
FORMAT
A GAP Package
on Formations

by

Bettina Eick and C.R.B. Wright

Fachbereich Mathematik und Informatik
der Technische Universit ät Braunschweig

and
University of Oregon

c©2000 by

Bettina Eick

Fachbereich für Mathematik und Informatik, Technische Universität Braunschweig, 38106 Braunschweig, Germany

www-public.tu-bs.de:8080/∼beick

beick@tu-bs.de

Charles R.B. Wright

Department of Mathematics, University of Oregon, Eugene, Oregon 97403, U.S.A.

www.uoregon.edu/∼wright

wright@uoregon.edu

Contents

1 Introduction
to FORMAT

TheGAP packageFORMAT provides functions to compute with formations of finite solvable groups. In addition to
tools for constructing and combining formations, the package contains functions to computeF -residual subgroups
and to constructF -normalizers andF -covering subgroups determined by locally defined formations. System nor-
malizers and Carter subgroups are available as special cases, and theF -normalizer functions also apply to the com-
putation of complements. The corresponding algorithms, together with applications and a complexity analysis, are
described in [EW].

The package permits the computation of formation-theoretic subgroups not only for a number of classical formations,
such as nilpotent, supersolvable orp-length 1 groups, but for other formations that the user may define. It also allows
computation with classes of finite solvable groups defined bynormal subgroup functions (see [DH], pages 395 ff).
Attention may be restricted to the subgroups of a single group, a feature that has applications in the computation of
complements to elementary abelian normal subgroups in finite solvable groups (see [EW]). An example of such an
application is given in Section “format:other applications”.

This documentation contains only a brief account of the mainformation-theoretic ideas. For a much more complete
treatment we refer the reader to [DH]. Fundamental ideas of formation theory are described in [G] and [CH].

In the following sections we first describe theGAP definition of a formation and the examples of standard formations
that are included in the package. We also present some functions that obtain new formations from ones already defined
or that modify defined formations slightly. (See Section “format:formations in gap”.)

Then we describe functions that compute formation-theoretic subgroups of finite solvable groups (see Sections “for-
mat:residual functions”, “format:fnormalizers” and “format:covering subgroups”).

Finally we provide examples from aGAP session (see Sections “format:formation examples” and “format:other
applications”) to illustrate the functions in the package.

2 Formations in GAP

A formation is a classF of groups closed under taking epimorphic images and subdirect products. Closure under
subdirect products is equivalent to the property that each finite groupG has a unique smallest normal subgroupGF

with factor groupG/GF in F . The subgroupGF is called theF -residual subgroup ofG. Thus, for example, the
derived subgroup ofG is its residual for the formation of abelian groups, and the residual for the formation of nilpotent
groups is the last term of the descending central series.

In FORMAT a formation is described by a function that computesGF for each (finite solvable) groupG, and from
that perspectiveF consists of the groupsG for which GF is trivial. To define a formation that is not one of the
standard examples provided (see below), one must giveGAP an identifier for the formation and also some method for
computing residual subgroups.

Some of the most interesting formations can also be described by “local definition.” For each primep let F (p) be a
formation or the empty class, and letF be the class of all finite solvable groupsG such that for each primep and each
p-chief factorH/K of G the group of automorphisms thatG induces onH/K by conjugation belongs toF (p). Then
F is a formation, withlocal definition the set ofF (p)s. The set of primesp for which F (p) is not empty is called
the support of F . A p-chief factor isF -central in caseG induces anF (p)-group on it or, equivalently, in case
GF (p) centralizes it. It is possible to define a formation inFORMAT by giving such a local definition. Indeed one can
define a kind of generalized formation by giving what is called a normal subgroup function orscreen, which specifies
arbitrary normal subgroups, not necessarily of formGF (p), to test “centrality.” Section “format:other applications”
describes one such usage of general screens. Most applications of formation theory to solvable groups require local
definition, as do theGAP functions for computingF -normalizers andF -covering subgroups.

1 ◮ Formation(rec) O
◮ Formation(str [, primes]) O

The definition of a formation inFORMAT begins with the creation of a recordrec, which must contain aname
component and at least one of the componentsfResidual or fScreen. The componentname is a string,fResidual
is a function that computes a normal subgroup of each group, andfScreen is a function of two variables, a group and
a prime, that returns a normal subgroup of the input group.

In the second form the functionFormation can be used to obtain a formation from the supplied library offormations.
The formations provided are:

Formation("Nilpotent")

The formation of nilpotent groups,

Formation("Supersolvable")

The formation of supersolvable groups,

Formation("Abelian")

The formation of abelian groups,

Formation("ElementaryAbelianProduct")

The formation of direct products of elementary abelian groups,

Formation("PNilpotent", prime)

The formation ofp-nilpotent groups forp = prime,

7

Formation("PiGroups", primes)

The formation ofπ-groups forπ = the setprimes,

Formation("PLengthOne", prime)

The formation of groups ofp-length 1 forp = prime.

2 ◮ IsFormation(F) C
◮ NameOfFormation(F) A
◮ ResidualFunctionOfFormation(F) A

IsFormation returnstrue if and only if F is aGAP formation.NameOfFormation returns the name of a formation
andResidualFunctionOfFormation returns the residual function of a formation.

3 ◮ ScreenOfFormation(F) A

If F is locally defined by some screen ofF (p)s, thenHasScreenOfFormation(F) is true, ScreenOfForma-
tion(F) is a function of two variables,group andprime, andScreenOfFormation(F)(G, p) returnsGF(p)

if p is in the support ofF and gives the empty list otherwise.

4 ◮ SupportOfFormation(F) A

The attributeSupportOfFormation is optional. It may be bound bySetSupportOfFormation. If SupportOfFor-
mation is not bound, then the support of the formation is taken to be the set of all primes. In case the support ofF is a
finite set of primes, thenSupportOfFormation(F) is a list of those primes, andHasSupportOfFormation(F
) returns true. In case the support ofF is an infinite set but not the set of all primes, then the user will need to make
sure, perhaps withChangedSupport or SetSupportOfFormation, that all primes dividing the orders of relevant
groups are considered.

5 ◮ ChangedSupport(F, primes) O

This function may be used to change the support of a formation. Let F be a formation andprimes a list of primes.
ThenChangedSupport returns a formation with a new name whose support is the intersection of the support ofF
andprimes.

6 ◮ IsIntegrated(F) P

The local definition is calledintegrated in caseF (p) is contained inF for each primep. The optional property
IsIntegrated makes sense only ifHasScreenOfFormation(F) is true. Notice that some of the functions
described below will require that all of the attributesHasScreenOfFormation(F), HasIsIntegrated(F)

andIsIntegrated(F) aretrue. If unbound, this property can be bound withSetIsIntegrated, but it is up to
the user to determine whether such a setting is appropriate.Section “format:formation examples” contains an example
of such usage.

7 ◮ Integrated(F) O

A local definition of a formation may always be replaced by an integrated one without changing the formation itself,
though the meaning ofF -central may change. LetF be a locally definedGAP formation with namename. If F is
already integrated, thenIntegrated(F) yieldsF itself. Otherwise, it yields a formationnameInt that is abstractly
the same asF but has integrated local definition.

8 ◮ F1 = F2
◮ F1 < F2

Two GAP formationsF1 andF2 are considered to be equal in case they have the same name. Thenatural ordering
on strings gives an ordering on formations. This ordering isuseful for organizing key-dependent lists but has no
mathematical significance.

8 Chapter 2. Formations in GAP

9 ◮ Intersection(F1, F2) O

The intersection of twoGAP formationsF1 andF2 is again a formation.Intersection produces the new formation
(name1Andname2), which has attributeResidualFunctionOfFormation if either F1 or F2 does, hasFScreen
whenever both formations haveFScreen, and is integrated if both are.

10◮ ProductOfFormations(F1, F2) O

The product of two formationsF1 andF2 is the formationF such that a finite groupG is a member ofF if and only if
GF2 is in F1. (Notice that the product ofF1 by F2 is not necessarily equal to the product ofF2 by F1, and unlessF1 is
normal subgroup-closed the product need not contain all extensions of a group inF1 by a group inF2.) The function
ProductOfFormations(F1, F2) yields the product(name1Byname2) of the two formations. The product has
the attributeResidualFunctionOfFormation and has the attributeScreenOfFormation whenever bothF1 and
F2 have this entry or whenever bothHasScreenOfFormation(F2) andnot HasSupportOfFormation(F1)

aretrue. In these cases the propertyIsIntegratedwill be inherited if possible.

3 Residual Functions

1 ◮ ResidualWrtFormation(G, F) O

Let G be a finite solvable group andF a formation. ThenResidualWrtFormation returns theF-residual subgroup
of G.

The following special cases have their own functions.

2 ◮ NilpotentResidual(G) A

This is the last term of the descending central series ofG.

3 ◮ PResidual(G, p) O

This is the smallest normal subgroup ofG whose index is a power of the primep.

4 ◮ PiResidual(G, primes) O

This is the smallest normal subgroup ofG whose index is divisible only by primes in the listprimes.

5 ◮ CoprimeResidual(G, primes) O

This is the smallest normal subgroup ofG whose index is divisible only by primesnot in the listprimes.

6 ◮ ElementaryAbelianProductResidual(G) A

This is the smallest normal subgroup ofG whose factor group is a direct product of groups of prime order.

4 FNormalizers

Let F be an integrated locally defined formation, and letG be a finite solvable group with Sylow complement basis
Σ := {Sp | p divides |G|}. Let π be the set of prime divisors of the order ofG that are in the support ofF and
ν the remaining prime divisors of the order ofG. Then theF -normalizer of G with respect toΣ is defined to be
⋂

q∈ν Sq ∩
⋂

p∈π NG(GF (p) ∩ Sp). The special caseF (p) = {1} for all p defines the formation of nilpotent groups,
whoseF -normalizers are thesystem normalizersof G. The F -normalizers of a groupG for a givenF are all
conjugate. They coverF -central chief factors and avoidF -hypereccentric ones.

1 ◮ FNormalizerWrtFormation(G, F) O
◮ SystemNormalizer(G) A

If F is a locally defined integrated formation inGAP andG is a finite solvable group, then the functionFNormal-
izerWrtFormation returns anF-normalizer ofG. The functionSystemNormalizer yields a system normalizer of
G.

The underlying algorithm here requiresG to have a special pcgs (see section 46 in theGAP reference manual), so the
algorithm’s first step is to compute such a pcgs forG if one is not known. The complement basisΣ associated with
this pcgs is then used to compute theF-normalizer ofG with respect toΣ. This process means that in the case of a
finite solvable groupG that does not have a special pcgs, the first call ofFNormalizerWrtFormation (or similarly of
FormationCoveringGroup) will take longer than subsequent calls, since it will include the computation of a special
pcgs.

TheFNormalizerWrtFormation algorithm next computes anF-system forG, a complicated record that includes a
pcgs corresponding to a normal series ofG whose factors are eitherF-central orF-hypereccentric. A subset of this
pcgs then exhibits theF-normalizer ofG determined byΣ. The listComputedFNormalizerWrtFormations(G)

stores theF-normalizers ofG that have been found for various formationsF.

TheFNormalizerWrtFormation function can be used to study the subgroups of a single groupG, as illustrated in an
example in Section “format:other applications”. In that case it is sufficient to have a functionScreenOfFormation
that returns a normal subgroup ofG on each call.

5 Covering Subgroups

Let X be a collection of groups closed under taking homomorphic images. AnX -covering subgroupof a groupG
is a subgroupE satisfying

(C) E ∈ X , andEV = U wheneverE ≤ U ≤ G with U/V ∈ X .

It follows from the definition that anX -covering subgroupE of G is alsoX -covering in every subgroupU of G that
containsE, and an easy argument shows thatE is anX -projector of every suchU, i.e.,E satisfies

(P) EK/K is anX -maximal subgroup ofU/K wheneverK is normal inU.

Gaschütz showed that ifF is a locally defined formation, then every finite solvable group has anF -covering sub-
group. Indeed, locally defined formations are the only formations with this property. For such formations theF -
projectors andF -covering subgroups of a solvable group coincide and form a single conjugacy class of subgroups.
(See [DH] for details.)

1 ◮ CoveringSubgroup1(G, F) O
◮ CoveringSubgroup2(G, F) O
◮ CoveringSubgroupWrtFormation(G, F) O

If F is a locally defined integrated formation inGAP and if G is a finite solvable group, then the commandCover-

ingSubgroup1(G, F) returns anF-covering subgroup ofG. The functionCoveringSubgroup2 uses a different
algorithm to computeF -covering subgroups. The user may choose either function. Experiments with large groups
suggest thatCoveringSubgroup1 is somewhat faster.CoveringSubgroupWrtFormation checks first to see if ei-
ther of these two functions has already computed anF-covering subgroup ofG and, if not, it callsFCoveringGroup1
to compute one.

Nilpotent-covering subgroups are also calledCarter subgroups.

2 ◮ CarterSubgroup(G) A

The commandCarterSubgroup(G) is equivalent toCoveringSubgroupWrtFormation(G, Formation("Nilpo-

tent")).

All of these functions call uponF -normalizer algorithms as subroutines.

6 Formation Examples

The following is aGAP session that illustrates the various functions in the package. We have chosen to work with the
symmetric groupS4 and the special linear groupSL(2, 3) as examples, because it is easy to print and read the results
of computations for these groups, and the answers can be checked by inspection. However, bothS4 andSL(2, 3) are
extremely small examples for the algorithms inFORMAT. In [EW] we describe effective application of the algorithms
to groups of composition length as much as 61, for which the computations take a few seconds to complete. The file
grp contains some of these groups and other groups readable asGAP input.

gap> LoadPackage("format");;

A primitive banner appears.

First we defineS4 as a permutation group and compute some subgroups of it.

gap> G := SymmetricGroup(4);

Sym([1 .. 4])

gap> SystemNormalizer(G); CarterSubgroup(G);

Group([(3,4)])

Group([(3,4), (1,3)(2,4), (1,2)(3,4)])

Now we take the formation of supersolvable groups from the examples and look at it.

gap> sup := Formation("Supersolvable");

formation of Supersolvable groups

gap> KnownAttributesOfObject(sup); KnownPropertiesOfObject(sup);

["NameOfFormation", "ScreenOfFormation"]

["IsIntegrated"]

We can look at the screen forsup.

gap> ScreenOfFormation(sup);

<Operation "AbelianExponentResidual">

gap> ScreenOfFormation(sup)(G,2); ScreenOfFormation(sup)(G,3);

Group([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)])

Group([(2,4,3), (1,4)(2,3), (1,3)(2,4)])

We get the residuals forG of the formations of abelian groups of exponent 1 (= 2− 1) and of exponent 2 (=3− 1).

Notice thatsup does not yet have a residual function. Let’s compute some subgroups ofG corresponding tosup.

gap> ResidualWrtFormation(G, sup);

Group([(1,2)(3,4), (1,4)(2,3)])

gap> KnownAttributesOfObject(sup);

["NameOfFormation", "ScreenOfFormation", "ResidualFunctionOfFormation"]

The residual function forsup was required and created.

13

gap> FNormalizerWrtFormation(G, sup);

Group([(3,4), (2,4,3)])

gap> CoveringSubgroupWrtFormation(G, sup);

Group([(3,4), (2,4,3)])

gap> KnownAttributesOfObject(G);

["Size", "OneImmutable", "SmallestMovedPoint", "NrMovedPoints",

"MovedPoints", "GeneratorsOfMagmaWithInverses", "TrivialSubmagmaWithOne",

"MultiplicativeNeutralElement", "DerivedSubgroup", "IsomorphismPcGroup",

"IsomorphismSpecialPcGroup", "PcgsElementaryAbelianSeries", "Pcgs",

"GeneralizedPcgs", "StabChainOptions", "ComputedResidualWrtFormations",

"ComputedAbelianExponentResiduals", "ComputedFNormalizerWrtFormations",

"ComputedCoveringSubgroup1s", "ComputedCoveringSubgroup2s",

"SystemNormalizer", "CarterSubgroup"]

TheAbelianExponentResiduals were computed in connection with the local definition ofsup. (AbelianExpo-
nentResidual(G, n) returns the smallest normal subgroup ofG whose factor group is abelian of exponent dividing
n-1.) Here are some of the other records.

gap> ComputedResidualWrtFormations(G);

[formation of Supersolvable groups , Group([(1,2)(3,4), (1,4)(2,3)])]

gap> ComputedFNormalizerWrtFormations(G);

[formation of Nilpotent groups , Group([(3,4)]),

formation of Supersolvable groups , Group([(3,4), (2,4,3)])]

gap> ComputedCoveringSubgroup2s(G);

[]

gap> ComputedCoveringSubgroup1s(G);

[formation of Nilpotent groups , Group([(3,4), (1,3)(2,4), (1,2)(3,4)]),

formation of Supersolvable groups , Group([(3,4), (2,4,3)])]

The call byCoveringSubgroupWrtFormationwas toCoveringSubgroup1, notCoveringSubgroup2.

We could also have started with a pc group or a nice enough matrix group.

gap> s4 := SmallGroup(IdGroup(G));

<pc group of size 24 with 4 generators>

This isS4 again. The answers just look different now.

gap> SystemNormalizer(s4); CarterSubgroup(s4);

Group([f1])

Group([f1, f4, f3*f4])

Similarly, we haveSL(2, 3) and an isomorphic pc group.

gap> sl := SpecialLinearGroup(2,3);

SL(2,3)

gap> h := SmallGroup(IdGroup(sl));

<pc group of size 24 with 4 generators>

We get the following subgroups.

gap> CarterSubgroup(sl); Size(last);

<group of 2x2 matrices in characteristic 3>

6

gap> SystemNormalizer(h); CarterSubgroup(h);

Group([f1, f4])

Group([f1, f4])

Now let’s make new formations from old.

14 Chapter 6. Formation Examples

gap> ab := Formation("Abelian");

formation of Abelian groups

gap> KnownPropertiesOfObject(ab); KnownAttributesOfObject(ab);

[]

["NameOfFormation", "ResidualFunctionOfFormation"]

gap> nil2 := Formation("PNilpotent",2);

formation of 2Nilpotent groups

gap> KnownPropertiesOfObject(nil2); KnownAttributesOfObject(nil2);

["IsIntegrated"]

["NameOfFormation", "ScreenOfFormation", "ResidualFunctionOfFormation"]

Compute the product and check some attributes.

gap> form := ProductOfFormations(ab, nil2);

formation of (AbelianBy2Nilpotent) groups

gap> KnownAttributesOfObject(form);

["NameOfFormation", "ResidualFunctionOfFormation"]

Now the product in the other order, whichis locally defined.

gap> form2 := ProductOfFormations(nil2, ab);

formation of (2NilpotentByAbelian) groups

gap> KnownAttributesOfObject(form2);

["NameOfFormation", "ScreenOfFormation", "ResidualFunctionOfFormation"]

We check the results onG, which is stillS4.

gap> ResidualWrtFormation(G, form); ResidualWrtFormation(G, form2);

Group(())

Group([(1,3)(2,4), (1,2)(3,4)])

gap> KnownPropertiesOfObject(form2);

[]

Although form2 is not integrated, we can make an integrated formation that differs from form2 only in its local
definition, i.e., whose residual subgroups are the same as those forform2.

gap> Integrated(form2);

formation of (2NilpotentByAbelian)Int groups

FNormalizerWrtFormation andCoveringSubgroupWrtFormation both require integrated formations, so they
silently replaceform2 by this last formation without, however, changingform2.

gap> FNormalizerWrtFormation(G, form2); CoveringSubgroupWrtFormation(G, form2);

Group([(3,4), (2,4,3)])

Group([(3,4), (2,4,3)])

gap> KnownPropertiesOfObject(form2);

[]

gap> ComputedCoveringSubgroup1s(G);

[formation of (2NilpotentByAbelian)Int groups , Group([(3,4), (2,4,3)]),

formation of Nilpotent groups , Group([(3,4), (1,3)(2,4), (1,2)(3,4)]),

formation of Supersolvable groups , Group([(3,4), (2,4,3)])]

gap> ComputedResidualWrtFormations(G);

[formation of (2NilpotentByAbelian) groups ,

Group([(1,4)(2,3), (1,2)(3,4)]),

formation of (AbelianBy2Nilpotent) groups , Group(()),

formation of 2Nilpotent groups , Group([(1,2)(3,4), (1,3)(2,4)]),

formation of Abelian groups , Group([(2,4,3), (1,4)(2,3), (1,3)(2,4)]),

15

formation of Supersolvable groups , Group([(1,2)(3,4), (1,4)(2,3)])]

Lots of work has been going on behind the scenes.

Before we compute an intersection, we construct yet anotherformation.

gap> pig := Formation("PiGroups", [2,5]);

formation of (2,5)-Group groups with support [2, 5]

gap> form := Intersection(pig, nil2);

formation of ((2,5)-GroupAnd2Nilpotent) groups with support [2, 5]

gap> KnownAttributesOfObject(form);

["NameOfFormation", "ScreenOfFormation", "SupportOfFormation",

"ResidualFunctionOfFormation"]

Let’s cut down the support ofnil2 to {2, 5}.

gap> form3 := ChangedSupport(nil2, [2,5]);

formation of Changed2Nilpotent[2, 5] groups

gap> SupportOfFormation(form3);

[2, 5]

gap> form = form3;

false

Although the formations defined byform andform3 are abstractly identical,GAP has no way to know this fact, and
so distinguishes them.

We can mix the various operations, too.

gap> ProductOfFormations(Intersection(pig, nil2), sup);

formation of (((2,5)-GroupAnd2Nilpotent)BySupersolvable) groups

gap> Intersection(pig, ProductOfFormations(nil2, sup));

formation of ((2,5)-GroupAnd(2NilpotentBySupersolvable)) groups with support

[2, 5]

Now let’s define our own formation.

gap> preform := rec(name := "MyOwn",

> fScreen := function(G, p)

> return DerivedSubgroup(G);

> end);

rec(fScreen := function(G, p) ... end, name := "MyOwn")

gap> form := Formation(preform);

formation of MyOwn groups

gap> KnownAttributesOfObject(form); KnownPropertiesOfObject(form);

["NameOfFormation", "ScreenOfFormation"]

[]

In fact, the definition is integrated. Let’s tellGAP so and compute some related subgroups.

gap> SetIsIntegrated(form, true);

gap> ResidualWrtFormation(G, form);

Group([(1,4)(2,3), (1,2)(3,4)])

gap> FNormalizerWrtFormation(G, form);

Group([(3,4), (2,4,3)])

gap> CoveringSubgroup1(G, form);

Group([(3,4), (2,4,3)])

These answers are consistent with the fact thatMyOwn is really just the formation of abelian by nilpotent groups.

7 Other Applications

Up to this point our screens, i.e., normal subgroup functions, have yielded local formation residual subgroups, but there
is no requirement that they do so. Screens for which the selected normal subgroups can be arbitrary have applications
beyond formation theory. Chapter V of [CH] contains an account of a generalized normalizer theory built from them,
and Wright ([WA] and [WB]) uses them to construct internal versions of formations that are conceptually related to
ordinary formations much as Fitting sets are related to Fitting classes.

A major application of the generalized normalizers is to speed up computation of complements to normal factors
(see [EW]). Suppose thatG is a finite solvable group with an elementary abelian normal subgroupA for which there
exists a normal subgroupN of G containingA such thatN/A is nilpotent and[N,A] = A. ThenA has a complement
in G, and all complements are conjugate—indeed, they can be viewed as generalizedF -normalizers. We will show
the idea, which of course is most useful with very large groups, by usingFNormalizerWrtFormation to find a
complement to an elementary abelian normal subgroup, in this case toK in S4 with N = A4.

We need to define a formationF in GAP (not a real formation, of course, just a local version) such thatScreenOf-
Formation(F)(s4,p) returnsA4 for every call. In order to callFNormalizerWrtFormation we must also set
the propertyIsIntegrated to true.

gap> preform := rec(name := "ForComplement",

> fScreen := function(H, p)

> return Subgroup(H, GeneratorsOfGroup(H){[2,3,4]});

> end);;

gap> form := Formation(preform);

formation of ForComplement groups

gap> SetIsIntegrated(form, true);

Now we may useFNormalizerWrtFormation with s4 to get the complement, anS3. (Recall that unlessform al-
ready thinks it’s integrated,FNormalizerWrtFormation will automatically integrateform before running its com-
putations, which may not be the desired behavior.)

gap> comp := FNormalizerWrtFormation(s4, form); Size(comp);

Group([f1, f2])

6

A user who wanted to employ theF -normalizer technique to compute very many complements in this way would
probably wish to create a newGAP function by extracting portions of the code that computesF -systems.

Bibliography

