TOPOLOGICAL FIELD THEORIES AND TENSOR CATEGORIES. HOMEWORK \#3.

Target day for this homework: November 11

Submit (in class or by email) any of the following problems.

1. Write a complete proof of the identity $\operatorname{Tr}(f g)=\operatorname{Tr}(g f)$.
2. Assume that the base field is of characteristic zero. Recall that we defined the exterior power $\wedge^{n}(X)$ as the image of the idempotent $\frac{1}{n!} \sum_{\pi \in S_{n}}(-1)^{\pi} \pi$ acting on the tensor power $X^{\otimes n}$ (so this definition makes sense in any Karoubian category). Prove the formula

$$
\wedge^{n}(X \oplus Y)=\bigoplus_{i=0}^{n} \wedge^{i}(X) \otimes \wedge^{n-i}(Y)
$$

3. (a) Let X be a dualizable object. Prove that braiding $c_{X^{*}, Y}$ equals to composition

$$
X^{*} \otimes Y \xrightarrow{\operatorname{coev}_{X}} X^{*} \otimes Y \otimes X \otimes X^{*} \xrightarrow{c_{Y, X}} X^{*} \otimes X \otimes Y \otimes X^{*} \xrightarrow{e v_{X}} Y \otimes X^{*}
$$

(b) Let X be a dualizable object such that $c_{X, X}=\mathrm{id}$. Prove that X is invertible.
(c) Give a counterexample to (b) when X is not dualizable.
(d)* Prove or disprove the following Conjecture: if X is dualizable and noninvertible then S_{n}-action on $X^{\otimes n}$ is faithful (I don't know a complete solution for this problem; feel free to assume extra things about the category, e.g. that it is abelian).
4. (a) Let \mathcal{C} be a Karoubian rigid symmetric tensor category with finite dimensional Hom spaces. Prove that non-isomorphic non-negligible indecomposable objects of \mathcal{C} are non-isomorphic in the gligible quotient $\overline{\mathcal{C}}$.
(b) Let U, V, W be non-negligible indecomposable objects of \mathcal{C}. Prove that if U is a direct summand of $V \otimes W$ then V^{*} is a direct summand of $U^{*} \otimes W$. Give a counterexample when negligibility assumption is dropped (Hint: what if $V=\mathbf{1}$?).

5 . Let k be a field of characteristic $p>0$ and let C_{p} be a cyclic group of order p. We compute tensor multiplication rules for $\operatorname{Rep}\left(C_{p}\right)$ (and hence for its gligible quotient). Recall that the indecomposable objects are $L_{1}, L_{2}, \ldots, L_{p}$.
(a) Compute directly $L_{p-1} \otimes L_{p-1}$ (Hint: what is the total number of summands?)
(b) Prove that for any i with $1<i<p$ we have $L_{2} \otimes L_{i}=L_{i-1}+L_{i+1}$. What about $L_{2} \otimes L_{p}$? (Hint: do induction in i using Problem 4 (b)).
(c) Prove "Verlinde formula" for tensor product in the gligible quotient of $\operatorname{Rep}\left(C_{p}\right)$: for $1 \leq m, n<p$ we have

$$
L_{m} \otimes L_{n}=\bigoplus_{i=1}^{\min (m, n, p-m, p-n)} L_{|m-n|+2 i-1}
$$

