) ≡ 0 and the anni�
hilator A of �M coincides with the group H1(M; �2);
thus, Arf(QM) = 0, k = 0, and m = (H1(M; �2)).

By Theorem 1 we conclude that if there exists x ∈

H1(M; �2) such that x3 ≠ 0, then Z(M) = 0, and if there
are no such elements, then Z(M) = 2m – 1.

Consider an example. It is known that the
cohomology group H1(Lp, q; �2) of the lens space Lp, q
contains an element with nonzero cube if and only if p
is even but not divisible by 4; see [4, 5]. Therefore, it
follows from the above considerations that

This extends the results of [6] concerning the cal�
culation of Dijkgraaf–Witten invariants for lens spaces
of the type L(p, 1) to the case of any lens spaces.
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