TOPOLOGICAL FIELD THEORIES AND TENSOR CATEGORIES. HOMEWORK #2.

Target day for this homework: October 28

Submit (in class or by email) any of the following problems.

1. Let $F : \mathcal{C} \to \mathcal{D}$ be a tensor functor and let $X \in \mathcal{C}$ be a dualizable object. Write a complete proof of the identity $F(X^*) = F(X)^*$.

2. Give an example of morphism of monoidal functors which is not an isomorphism.

3. (a) Let G be a finite group and let $\operatorname{Rep}(G)$ be the category of finite dimensional representations of G (say over the field of complex numbers). Let $F : \operatorname{Rep}(G) \to \operatorname{Vec}$ be the forgetful functor. Compute the group $\operatorname{Aut}^{\otimes}(F)$ of tensor automorphisms of F. (Hint: start by computing the ring of endomorphisms of F as a functor without regard to the tensor structure).

(b)* Let $H \subset G$ be a subgroup. Compute the group $\operatorname{Aut}^{\otimes}(\operatorname{Res}_{H}^{G})$ of the restriction functor.

4. Give an example of non-isomorphic tensor functors which are isomorphic as functors. (Hint: think about pointed categories).

5. Let \mathcal{C} be a monoidal category and let $X, Y \in \mathcal{C}$ be two objects such that $X \otimes Y \simeq Y \otimes X \simeq \mathbf{1}$. Prove that X is invertible.