On the Structure of Brauer's Centralizer Algebras
Author(s): Hans Wenzl
Source: Annals of Mathematics, Jul., 1988, Second Series, Vol. 128, No. 1 (Jul., 1988), pp. 173-193
Published by: Mathematics Department, Princeton University
Stable URL: https://www.jstor.org/stable/1971466

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

On the structure of Brauer's centralizer algebras

By Hans Wenzl ${ }^{\dagger}$

In his paper [Br], R. Brauer defined algebras motivated by the following basic problem of classical invariant theory: Let G be a group of linear transformations on a vector space V and let $\pi^{\otimes f}$ be the representation of G on $V^{f}=V \otimes \cdots \otimes V$, the f-th tensor power of V. Then the question is how does $\pi^{\otimes f}$ decompose into irreducible representations of G. One way of studying this problem is to consider the algebra $B_{f}(G)$ of centralizers, i.e. the algebra of linear maps y on V^{f} such that $y \pi^{\otimes f}(g)=\pi^{\otimes f}(g) y$ for all $g \in G$. This approach was successful for $G=\mathrm{Gl}(n)$, where $B_{f}(\mathrm{Gl}(n))$ is a quotient of $k S_{f}$, the group algebra of the symmetric group. So the decomposition of $\pi^{\otimes f}$ was obtained from knowledge about that algebra.

In this paper, we will study a sequence of algebras, denoted by $D_{f}(n)$ which play a similar role for other classical Lie groups. More precisely, if G is the orthogonal group $\mathrm{O}(n)$ or the symplectic group $\mathrm{Sp}(2 m)$, the corresponding $B_{f}(G)$'s are quotients of Brauer's $D_{f}(n)$ and $D_{f}(-2 m)$ respectively (see [HW1], Theorem (2.10)). If $n>f, D_{f}(n)$ is semisimple (which in this paper means that it is a direct sum of full matrix algebras over k) and its structure does not depend on n. In the other case, however, $D_{f}(n)$ is no longer semisimple, which makes it difficult to determine the relevant semisimple quotient. In fact, H. Weyl was unable to use this "somewhat enigmatic algebra" directly in the determination of the decomposition of $\pi^{\otimes f}$ and therefore was obliged to resort to different methods still considered "mysterious" by other authors (see [Wy], V. 5 and p. 159 and [ABP]).

The algebras $D_{f}(n)$ have been studied by various authors mainly using combinatorial methods (see [Be], [Bw], [EK], [HWl-3] and [S]). Based on their results and extensive computations, P. Hanlon and D. Wales conjectured that

[^0]$D_{f}(n)$ is semisimple for all $f \in \mathbf{N}$ if n is not an integer. We will prove their conjecture in this paper, thereby also giving a simple inductive procedure to determine the decomposition of $D_{f}(n)$ into full matrix rings. Moreover, if n is an integer, we completely determine the structure of the semisimple quotient of $D_{f}(n)$ in which Brauer and Weyl were interested.

The main tools for proving these results come from the study of subfactors of type II_{1} von Neumann factors and its recent applications in knot theory (see [J1,2], [Wn] and [BW]). Similar methods were already used to determine the structure of an algebra derived from recently discovered link invariants (see [BW]). These algebras contain as limiting cases Brauer's algebras $D_{f}(n)$. The connection with link invariants, however, will not be explored in this paper. Therefore we will proceed directly from Brauer's original definitions.

Let us briefly explain the main technical devices which we shall employ. We single out a special element of $D_{f+1}(n)$, denoted by e_{f} (which comes from the contraction on the f-th and $(f+1)$-th factor of V^{f+1}), to define a map (which is usually called a conditional expectation) from $D_{f}(n)$ onto $D_{f-1}(n)$. Via this conditional expectation, we obtain a trace τ_{n} with the following remarkable property: If its restriction to $D_{f}(n)$ is nondegenerate, then $D_{f+1}(n)$ is semisimple. In this case the structure of the ideal generated by e_{f} can be determined by a simple inductive procedure from the structure of $D_{f-1}(n)$ and $D_{f}(n)$. Such constructions were first used in V. Jones' paper [J1] on subfactors for finite von Neumann algebras and were extended in [Wn], [BW] and [GHJ].

Using the representation theory of the odd dimensional orthogonal groups, we provide an easy criterion to determine whether τ_{n} is nondegenerate or not. We only have to evaluate special polynomials derived from Weyl's dimension formulas at $x=n$ (see [EK]). The conjecture of Hanlon and Wales follows then from the fact that all these polynomials have integer roots.

After factoring over the annihilator of τ_{n}, our methods can also be extended to the case when n is an integer. Using essentially the same inductive procedure as in the semisimple case, we determine the structure of a particularly interesting quotient of $D_{f}(n)$. If n is a positive or an even negative integer, it coincides with $B_{f}(\mathrm{O}(n))$ in the first case and with $B_{f}(\mathrm{Sp}(-n))$ in the second case. Similar characterizations can also be found for the other cases.

I would like to thank Vaughan Jones for bringing the preprints of Hanlon and Wales to my attention.

1. Adjoining idempotents to semisimple algebras

We consider extensions for a pair of (finite dimensional) semisimple algebras $A \subset B$, obtained by adjoining an idempotent e which is closely related to a
conditional expectation from B onto A. For convenience the term semisimple will be used in this paper as a synonym for a direct sum of full matrix algebras. The letter k will always denote a field of characteristic 0 and $k(x)$ will denote the field of rational functions over k.

Let $M_{n}(k)$ (or just M_{n}) denote the algebra of all $n \times n$ matrices over k. So if A and B are semisimple algebras (in our restricted sense), we can write them as $A=\oplus A_{i}$ and $B=\oplus B_{j}$ with $A_{i} \cong M_{a_{i}}(k)$ and $B_{j} \cong M_{b_{j}}(k)$ for appropriate natural numbers a_{i} and b_{j}. If A is a subalgebra of B, any simple B_{j} module is also an A module. Let $g_{i j}$ be the number of simple A_{i} modules in its decomposition into simple A modules. The matrix $G=\left(g_{i j}\right)$ is called the inclusion matrix for $A \subset B$.

The inclusion of A in B is conveniently described by a so-called Bratteli diagram. This is a graph with vertices arranged in 2 lines. In one line, the vertices are in one-to-one correspondence with the minimal direct summands A_{i} of A, in the other one with the summands B_{j} of B. Then a vertex corresponding to A_{i} is joined with a vertex corresponding to B_{j} by $g_{i j}$ edges. If A and B have the same identity, there is an easy way of computing the square root b_{j} of the dimension of B_{j}. We just add up all the square roots of the dimensions of the A_{i} 's to which B_{j} is joined by edges (with multiplicities).

We can also interpret the numbers $g_{i j}$ in the following way: Let p_{i} be a minimal idempotent of A_{i} and let $p_{i}=\sum q_{m}$, where the q_{m} 's are mutually orthogonal minimal idempotents of B. This decomposition is not unique in general. But for any such decomposition there will be exactly $g_{i j}$ idempotents in B_{j}. As an easy consequence we obtain that

$$
\begin{equation*}
p_{i} B p_{i} \cong \underset{j}{\oplus} M_{\mathrm{g}_{i j}} . \tag{1}
\end{equation*}
$$

We will describe, as an example, the inclusion of $k S_{f-1}$ in $k S_{f}$, where $k S_{f-1}$ and $k S_{f}$ are the group algebras of the corresponding symmetric groups. Let, for $f \geq 0, \Lambda_{f}$ be the set of all Young diagrams with f nodes. We will write a specific Young diagram λ as an m-tuple $\left[\lambda_{1}, \ldots, \lambda_{m}\right.$] where λ_{i} is the number of nodes in the i-th row. The empty Young diagram in Λ_{0} is denoted by [0]. It is well-known that the simple components $k S_{f, \lambda}$ of S_{f} are labeled by Young diagrams λ with f nodes. So the Bratteli diagram for $k S_{f-1} \subset k S_{f}$ is obtained in the following way:

We draw for each $\mu \in \Lambda_{f-1}$ and each $\lambda \in \Lambda_{f}$ a vertex and connect two vertices by an edge if and only if the corresponding μ is obtained from the corresponding λ by taking away one node from λ. The inclusion diagram for $k S_{2} \subset k S_{3}$ is shown in the upper half of Figure 1 (with $\left[1^{m}\right]=[1, \ldots, 1]$ (m times)).

Figure 1

An important role will be played by traces, i.e. functionals tr: $B \rightarrow k$ such that $\operatorname{tr}(a b)=\operatorname{tr}(b a)$ for all $a, b \in B$. As there is up to scalar multiples only one trace on $M_{n}(k)$, any trace tr on $B=\oplus B_{j}$ is completely determined by a vector $\left(t_{j}\right)$, where $t_{j}=\operatorname{tr}\left(p_{j}\right)$ and p_{j} is a minimal idempotent of B_{j}. A trace tr on B is called nondegenerate if for any $b \in B$ there is a $b^{\prime} \in B$ such that $\operatorname{tr}\left(b b^{\prime}\right) \neq 0$. It is easy to check that tr is nondegenerate if and only if $t_{j} \neq 0$ for each j.

Let us recall that if tr is a nondegenerate trace on B, the map $b \in B \mapsto \operatorname{tr}(b \cdot) \in B^{*}$ is an isomorphism between B and its dual B^{*} (where as usual $\operatorname{tr}(b \cdot)$ denotes the map $x \mapsto \operatorname{tr}(b x))$. Let tr be nondegenerate on both A and B. Using the isomorphism above for A and A^{*}, we obtain for every $b \in B$ a necessarily unique $\varepsilon_{A}(b) \in A$ such that $\operatorname{tr}(b \cdot)_{\mid A}=\operatorname{tr}\left(\varepsilon_{A}(b) \cdot\right)_{\mid A}$. The linear map $\varepsilon_{A}: B \rightarrow A, b \rightarrow \varepsilon_{A}(b)$ is called the trace-preserving conditional expectation from B onto A, where the element $\varepsilon_{A}(b) \in A$ is uniquely determined by the equation

$$
\begin{equation*}
\operatorname{tr}\left(\varepsilon_{A}(b) a\right)=\operatorname{tr}(b a) \quad \text { for all } a \in A . \tag{2}
\end{equation*}
$$

We obtain from this equation and the faithfulness of tr the following properties of ε_{A} :
(a) $\varepsilon_{A}\left(a_{1} b a_{2}\right)=a_{1} \varepsilon_{A}(b) a_{2}$ for all $a_{1}, a_{2} \in A$ and $b \in B$ and in particular $\varepsilon_{A}(a)=a$ for all $a \in A$.
(b) ε_{A} is nondegenerate; i.e. for all $0 \neq b \in B$ there are $b_{1}, b_{2} \in B$ such that $\varepsilon_{A}\left(b_{1} b\right) \neq 0$ and $\varepsilon_{A}\left(b b_{2}\right) \neq 0$.

We will moreover assume that B is contained in an algebra C and that there is an element $e \in C$ such that
(a) $e^{2}=e$,
(b) $e b e=e \varepsilon_{A}(b)=\varepsilon_{A}(b)$ for all $b \in B$,
(c) The map $a \in A \mapsto a e$ is an injective homomorphism with $1 e=e$.

An important example for such a situation can be obtained in the following way (see [J1], §3.1): Let B be represented via left regular representation on itself. For convenience, the isomorphic image of B in this representation will also be denoted by B. If B is regarded as representation space, it will be denoted by B_{ξ} and its elements by b_{ξ} with $b \in B$. We take as C the set $L\left(B_{\xi}\right)$ of all linear maps on B_{ξ}. As in [JI] we define an idempotent e_{A} on B_{ξ} by $e_{A} b_{\xi}=\varepsilon_{A}(b)_{\xi}$. It follows from this definition that

$$
\left(e_{A} b e_{A}\right) b_{\xi}^{\prime}=\left(e_{A} b\right) \varepsilon_{A}\left(b^{\prime}\right)_{\xi}=\left(\varepsilon_{A}(b) e_{A}\right) b_{\xi}^{\prime}=\left(e_{A} \varepsilon_{A}(b)\right) b_{\xi}^{\prime} \text { for all } b^{\prime} \in B
$$

Using again (2) (a) we show that e_{A} is an idempotent and that $\left(a e_{A}\right) b_{\xi}=\left(e_{A} a\right) b_{\xi}$ for all $a \in A$ and $b \in B$. Finally, the equation $\left(a e_{A}\right) 1_{\xi}=a_{\xi}$ shows that the map $a \in A \mapsto a e_{A}$ is injective.

Lemma (1.1). (a) Any element $x \in\langle B, e\rangle$ can be written as a linear combination of elements of B and elements of the form $b_{1} e b_{2}$ with $b_{1}, b_{2} \in B$. In particular, any element of the ideal generated by e can be written as a linear combination of elements of the form $b_{1} e b_{2}$.
(b) ε_{A} can be extended to $\langle B, e\rangle$ such that exe $=\varepsilon_{A}(x) e$ for every $x \in$ $\langle B, e\rangle$. This extension is unique in the following sense: If e^{\prime} is another idempotent in some extension C^{\prime} of B with properties (3)(a)-(c) and if x^{\prime} is the element in $\left\langle B, e^{\prime}\right\rangle$ obtained by replacing every occurrence of e in x by e^{\prime}, then $\varepsilon_{A}(x)=\varepsilon_{A}\left(x^{\prime}\right)$.
(c) If $x \in\langle B, e\rangle$, there exist unique elements b and b^{\prime} in B such that $x e=b e$ and $e x=e b^{\prime}$.
(d) Let $C=L\left(B_{\xi}\right)$ and let $x \in\left\langle B, e_{A}\right\rangle$. Then $\left(e_{A} x\right) b_{\xi}=\left(\varepsilon_{A}(x b)\right)_{\xi}$ and $x=0$ if and only if $\varepsilon_{A}\left(b_{1} x b_{2}\right)=0$ for all $b_{1}, b_{2} \in B$.

Proof. (a) This is an immediate consequence of (3)(a).
(b) By (a) it is enough to show the statement for $x=b_{1} e b_{2}$ with $b_{1}, b_{2} \in B$. But then exe $=e b_{1} e b_{2} e=\varepsilon_{A}\left(b_{1}\right) \varepsilon_{A}\left(b_{2}\right) e$. Hence $\varepsilon_{A}(x)$ is uniquely determined by (3)(c). By the same computations, we obtain $\varepsilon_{A}\left(b_{1} e^{\prime} b_{2}\right)=\varepsilon_{A}\left(b_{1}\right) \varepsilon_{A}\left(b_{2}\right)$ for any e^{\prime} with (3)(a)-(c).
(c) Again we can assume that $x \in B$ or $x=b_{1} e b_{2}$ with $b_{1}, b_{2} \in B$. In the second case we have $x e=b_{1} \varepsilon_{A}\left(b_{2}\right) e$. If $\tilde{b} \in B$ such that $\tilde{b} e=x e$, we have for all elements $c \in B, 0=e c(\tilde{b}-b) e=\varepsilon_{A}(c(\tilde{b}-b)) e$. Hence $\tilde{b}=b$ as ε_{A} is nondegenerate.
(d) The proof of the first statement is an easy computation. If $x \neq 0$, there exists $b_{2} \in B$ such that $x b_{2 \xi}=b_{\xi}^{\prime} \neq 0$. As ε_{A} is nondegenerate, there is $b_{1} \in B$ such that $\varepsilon_{A}\left(b_{1} b^{\prime}\right) \neq 0$. Hence $\varepsilon_{A}\left(b_{1} x b_{2}\right)_{\xi}=e_{A} b_{1}\left(x b_{2}\right)_{\xi}=\varepsilon_{A}\left(b_{1} b^{\prime}\right)_{\xi} \neq 0$. The other direction is trivial.

Recall that we can identify B with a direct sum of full matrix algebras. Using the transposition of matrices, we obtain an involution *: $B \rightarrow B, b \rightarrow b^{*}$
such that $(a b)^{*}=b^{*} a^{*}$ for all $a, b \in B$ (where ${ }^{*}$ depends on the matrix representation of B). The involution * defines a ("right regular") representation ρ of B on B_{ξ} by $\rho(b) b_{\xi}^{\prime}=\left(b^{\prime} b^{*}\right)_{\xi}$. If $J: B_{\xi} \rightarrow B_{\xi}$ is defined by $J b_{\xi}=b_{\xi}^{*}$, it is easy to check that $J \rho(b) J$ is equal to left multiplication by b. So ρ is equivalent to the left regular representation of B.

We will moreover assume in the following that * also leaves A invariant, i.e. $a^{*} \in A$ for all $a \in A$. This is possible as A is isomorphic to a direct sum of full matrix algebras. Using J as above, one shows that $\rho_{\mid A}$ is equivalent to the representation of A on B_{ξ} given by left multiplication.

We can now completely determine the structure of the extension $\left\langle B, e_{A}\right\rangle$ of B. If A and B are C^{*} algebras, this result follows from [J1, §3.2]. A comprehensive treatment of this and related questions can be found in [GHJ].

Proposition (1.2). (a) Let A, B, tr and ε_{A} be as above. Then the algebra $\left\langle B, e_{A}\right\rangle$ is isomorphic to the centralizer of A on B_{ξ}. In particular, it is semisimple.
(b) There is a one-to-one correspondence between the simple components of A and $\left\langle B, e_{A}\right\rangle$ such that if $p \in A_{i}$ is a minimal idempotent, $p e_{A}$ is a minimal idempotent of $\left\langle B, e_{A}\right\rangle_{i}$. Under this correspondence, the inclusion matrix for $B \subset\left\langle B, e_{A}\right\rangle$ is the transposed G^{t} of the inclusion matrix for $A \subset B$.
(c) $\left\langle B, e_{A}\right\rangle=B e_{A} B$.

Proof. (a) By the remarks above it is enough to show that $\left\langle B, e_{A}\right\rangle$ is isomorphic to the centralizer $\rho(A)^{\prime}$ of $\rho(A)$. By (2)(a), we have

$$
e_{A} \rho(a) b_{\xi}=\left(\varepsilon_{A}(b) a^{*}\right)_{\xi}=\rho(a) e_{A} b_{\xi} \quad \text { for all } a \in A \text { and } b \in B
$$

So $\left\langle B, e_{A}\right\rangle$ and its double centralizer $\left\langle B, e_{A}\right\rangle^{\prime \prime}$ are contained in $\rho(A)^{\prime}$. On the other hand, it is well-known that if a linear operator x on B_{ξ} commutes with B, it is right multiplication by the element $b \in B$, uniquely determined by $x 1_{\xi}=b_{\xi}$. Note that $\left(e_{A} b\right) 1_{\xi}=\varepsilon_{A}(b)_{\xi}$ is equal to $\left(b e_{A}\right) 1_{\xi}=b_{\xi}$ only if $\varepsilon_{A}(b)=b$, i.e. if $b \in A$. So x is in the centralizer of $\left\langle B, e_{A}\right\rangle$ only if $x=\rho\left(b^{*}\right) \in \rho(A)$. Taking centralizers, we obtain from this $\left\langle B, e_{A}\right\rangle^{\prime \prime} \supset \rho(A)^{\prime}$. By Jacobson's density theorem, (a) follows as soon as we have shown that $\left\langle B, e_{A}\right\rangle$ is semisimple.

Let $x \in \operatorname{rad}\left(\left\langle B, e_{A}\right\rangle\right)$ be in the radical of $\left\langle B, e_{A}\right\rangle$. If $x \neq 0$, there are $b_{1}, b_{2} \in B$ such that $\varepsilon_{A}\left(b_{1} x b_{2}\right) \neq 0$ by Lemma (1.1)(d). But then $0 \neq e_{A} b_{1} x b_{2} e_{A}$ $=\varepsilon_{A}\left(b_{1} x b_{2}\right) e_{A} \in \operatorname{rad}\left(\left\langle B, e_{A}\right\rangle\right)$ and therefore also $\varepsilon_{A}\left(b_{1} x b_{2}\right) e_{A} \in \operatorname{rad}\left(A e_{A}\right)$. As $A e_{A} \cong A$, it follows that $0 \neq \varepsilon_{A}\left(b_{1} x b_{2}\right) \in \operatorname{rad}(A)$, a contradiction to A being semisimple.
(b) If p is a minimal idempotent of A, it follows from (3)(b) that $p e_{A} x p e_{A}$ is a multiple of $p e_{A}$ for any $x \in\left\langle B, e_{A}\right\rangle$. Hence $p e_{A}$ is a minimal idempotent in $\left\langle B, e_{A}\right\rangle$. Obviously the centers of $\rho(A)$ and $\left\langle B, e_{A}\right\rangle=\rho(A)^{\prime}$ are the same. So, by the remarks above, $z \mapsto J z J$ provides a one-to-one correspondence between
the centers of A, represented on B_{ξ} by left multiplication, and of $\left\langle B, e_{A}\right\rangle$. Moreover, if z is the minimal central idempotent of A with $z p \neq 0$, also $\left(e_{A} p J J J\right) z_{\xi}=\varepsilon_{A}(p)_{\xi}=p_{\xi} \neq 0$. The statement about the inclusion matrix for $B \subset\left\langle B, e_{A}\right\rangle^{\prime \prime}$ follows from [Bou, §3, ex. 17] (see also [J1, (3.2.3)].

For (c), we note that $z e_{A} \neq 0$ for any minimal central idempotent of $\left\langle B, e_{A}\right\rangle$ by (b). Hence the two-sided ideal generated by e_{A} has to be the whole algebra. The rest follows from Lemma (1.1)(a).

The structure of $\left\langle B, e_{A}\right\rangle$ can now be easily determined by just reflecting the Bratteli diagram for $A \subset B$ about the line of B and then adding up the dimensions. Figure 1 shows the structure of $\left\langle B, e_{A}\right\rangle$ for our example $k S_{2} \subset k S_{3}$.

The next theorem shows that the special case treated in Proposition (1.2) is the "smallest" algebra generated by B and a projection e with properties (a)-(c) (see also [Wn, Prop. (1.2)] for A and B finite dimensional C^{*} algebras). A similar proof appears in [BW, Th. 3.5].

Theorem (1.3). Let $A \subset B$ be (finite dimensional) semisimple algebras and let tr be a nondegenerate trace on B such that also its restriction to A is nondegenerate. Let ε_{A} be the trace-preserving conditional expectation onto A and let e be as in (3). Then $\langle B, e\rangle$ is a direct sum of full matrix algebras, which decomposes as

$$
\langle B, e\rangle \cong\left\langle B, e_{A}\right\rangle \oplus \tilde{B},
$$

where $\left\langle B, e_{A}\right\rangle$ is as in Proposition (1.2) and \tilde{B} is isomorphic to a subalgebra of B. In particular, the ideal generated by e is isomorphic to the semisimple algebra $\left\langle B, e_{A}\right\rangle$.

Proof. As already mentioned we will not distinguish in notation between $B \subset C$ and the image of B acting on B_{ξ} by left regular representation. Let $\Phi: B \cup\{e\} \rightarrow L\left(B_{\xi}\right)$ be defined by $\Phi(b)=b$ for $b \in B$ and $\Phi(e)=e_{A}$. Obviously, Φ extends to a homomorphism from $\langle B, e\rangle$ onto $\left\langle B, e_{A}\right\rangle$, provided it is well-defined. Let $x \in\langle B, e\rangle$ with $x=0$. Then $e b_{1} x b_{2} e=\varepsilon_{A}\left(b_{1} x b_{2}\right) e=0$ for $b_{1}, b_{2} \in B$. By Lemma (1.1)(b), we also have $\varepsilon_{A}\left(b_{1} \Phi(x) b_{2}\right)=0$ for all $b_{1}, b_{2} \in$ B; hence $\Phi(x)=0$ by Lemma (1.1)(d).

On the other hand, if $x \in \operatorname{ker} \Phi$ and $b_{2} \in B$, there exists a unique $b \in B$ such that ($x b_{2}$) $e=b e$ by Lemma (1.1)(c). By Lemma (1.1)(b) and (d), we have for any $b_{1} \in B$ that $\varepsilon_{A}\left(b_{1} x b_{2}\right)=\varepsilon_{A}\left(b_{1} \Phi(x) b_{2}\right)=0$. As ε_{A} is nondegenerate, $b=0$ and $x b_{2} e=0$. Similarly, we also show that $e b_{1} x=0$ for any $b_{1} \in B$.

So if $x \in \operatorname{ker} \Phi \cap B e B, x$ is annihilated by both $\operatorname{ker} \Phi$ and $B e B$. Note that by (3)(b), BeB $=\langle e\rangle$, the ideal generated by e and that $\Phi(B e B)=\left\langle B, e_{A}\right\rangle$ by Lemma (1.1)(a) and Proposition (1.2). Hence BeB and $\operatorname{ker} \Phi$ generate $\langle B, e\rangle$ and therefore $x=0$. In particular, $B e B$ is isomorphic to $\left\langle B, e_{A}\right\rangle$. Obviously, the
quotient $\langle B, e\rangle / B e B$ is generated by the image of B; hence it is also semisimple. From this follows the general statement.

2. Brauer's algebras

We will first define Brauer's algebras D_{f} over $k(x)$. For $f=0, D_{0}=k(x)$. For $f>0$, a linear basis of the $k(x)$ algebra D_{f} is given by graphs with f edges and $2 f$ vertices, arranged in 2 lines of f vertices each. In these graphs each edge belongs to exactly 2 vertices and each vertex belongs to exactly one edge. So an example for a graph in D_{4} would be

It is easy to see that we have $2 f-1$ possibilities to join the first vertex with another one, then $2 f-3$ possibilities for the next one and so on. So the dimension of D_{f} is $1 \cdot 3 \cdot 5 \ldots(2 f-1)$. To define the multiplication in D_{f}, it is enough to define the product $a b$ for 2 graphs a and b. This is done similarly as with braids by the following rule.
(a) Draw b below a.
(b) Connect the i-th upper vertex of b with the lower i-th vertex of a.
(c) Let d be the number of cycles in the new graph obtained in (b) and let c be this graph without the cycles. Then $a b=x^{d} c$.

We will later need the following examples: Let e_{i} and g_{i} denote the graphs

and

$$
i \quad i+1
$$

Then it is easy to check by pictures (see Figure 2) that

$$
\begin{equation*}
e_{i}^{2}=x e_{i} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{i} e_{i-1} e_{i}=e_{i} \text { and } e_{i-1} e_{i} e_{i-1}=e_{i-1} . \tag{5}
\end{equation*}
$$

$$
e_{i}^{2}=x e_{i}
$$

\longrightarrow

\qquad

Figure 2

We will call an edge horizontal if it joins 2 vertices in the same row. Note that there are as many horizontal edges in the upper row as there are in the lower one. Whenever a graph p has no horizontal edges, it can be regarded as a permutation π connecting the i-th lower vertex to the $\pi(i)$-th upper vertex. It is easy to check that the multiplication of graphs is compatible with the composi-
tion of permutations under this identification. We will therefore refer to graphs without horizontal lines as permutation graphs or just as permutations. So, obviously, D_{f} contains $k(x) S_{f}$ as a subalgebra. We also remark that for any graph $b \in D_{f}$ and a permutation graph p the graph $b p$ is obtained by permuting the vertices of the lower row of b by π^{-1} and $p b$ is the graph obtained by permuting the vertices of the upper row of b by π.

We finally remark that D_{f} can be identified with the subalgebra of D_{f+1} spanned linearly by all graphs with a vertical edge on their right hand sides.

The k algebra $D_{f}(n)$ has a linear basis labeled by the same graphs. The multiplication is defined as in D_{f} except that every occurrence of x is replaced by n. The relationship between D_{f} and $D_{f}(n)$ will be studied in Lemma (2.3). As we will have to divide by our parameter n later, we will always assume $n \neq 0$ even though $D_{f}(0)$ is well-defined.

Most of the following results can also be obtained from [BW], Lemma (3.1) and the proof of Theorem (3.7) in connection with Section 5. We prove them here directly without using generators and relations or link invariants.

Proposition (2.1). (a) Any graph $d \in D_{f}$ is either already in D_{f-1} or it can be written in the form $a \chi b$ with $a, b \in D_{f-1}$ and $\chi \in\left\{g_{f-1}, e_{f-1}\right\}$. In particular, $\left\{e_{1}, \mathrm{~g}_{1}, \ldots, e_{f-1}, \mathrm{~g}_{f-1}\right\}$ generate D_{f} as an algebra.
(b) The ideal generated by e_{f-1} coincides with the linear span I_{f} of graphs containing horizontal edges. Every graph $b \in I_{f}$ can be written as $b=b_{1} e_{f-1} b_{2}$ with $b_{1}, b_{2} \in D_{f-1}$. So $I_{f}=\left\langle e_{f-1}\right\rangle$ is contained in the algebra generated by D_{f-1} and e_{f-1}.
(c) $D_{f} / I_{f} \cong k(x) S_{f}$.
(d) The same statements hold for $D_{f}(n)$ and the ideal $I_{f}(n) \subset D_{f}(n)$ generated by graphs containing horizontal edges (with x replaced by n).

Proof. (a) Let b be a graph in D_{f} which is not in D_{f-1}. We have to consider 3 cases, depending on whether the last 2 vertices belong to two, one or no horizontal edge. We will consider the case with one horizontal edge in detail. It is easy to see that for appropriate permutations p_{1} and p_{2} in D_{f-1} the last six vertices of $p_{1} b p_{2}$ are connected by edges in one of the following ways.

Let us assume the first case. Then $p_{1} b p_{2}=b^{\prime} e_{f-1} e_{f-2}$ with $b^{\prime} \in D_{f-3}$. But then

$$
b=\left(p_{1}^{-1} b^{\prime}\right) e_{f-1}\left(e_{f-2} p_{2}^{-1}\right)
$$

has the desired form.
In the other 2 cases, it is easy to check that there are permutations $p_{1}, p_{2} \in D_{f-1}$ and an element $b^{\prime} \in D_{f-2}$ such that $p_{1} b p_{2}=b^{\prime} g_{f-1}$ if the edges belonging to the last two vertices are not horizontal and $p_{1} b p_{2}=b^{\prime} e_{f-1}$ if the last two vertices belong to two horizontal edges. Again, we only need to solve for b to show the claim.
(b) It is easy to show (see also the remark after (5)) that the product of two graphs contains at least as many horizontal lines as either of the graphs. So I_{f} is an ideal. We prove the second statement of (b) by induction on f. Let $b \in D_{f}$ be a graph containing at least one horizontal line. If $b \in D_{f-1}$, then, by the induction assumption and (5),

$$
b=b_{1} e_{f-2} b_{2}=\left(b_{1} e_{f-2}\right) e_{f-1}\left(e_{f-2} b_{2}\right)
$$

with $b_{1}, b_{2} \in D_{f-2}$. Otherwise, we can assume by (a) that $b=b_{1} \chi b_{2}$ with $b_{1}, b_{2} \in D_{f-1}$ and $\chi \in\left\{g_{f-1}, e_{f-1}\right\}$. If $\chi=g_{f-1}$, either b_{1} or b_{2} has to be in I_{f-1}. Let us assume $b_{1} \in I_{f-1}$. Then $b_{1}=b_{1,1} e_{f-2} b_{1,2}$ with $b_{1,1}, b_{1,2} \in D_{f-2}$. Hence $b=b_{1,1} e_{f-2} g_{f-1} b_{1,2} b_{2}$ as g_{f-1} commutes with every element of D_{f-2}. But then it can be checked easily by drawing the graphs that

$$
e_{f-2} g_{f-1}=e_{f-2} e_{f-1} g_{f-2}
$$

The case $b_{2} \in I_{f-1}$ is similar.
(c) Just note that D_{f} decomposes as a vector space into the direct sum of the span of the permutation graphs and I_{f}.
(d) We can use the same proofs for $D_{f}(n)$ as in (a)-(c).

In the next proposition we will construct conditional expectations and traces, which will relate Brauer's algebras to the concepts of Section 1.

Proposition (2.2). Let the notation be as in Proposition (2.1).
(a) For each $b \in D_{f}$ there exists a unique $\varepsilon_{f-1}(b) \in D_{f-1}$ such that $e_{f} b e_{f}=x \varepsilon_{f-1}(b) e_{f}$ and $\varepsilon_{f-1}(b)=b$ for $b \in D_{f-1}$.
(b) There exists a linear functional τ on D_{f} defined inductively by $\tau(1)=1$ and $\tau(b)=\tau\left(\varepsilon_{f-1}(b)\right)$ for $b \in D_{f}$.
(c) τ is uniquely determined, inductively, by $\tau\left(b_{1} \chi b_{2}\right)=(1 / x) \tau\left(b_{1} b_{2}\right)$ for $\chi \in\left\{e_{f-1}, g_{f-1}\right\}$ and $b_{1}, b_{2} \in D_{f-1}$.
(d) $\tau\left(b^{\prime} \varepsilon_{f-1}(b)\right)=\tau\left(b^{\prime} b\right)$ for $b \in D_{f}$ and $b^{\prime} \in D_{f-1}$.
(e) There exist a map from $D_{f}(n)$ onto $D_{f-1}(n)$, also denoted by ε_{f-1}, and a trace τ_{n} on $D_{f}(n)$ such that $\tau_{n}\left(b^{\prime} \varepsilon_{f-1}(b)\right)=\tau_{n}\left(b^{\prime} b\right)$ for $b \in D_{f}(n)$ and $b^{\prime} \in D_{f-1}(n)$.
(f) Let $b \in D_{f}$. If $b(n)$ is defined, $\tau_{n}(b(n))=\tau(b)(n)$.

Proof. (a) It can be checked easily by pictures that for any graph $b \in D_{f}$, both the f-th and $(f+1)$-th upper and lower vertices of $e_{f} b e_{f}$ are connected by horizontal edges. If we interpret the rest of this graph as an element $b^{\prime} \in D_{f-1}$, we obtain immediately $e_{f} b e_{f}=b^{\prime} e_{f}$. Then just define $\varepsilon_{f-1}(b)=(1 / x) b^{\prime}$. Obviously this map can be extended to D_{f} by linearity. If $b \in D_{f-1}$, then b commutes with e_{f}. Hence $e_{f} b e_{f}=b e_{f} e_{f}=x b e_{f}$, which shows the second statement.
(b) The functional τ is well-defined because $\varepsilon_{f-1}(b)=b$ for all $b \in D_{f-1}$.
(c) It follows from (5) and a similar picture for g_{f-1} that $e_{f} \chi e_{f}=e_{f}$ for $\chi \in\left\{g_{f-1}, e_{f-1}\right\}$. Hence $\varepsilon_{f-1}\left(b_{1} \chi b_{2}\right)=(1 / x) b_{1} b_{2}$ as e_{f} commutes with all elements of D_{f-1}.
(d) As e_{f} commutes with $b^{\prime}, \varepsilon_{f-1}\left(b^{\prime} b\right)=b^{\prime} \varepsilon_{f-1}(b)$. Then the claim follows from (b).
(e) This is clear.
(f) This follows by induction on f.

Property (c) is called the Markov property, which plays a central role for link invariants (see [J2] and (for the Kauffman invariant) [BW]). Note that by the just proven proposition we can use Theorem (1.3) for $e=(1 / x) e_{f}, A=D_{f-1}$ and $B=D_{f}$, provided that τ is nondegenerate on both D_{f-1} and D_{f}. In this case the ideal I_{f+1} generated by e_{f} is isomorphic to $\left\langle D_{f}, e_{D_{f-1}}\right\rangle$. A similar statement holds for the $D_{f}(n)$'s. The question about when these traces are nondegenerate will be settled in the next section.

In the remainder of this section we will prove a lemma which will relate $D_{f}(n)$ to the more easily manageable D_{f}. Slightly more generally, let A be a finite dimensional, not necessarily semisimple $k(x)$ algebra given by the $k(x)$ basis $\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$. Assume that the multiplication of basis elements is given by formulas $b_{s} b_{r}=\sum_{i=1}^{m} \alpha_{s, r, i} b_{i}$ with $\alpha_{s, r, i} \in k(x)$ for $i, r, s=1,2, \ldots, m$. If for a given $n \in k$ all these rational functions are well-defined, we can define the k algebra $A(n)$ by "evaluating A at $x=n$ ". This means that we have a linear basis $\left\{b_{1}(n), \ldots, b_{m}(n)\right\}$ of $A(n)$ such that $b_{s}(n) b_{r}(n)=\sum_{i=1}^{m} \alpha_{s, r, i}(n) b_{i}(n)$.

Similarly, we define for $a \in A$ with $a=\sum_{i=1}^{m} \alpha_{i} b_{i}$ the element $a(n)=$ $\sum_{i=1}^{m} \alpha_{i}(n) b_{i}(n) \in A(n)$, provided $\alpha_{i}(n)$ is well-defined for $i=1,2, \ldots, m$. It is easy to see that the map $a \in A \mapsto a(n) \in A(n)$ is a partially defined, surjective ring homomorphism.

A set $S=\left\{p_{i}, i=1,2, \ldots, r\right\}$ of idempotents is called a partition of unity if $p_{i} p_{j}=p_{j} p_{i}=0$ for $i \neq j$ and if $\sum_{i=1}^{r} p_{i}=1$. We will need the following presumably well-known results.

Lemma (2.3). Let $\left\{p_{i}, i=1,2, \ldots, r\right\}$ and $\left\{q_{j}, j=1,2, \ldots, s\right\}$ be partitions of unity in A such that $p_{i}(n)$ and $q_{j}(n)$ are defined for all possible indices and let q be an idempotent in A such that $q(n)$ is defined. Then
(a) $\operatorname{dim}_{k} p_{i}(n) A(n) q_{j}(n)=\operatorname{dim}_{k(x)} p_{i} A q_{j}$ for $i=1,2, \ldots, r$ and $j=$ $1,2, \ldots, s$.
(b) If $A \cong M_{d}(k(x))$ and if $A(n)$ is semisimple, then $A(n) \cong M_{d}(k)$.
(c) Let both $q A q$ and $q(n) A(n) q(n)$ be semisimple. Then $q A q \cong k(x) \otimes$ $q(n) A(n) q(n)$.

Proof. (a) Let $a_{1}(n), \ldots, a_{t}(n)$ be a basis of $p_{i}(n) A(n) q_{j}(n)$. Let, for $l=1,2, \ldots, t, a_{l}$ be the corresponding linear combination of b_{1}, \ldots, b_{m}. We define $a_{l}^{\prime}=p_{i} a_{l} q_{j} \in p_{i} A q_{j}$. Obviously $a_{l}^{\prime}(n)=p_{i}(n) a_{l} q_{j}(n)=a_{l}(n)$ and the a_{l}^{\prime} 's are linearly independent because they are already for $x=n$. Hence $\operatorname{dim}_{k} p_{i}(n) A(n) q_{j}(n) \leq \operatorname{dim}_{k(x)} p_{i} A q_{j}$. But $A=\oplus_{i, j} p_{i} A q_{j}$ as a vector space. Hence the dimensions have to be equal as $\operatorname{dim}_{k(x)} A=\operatorname{dim}_{k} A(n)$.
(b) This is obviously true for $d=1$ by (a). Let $p \in A$ be such that $A p$ is a minimal left ideal of A. By the semisimplicity of $A(n)$ we can find $a \in A$ such that $a p(n)$ is well-defined and $(a p)^{2}(n) \neq 0$. As $A p$ is minimal, $(a p)^{2}=\alpha a p$ for some $\alpha \in k(x)$ with $\alpha(n) \neq 0$. Hence $p_{1}=(1 / \alpha) a p$ is an idempotent such that $p_{1}(n)$ is also a well-defined idempotent in $A(n)$. By the induction assumption for $d-1$, we have a partition of unity $\left\{p_{2}, p_{3}, \ldots, p_{d}\right\}$ in $\left(1-p_{1}\right) A\left(1-p_{1}\right)$ which is also well-defined for $x=n$. It follows from (a) that $\operatorname{dim}_{k} p_{i}(n) A(n) p_{j}(n)=\operatorname{dim}_{k(x)} p_{i} A p_{j}=1$ for $i, j=1,2, \ldots, d$. We thus obtain sufficiently many matrix units in $A(n)$.
(c) Let z_{1}, \ldots, z_{s} be the minimal central idempotents of A. If $z_{i}(n)$ is defined, it obviously must be a central idempotent of $q(n) A(n) q(n)$. If it were not defined, we could find a $d \in N$ such that if $z_{i}^{\prime}=(x-n)^{d} z_{i}, z_{i}^{\prime}(n)$ is defined and not equal to 0 . But then $\left(z_{i}^{\prime}(n)\right)^{2}=\left[(x-n)^{d} z_{i}^{\prime}\right](n)=0$. This would mean that $z_{i}^{\prime}(n)$ is a nonzero central nilpotent in the semisimple algebra $q(n) A(n) q(n)$ which is not possible. The $z_{i}(n)$'s are nonzero by (a) and $A z_{i} \cong k(x) \otimes$ $A(n) z_{i}(n)$ by (b).

3. Representations of $\boldsymbol{D}_{\boldsymbol{f}}(\boldsymbol{n})$

As pointed out in the introduction, the definition of the algebras $D_{f}(n)$ was motivated by representations of Lie groups. We will go back to this definition
and define representations of $D_{f}(n)$ onto $B_{f}(\mathrm{O}(n))$ for n odd. Using results of the representation theory of these groups (mainly the formulas for the dimensions of their irreducible representations) we will obtain information about the traces τ_{n} not only for these values of n but also about τ and τ_{n} for arbitrary $n \in k$. A comprehensive study of traces on centralizer algebras for infinite tensor products can be found in [Wa].

Let n be a positive integer and let $e_{i j}$ be matrix units for $i, j=1,2, \ldots, n$. Then it is easy to check that for

$$
G=\sum e_{i j} \otimes e_{j i}
$$

and

$$
E=\sum e_{i j} \otimes e_{i j}
$$

G and E are in $B_{2}(O(n))$ for $n \geq 3$. Note also that G is the "flip"; i.e. $G(\xi \otimes \eta)=\eta \otimes \xi$, and that E corresponds to Weyl's trace operation (or contraction); i.e. it maps $\xi \otimes \eta$ onto a multiple of the vector $\delta_{i_{1} i_{2}}=\sum v_{i} \otimes v_{i}$, where $v_{1}, v_{2}, \ldots, v_{n}$ is an orthonormal basis of V (see [Wy], V.6).

By [$\mathrm{Br},(19)$ and §5], there is an isomorphism between $D_{2}(n)$ and $B_{2}(\mathrm{O}(n))$ for $n \geq 3$ mapping G to g_{1} and E to e_{1}. More generally, let us define elements G_{i} and E_{i} of $\left(M_{n}\right)^{f}=M_{n} \otimes \cdots \otimes M_{n}(f$ times $)$ by

$$
G_{i}=1 \otimes \cdots \otimes 1 \otimes G \otimes 1 \otimes \cdots \otimes 1
$$

and

$$
E_{i}=1 \otimes \cdots \otimes 1 \otimes E \otimes 1 \otimes \cdots \otimes 1
$$

where we plug in G and E for the i-th and $(i+1)$-th factor. Then it follows again by [$\mathrm{Br},(19)$ and §5], that $\Phi: e_{i} \mapsto E_{i}$ and $g_{i} \mapsto G_{i}$ defines a homomorphism from $D_{f}(n)$ onto $B_{f}(\mathrm{O}(n)$). If n is large enough (say $n>2 f$), this representation is faithful and semisimple (see [Wy], V.5). In particular, the quotient $D_{f}(n) / I_{f}(n) \cong k S_{f}$ splits as a direct summand. Note that if $z(n)$ is the central idempotent corresponding to $I_{f}(n)$ and if p_{λ} is a Young idempotent for $k S_{f} \subset D_{f}(n)$, then $q_{\lambda}(n)=(1-z(n)) p_{\lambda}$ is a minimal idempotent of $D_{f}(n) / I_{f}(n)$. Hence, as Φ is injective,

$$
g \in \mathrm{O}(n) \mapsto \Phi\left(q_{\lambda}(n)\right) \pi^{\otimes f}(g) \Phi\left(q_{\lambda}(n)\right)
$$

is an irreducible representation of $\mathrm{O}(n)$. By [EK], there exists a polynomial P_{λ}, derived from Weyl's dimension formulas such that the dimension $\operatorname{dim}_{\lambda, n}$ of this representation is given by

$$
\operatorname{dim}_{\lambda, n}=P_{\lambda}(n)
$$

The polynomial P_{λ} can be written in the following form: Let $\tilde{\lambda}_{j}$ be the number of nodes in the j-th column and let

$$
c(\lambda)=\prod_{(i, j)}^{\lambda}\left(\lambda_{i}+\tilde{\lambda}_{j}+1-i-j\right)
$$

with the product taken over all pairs (i, j) specifying row and column of a node of λ. Then P_{λ} can be written as

$$
\begin{align*}
P_{\lambda}(x)= & 1 / c(\lambda) \prod_{i \geq j}^{\lambda}\left(x+\lambda_{i}+\lambda_{j}-i-j\right) \tag{6}\\
& \times \prod_{i<j}^{\lambda}\left(x-\tilde{\lambda}_{i}-\tilde{\lambda}_{j}+i+j-2\right)
\end{align*}
$$

We see immediately that
(a) All roots of P_{λ} are integers.
(b) The smallest and the second smallest roots are $2-2 \lambda_{1}$ and $3-\lambda_{1}-\lambda_{2}$.
(c) The largest root is $\tilde{\lambda}_{1}+\tilde{\lambda}_{2}-1$.

Let tr denote the usual normalized trace on $\left(M_{n}\right)^{f} \cong M_{n^{f}}$. If tr^{\prime} is the normalized trace on M_{n}, we have

$$
\operatorname{tr}\left(a_{1} \otimes \cdots \otimes a_{f}\right)=\prod \operatorname{tr}^{\prime}\left(a_{i}\right) .
$$

It follows from the considerations above that

$$
\begin{equation*}
\operatorname{tr}\left(\Phi\left(q_{\lambda}(n)\right)\right)=P_{\lambda}(n) / n^{f} . \tag{7}
\end{equation*}
$$

As any minimal idempotent p of $B_{f}(G)$ corresponds to an irreducible representation of G, it follows $\operatorname{tr}(p) \neq 0$ in general. Hence tr is nondegenerate as $B_{f}(\mathrm{O}(n))$ is semisimple.

We note here that the corresponding matrices G_{i} and E_{i} for an even dimensional vector space also generate $B_{f}(\mathrm{O}(n))$ but not $B_{f}(\mathrm{SO}(n))$.

Lemma (3.1). Let G_{i}, E_{i} and tr be defined for $n=2 m+1$ as above and let τ and τ_{n} be as in Section 2.
(a) $\operatorname{tr}\left(E_{i}\right)=\operatorname{tr}\left(G_{i}\right)=1 / n$.
(b) $\operatorname{tr}\left(a E_{f-1} b\right)=\operatorname{tr}\left(a G_{f-1} b\right)=(1 / n) \operatorname{tr}(a b)$ for $a, b \in B_{f-1}(\mathrm{O}(n))$.
(c) τ and τ_{n} are traces on D_{f} and $D_{f}(n)$ for arbitrary $n \in k$. For $n a$ positive odd integer we have $\tau_{n}=\operatorname{tr} \circ \Phi$.
(d) Let $J_{f}(n)=\left\{a \in D_{f}(n), \tau_{n}(a b)=0\right.$ for all $\left.b \in D_{f}(n)\right\}$ be the annihilator of τ_{n} in $D_{f}(n)$. Then $J_{f}(n)$ is a two-sided ideal and $J_{f}(n) \subset J_{f+1}(n)$.

Proof. (a) is a straightforward computation.
(b) $\left(M_{n}\right)^{f-1} \otimes 1$ is the span of elements $b \in\left(M_{n}\right)^{f}$ of the form $b=$ $b_{1} \otimes e_{i j} \otimes 1$ with $b_{1} \in\left(M_{n}\right)^{f-2}$ and $i, j=1,2, \ldots, n$. For these elements it is easily verified by a direct matrix computation that $\operatorname{tr}\left(E_{f-1} b\right)=\operatorname{tr}\left(G_{f-1} b\right)=$ $(1 / n) \operatorname{tr}(b)$. The general case follows from the trace property.
(c) It follows from (a), (b) and Proposition (2.2)(c) that $\tau_{n}=\operatorname{tr} \circ \Phi$. Hence it is a trace on $D_{f}(n)$ for $n=2 m+1, m=1,2, \ldots$. So for any two graphs $b_{1}, b_{2} \in D_{f}$ we have

$$
\begin{aligned}
\tau\left(b_{1} b_{2}\right)(n)=\tau_{n}\left(b_{1}(n) b_{2}(n)\right)=\tau_{n}\left(b_{2}(n) b_{1}(n)\right)= & \tau\left(b_{2} b_{1}\right)(n) \\
& \text { for } n=3,5,7, \ldots .
\end{aligned}
$$

Hence $\tau\left(b_{1} b_{2}\right)$ and $\tau\left(b_{2} b_{1}\right)$ have to be the same rational functions. The case for arbitrary $n \in k$ follows from this.
(d) As τ_{n} is a trace, $J_{f}(n)$ is a two-sided ideal. Note that if $a \in J_{f}(n)$, $\tau_{n}\left(a b_{1} \chi b_{2}\right)=(1 / n) \tau_{n}\left(a b_{1} b_{2}\right)=0$ for $b_{1}, b_{2} \in D_{f}(n)$ and $\chi \in\left\{g_{f}, e_{f}\right\}$. Hence, by Propositions (2.1)(a) and (2.2)(c) $J_{f}(n) \subset J_{f+1}(n)$.

Let Γ_{f} be the set of all Young diagrams with $k \leq f$ nodes such that $k \geq 0$ and $f-k$ is even.

Theorem (3.2). (a) The $k(x)$ algebra D_{f} is semisimple. It decomposes into a direct sum of full matrix algebras $D_{f, \lambda}$, where $\lambda \in \Gamma_{f}$. A simple $D_{f, \lambda}$ module $V_{f, \lambda}$ decomposes as a D_{f-1} module into a direct sum

$$
V_{f, \lambda}=\oplus V_{f-1, \mu},
$$

where $V_{f-1, \mu}$ is a simple $D_{f-1, \mu}$ module and μ ranges over all Young diagrams obtained from λ by removing or (if λ contains fewer than f nodes) adding one node. The weight vector of τ is given by $\left(P_{\lambda}(x) / x^{f}\right)_{\lambda \in \Gamma_{f}}$.
(b) Let $D_{f-1}(n)$ and $D_{f}(n)$ be semisimple. Then the following statements are equivalent
(i) τ_{n} is nondegenerate on $D_{f}(n)$.
(ii) $D_{f+1}(n)$ is semisimple and $D_{f+1}(n) \otimes k(x) \cong D_{f+1}$.

In this case, the weight vector of τ_{n} is given by $\left(P_{\lambda}(n) / n^{f}\right)_{\lambda \in \Gamma_{f}}$.
Proof. We shall prove (a) and (b), (i) \Rightarrow (ii) by induction on f. The statements are trivially true for $f=0$ and $f=1$. Assume that D_{f-1} and D_{f} are semisimple and τ is a nondegenerate trace on them. It follows from Propositions (2.1)(b) and (2.2) that the conditions of Theorem (1.3) are satisfied for $A=D_{f-1}$, $B=D_{f}, e=(1 / x) e_{f}$ and $\operatorname{tr}=\tau$. So the ideal $\left\langle e_{f}\right\rangle \subset D_{f+1}$ is isomorphic to Jones' extension for $D_{f-1} \subset D_{f}$ by that theorem and Proposition (2.1)(b). By Proposition (1.2)(b) and the induction assumption, the simple components of
$\left\langle e_{f}\right\rangle$ are labeled by the elements of Γ_{f-1}. In particular, $\left\langle e_{f}\right\rangle$ is semisimple. By Proposition (2.1)(b) and (c) the quotient $D_{f+1} /\left\langle e_{f}\right\rangle \cong k(x) S_{f+1}$ is also semisimple. Hence D_{f+1} is semisimple.

Let $V_{f+1, \lambda}$ be a simple $\left\langle e_{f}\right\rangle$ module. As $\left\langle e_{f}\right\rangle \cong\left\langle D_{f}, e_{D_{f-1}}\right\rangle, V_{f+1, \lambda}$ can be considered as a direct sum of exactly those $V_{f, \mu}$ which contain a simple $D_{f-1, \lambda}$ module by Proposition (1.2)(b). So the claim follows by the induction assumption from the inclusion $D_{f-1} \subset D_{f}$. If $V_{f+1, \lambda}$ is annihilated by e_{f}, it can be regarded as an S_{f+1} module, for which the decomposition into simple S_{f} modules is well-known (see §1).

Let $p_{\lambda} \in D_{f-1, \lambda}$ be a minimal idempotent. By Proposition (1.2)(b) and (4), $(1 / x) e_{f} p_{\lambda}$ is a minimal idempotent of $D_{f+1, \lambda}$ and

$$
\tau\left((1 / x) e_{f} p_{\lambda}\right)=\left(1 / x^{2}\right) \tau\left(p_{\lambda}\right)=P_{\lambda}(x) / x^{f+1}
$$

by the induction assumption.
Let z be the central idempotent for $\left\langle e_{f}\right\rangle$ and let $q_{\lambda}=(1-z) p_{\lambda}$ with p_{λ} a Young idempotent for $\lambda \in \Lambda_{f+1}$. It follows from the remark before Lemma (3.1) that $q_{\lambda}(n)$ is defined for odd n with $n>2(f+1)$. Using Lemma (3.1)(c) and (7), we obtain

$$
\tau\left(q_{\lambda}\right)(n)=\tau_{n}\left(q_{\lambda}(n)\right)=\operatorname{tr} \circ \Phi\left(q_{\lambda}(n)\right)=\operatorname{dim}_{\lambda, n} / n^{f+1}=P_{\lambda}(n) / n^{f+1}
$$

Hence, as the rational functions $\tau\left(q_{\lambda}\right)(x)$ and $P_{\lambda}(x) / x^{f+1}$ coincide at infinitely many points, they have to be identical. In particular, they are nonzero. This shows the statement about the weight vector of τ.

Let us assume (b), (i). By Lemma (3.1)(d), we have $J_{f-1}(n) \subset J_{f}(n)$, so that τ_{n} is also nondegenerate on $D_{f-1}(n)$. It follows from the same arguments as in the proof for (a) that $D_{f+1}(n)$ is semisimple and that the weight vector of τ_{n} on $D_{f+1}(n)$ is equal to $\left(P_{\lambda}(n) / n^{f+1}\right)_{\lambda \in \Gamma_{f+1}}$. The proof of the converse implication will be given after Corollary (3.5).

The following corollary proves the conjecture of Hanlon and Wales which was mentioned above.

Corollary (3.3). If n is not an integer, $D_{f}(n)$ is semisimple and the trace τ_{n} is nondegenerate on $D_{f}(n)$ for all $f \in \mathbf{N}$.

Proof. The statement is obviously true for $D_{0}(n)$ and $D_{1}(n)$. Let us assume the claim for $D_{f-1}(n)$ and $D_{f}(n)$. Then also $D_{f+1}(n)$ is semisimple by the just shown part of Theorem (3.3)(b). By (6)(a) all the entries of the vector $\left(P_{\lambda}(n) / n^{f+1}\right)_{\lambda \in \Gamma_{f+1}}$ are nonzero. Hence τ_{n} is nondegenerate on $D_{f+1}(n)$.

Theorem (3.2) gives an easy inductive procedure to compute the dimensions of the simple D_{f} modules (similar procedures can also be found in [Be], [K] or [S]
for special values of x). For small f, this can be conveniently done using Bratteli diagrams (see §1). One only has to reflect the inclusion pattern for $D_{f-1} \subset D_{f}$ about the line of D_{f} to obtain the structure of $\left\langle e_{f}\right\rangle$. Examples are given at the end of [BW].

The techniques of the proof of Theorem (3.2) can also be used if τ_{n} is degenerate on $D_{f}(n)$ by factoring over its annihilator. So let $B_{f}(n)=$ $D_{f}(n) / J_{f}(n)$ and let $\rho^{(f)}$ be the quotient map from $D_{f}(n)$ onto $B_{f}(n)$. It follows from Lemma (3.1)(d) that $\rho^{(f+1)}\left(D_{f}(n)\right)$ is isomorphic to $\rho^{(f)}\left(D_{f}(n)\right)=B_{f}(n)$, where we regard $D_{f}(n)$ as a subalgebra of $D_{f+1}(n)$ as usual. We will therefore omit the index f of $\rho^{(f)}$.

For $n=2 m+1>0$, we can show easily that $B_{f}(n) \cong B_{f}(\mathrm{O}(n))$. Indeed, the kernel of Φ is contained in the kernel of ρ by Lemma (3.1)(d). On the other hand, tr is a nondegenerate trace on $B_{f}(\mathrm{O}(n))$ by the remark before Lemma (3.1). Hence the other inclusion also holds.

For even $n>0$ the same proof can be applied to show that $B_{f}(n)$ is isomorphic to $B_{f}(\mathrm{O}(n))$.

To determine the structure of the $B_{f}(n)$'s, we need to define a special class of Young diagrams. As usual, we say that a Young diagram μ is a subdiagram of the Young diagram λ, denoted by $\mu<\lambda$, if μ can be obtained from λ by taking away appropriate nodes.

A Young diagram λ is said to be n-permissible if $P_{\mu}(n) \neq 0$ for all subdiagrams $\mu \leq \lambda$. The n-permissible Young diagrams of Γ_{f} and Λ_{f} are denoted by $\Gamma_{f}^{(n)}$ and $\Lambda_{f}^{(n)}$ respectively.

Theorem (3.4). (a) Let $\lambda \in \Lambda_{f}$. If all subdiagrams of λ are n-permissible, then there exists a minimal idempotent $q_{\lambda} \in D_{f, \lambda}$ such that $q_{\lambda}(n)$ is welldefined.
(b) $B_{f}(n)$ is the direct sum of full matrix algebras $B_{f, \lambda}$ where $\lambda \in \Gamma_{f}^{(n)}$. A simple $B_{f, \lambda}(n)$ module $\bar{V}_{f, \lambda}$ decomposes as a $B_{f-1}(n)$ module into a direct sum

$$
\bar{V}_{f, \lambda}=\oplus \bar{V}_{f-1, \mu}
$$

with μ ranging over all n-permissible Young diagrams obtained from λ by removing or (if λ contains fewer than f nodes) by adding one node.

Proof. As usual, the proof goes by induction on f with $f=0$ and $f=1$ being trivial. The trace τ_{n} is nondegenerate on $B_{f-1}(n)$ and $B_{f}(n)$ by definition of these algebras. So we can show as in the proof of Theorem (3.2) that $\left\langle\rho\left(e_{f}\right)\right\rangle$ is semisimple and that $\bar{D}_{f+1}(n)=D_{f+1}(n) /\left(\left\langle e_{f}\right\rangle \cap J_{f+1}(n)\right)$ is isomorphic to the semisimple algebra $\left\langle\rho\left(e_{f}\right)\right\rangle \oplus C$ with $C \cong k S_{f+1}$. Obviously τ_{n} and ρ are also well-defined on this quotient of $D_{f+1}(n)$. To find the structure of $B_{f+1}(n)$, we have to determine which simple components of $\bar{D}_{f+1}(n)$ are annihilated by τ_{n}.

We label the simple components of C by Young diagrams as usual. Let $\lambda \in \Lambda_{f+1}$ be such that $\rho\left(C_{\lambda}\right) \neq 0$, and let V be a simple C_{λ} module. If we regard V as a $B_{f}(n)$ module, it decomposes into a direct sum of simple $B_{f, \lambda^{\prime}}(n)$ modules with $\lambda^{\prime}<\lambda$ by the branching rule for $k S_{f} \subset k S_{f+1}$ (see also the proof of Theorem (3.2)). Hence all proper subdiagrams μ of λ have to be n-permissible by the induction assumption.

Let λ^{\prime} be an n-permissible subdiagram of λ and let $q_{\lambda^{\prime}}$ be a minimal idempotent of $D_{f, \lambda^{\prime}}$. By Theorem (3.2)(a) and (1) we have $q_{\lambda^{\prime}} \cdot D_{f+1} q_{\lambda^{\prime}} \cong k(x)^{s}$, where s is the number of diagrams on $f-1$ or $f+1$ nodes which are contained in or contain λ^{\prime}.

By the induction assumption for (a), we can choose $q_{\lambda^{\prime}}$ such that $q_{\lambda^{\prime}}(n)$ is defined. As all subdiagrams of λ^{\prime} are also n-permissible, we show as for D_{f+1} that $\bar{q}_{\lambda^{\prime}}(n) \bar{D}_{f+1}(n) \bar{q}_{\lambda^{\prime}}(n)$ is isomorphic to k^{s}. By Lemma (2.3)(a) we also have $q_{\lambda^{\prime}}(n) D_{f+1}(n) q_{\lambda^{\prime}}(n) \cong k^{s}$. Hence there exists a minimal idempotent $q_{\lambda} \in D_{f+1, \lambda}$ such that $q_{\lambda}(n)$ is well-defined by Lemma (2.3), which shows (a).

Using the partially defined ring homomorphism from D_{f+1} onto $D_{f+1}(n)$, we find that $q_{\lambda}(n)$ is annihilated by $I_{f+1}(n)$ and by all central idempotents $z_{\mu} \in k S_{f+1} \subset D_{f+1}(n)$ for $\mu \neq \lambda$. Hence $\bar{q}_{\lambda} \in C_{\lambda}$. As τ_{n} factors over $\left\langle e_{f}\right\rangle \cap J_{f+1}(n)$, we have by Proposition (2.2)(f),

$$
\tau_{n}\left(\bar{q}_{\lambda}(n)\right)=\tau_{n}\left(q_{\lambda}(n)\right)=\tau\left(q_{\lambda}\right)(n)=P_{\lambda}(n) / n^{f+1} .
$$

So $q_{\lambda}(n) \in J_{f+1}(n)$ if and only if $P_{\lambda}(n)=0$. By the semisimplicity of $\bar{D}_{f+1}(n)$ this is equivalent to $\rho\left(C_{\lambda}\right)=0$.

By the induction assumption for $B_{f-1}(n)$ and Proposition (2.1)(b), the simple components of $\left\langle\rho\left(e_{f}\right)\right\rangle$ are labeled by the elements of $\Gamma_{f-1}^{(n)}$.

As for the D_{f} 's, the branching rule gives us a way to compute the dimensions of the simple $B_{f}(n)$ modules. It only remains to determine the n-permissible Young diagrams. Note that part (a) of the following corollary restates Corollary (3.3). Part (c) relates the $B_{f}(n)$'s to the algebras in which Brauer and Weyl were primarily interested.

Corollary (3.5). (a) If $n \in k$ is not an integer, all Young diagrams are n-permissible. In this case $D_{f}(n) \cong B_{f}(n)$ and its decomposition into full matrix rings is the same as for D_{f}.
(b) If n is a nonzero integer, a Young diagram λ is n-permissible if and only if:
(i) Its first 2 columns contain at most n nodes for n positive.
(ii) It contains at most m columns for $n=-2 m$ a negative even integer.
(iii) Its first 2 rows contain at most $2-n$ nodes for n odd and negative.
(c) If n is a positive integer, $B_{f}(n) \cong B_{f}(\mathrm{O}(n))$. If n is negative and odd, $B_{f}(n) \cong B_{f}(\mathrm{O}(2-n))$. For $n=-2 m<0, B_{f}(n)$ is isomorphic to $B_{f}(\mathrm{Sp}(2 m))$.

Proof. Part (a) follows from (6)(a). Part (c) follows for positive n from the remarks before Theorem (3.4). Part (b) is an easy consequence of (6), (b) and (c).

Let $\tilde{\lambda}$ be the Young diagram with λ_{1} nodes in the first column, λ_{2} nodes in the second, etc. Then it can be easily shown by induction using Theorem (3.4), that for odd negative $n, B_{f, \lambda}(n) \cong B_{f, \hat{\lambda}}(2-n)$ for any n-permissible Young diagram λ and therefore $B_{f}(n) \cong B_{f}(2-n)$.

The proof of the remaining case of part (c) follows the lines of the one for the orthogonal groups.

Let us label a basis of a $2 m$ dimensional vector space in pairs by $1,1^{\prime}, 2,2^{\prime}, \ldots m, m^{\prime}$. We obtain a corresponding labeling for the matrix units of $M_{2 m}(k)$. Let

$$
\tilde{E}=\sum e_{i j} \otimes e_{i^{\prime} j^{\prime}}+e_{i^{\prime} j^{\prime}} \otimes e_{i j}-e_{i j^{\prime}} \otimes e_{i^{\prime} j}-e_{i^{\prime} j} \otimes e_{i j^{\prime}}
$$

The elements \tilde{E}_{i} and G_{i} are defined as at the beginning of this section. Then $G_{1}, \ldots G_{f-1}, \tilde{E}_{1}, \ldots \tilde{E}_{f-1}$ generate $B_{f}(\operatorname{Sp}(2 m))$ (see for instance $\left.[\mathrm{Br}]\right)$. It can be checked by explicit matrix computations that $-G_{i}$ and $-\tilde{E}_{i}$ are compatible with the relations for \hat{G}_{i} and \hat{E}_{i} in [BW, §5] with $x=-2 m$. Hence $g_{i} \mapsto-G_{i}$ and $e_{i} \mapsto-\tilde{E}_{i}$ defines a representation of $D_{f}(-2 m)$, the image of which is $B_{f}(\operatorname{sp}(2 m))$. The rest of the proof goes as in Lemma (3.1) and in the remark before Theorem (3.4).

As an example, the Bratteli diagram of $B_{f}(3) \cong B_{f}(\mathrm{O}(3))$ is shown in Figure 3 for $f=0,1, \ldots, 4$.

Figure 3

Conclusion of the proof of Theorem (3.2). Let us assume that $D_{0}(n), \ldots, D_{f}(n)$ are semisimple. By the induction assumption, τ_{n} has to be nondegenerate on $D_{0}(n), \ldots, D_{f-1}(n)$. Assume τ_{n} is degenerate on $D_{f}(n)$. Then $D_{f-1}(n) \cong B_{f-1}(n)$, while $\operatorname{dim}_{k} B_{f}(n)<\operatorname{dim}_{k} D_{f}(n)$. So the semisimple quotient $\left\langle\bar{e}_{f}\right\rangle \oplus k S_{f+1}$ of $D_{f}(n)$ (see the proof of Theorem (3.4)) cannot be a faithful representation of $D_{f+1}(n)$. On the other hand, it has as many simple components as D_{f+1}. So if $D_{f+1}(n)$ were semisimple, it would have more simple components than D_{f+1}, a contradiction to Lemma (2.3)(c).

University of California, Berkeley

References

[ABP] M. Atiyah, R. Bott, and V. K. Patodi, On the heat equation and the index theorem, Inv. Math. 19 (1973), 279-330.
[Be] A. Berele, A Schensted-type correspondence for the symplectic group, J. Comb. Th. Series A (1986), 320-328.
[BW] J. Birman, and H. Wenzl, Braids, link polynomials and a new algebra, Trans. AMS (to appear).
[Br] R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. of Math. 38 (1937), 854-872.
[Bou] N. Bourbaki, Algèbre, Ch. 8, Hermann, 1959.
[Bw] W. Brown, The semisimplicity of ω_{f}^{n}, Ann. of Math. 63 (1956), 324-335.
[EK] N. El Samra, and R. King, Dimensions of irreducible representations of the classical Lie groups, J. Phys. A: Math. Gen. 12 (1979), 2317-2328.
[GHJ] F. Goodman, P. de la Harpe, and V. F. R. Jones, Coxeter-Dynkin diagrams and towers of algebras (to appear).
[HW1] P. HANLON, and D. Wales, On the decomposition of Brauer's centralizer algebras, J. Alg. (to appear).
[HW2] , Eigenvalues connected with Brauer's centralizer algebras, J. Alg. (to appear).
[HW3] , Computing the discriminants of Brauer's centralizer algebras, preprint, California Institute of Technology.
[J1] V. F. R. Jones, Index for subfactors, Inv. Math. 72 (1983), 1-25.
[J2] , A polynomial invariant for links via von Neumann algebras, Bull. AMS 12 (1985), 103-111.
[K] R. King, Modification rules and products of irreducible representations of the unitary, orthogonal and symplectic groups, J. Math. Phys. 12 (1971), 1588-1598.
[M] F. Murnaghan, The Theory of Group Representations, Dover, 1938.
[S] S. Sundaram, On the Combinatorics of Representations of $\operatorname{Sp}(2 n, C)$, Memoirs of the AMS (to appear).
[Wa] A. Wassermann, Automorphic actions of compact groups on operator algebras, thesis, University of Pennsylvania, 1981.
[Wn] H. Wenzl, Representations of Hecke algebras and subfactors, thesis, University of Pennsylvania, 1985; to appear in Inv. Math. (1988).
[Wy] H. Weyl, The Classical Groups, Princeton University Press, Rev. 1946.
(Received February 27, 1987)

[^0]: ${ }^{\dagger}$ Partially supported by NSF grant \#DMS 85-13467

