Homework 1

1. Section 8

18.2 Reread the proof of Theorem 18.1 with $[a, b]$ replaced by (a, b). Where does it break down? Discuss.
18.4 Let $S \subseteq \mathbb{R}$ and suppose there exists a sequence $\left(x_{n}\right)$ in S converging to a number $x_{0} \notin S$. Show there exists an unbounded continuous function on S.
18.5 (a) Let f and g be continuous functions on $[a, b]$ such that $f(a) \geq g(a)$ and $f(b) \leq g(b)$. Prove $f\left(x_{0}\right)=g\left(x_{0}\right)$ for at least one x_{0} in $[a, b]$.
(b) Show Example 1 can be viewed as a special case of part (a).
18.6 Prove $x=\cos x$ for some $x \in\left(0, \frac{\pi}{2}\right)$.
18.8 Suppose f is a real-valued continuous function on \mathbb{R} and $f(a) f(b)<0$ for some $a, b \in \mathbb{R}$. Prove there exists x between a and b such that $f(x)=0$.
18.10 Suppose f is continuous on $[0,2]$ and $f(0)=f(2)$. Prove there exist $x, y \in[0,2]$ such that $|y-x|=1$ and $f(x)=f(y)$. Hint: Consider $g(x)=f(x+1)-f(x)$ on $[0,1]$.

2. Supplement Homework

S1. Provide an example of each or explain why the request is impossible.
(a) Two functions f and g, neither of which is continuous at 0 but such that $f(x)+g(x)$ and $f(x) g(x)$ are both continuous at 0 .
(b) A function $f(x)$ continuous at 0 and $g(x)$ not continuous at 0 such that $f(x)+g(x)$ is continuous at 0 .
(c) A function $f(x)$ continuous at 0 and $g(x)$ not continuous at 0 such that $f(x) g(x)$ is continuous at 0 .
S2. Decide if the following claims are true or false, providing either a short proof or counterexample to justify each conclusion. Assume throughout that g is defined and continuous on all of \mathbb{R}.
(a) If $g(x) \geq 0$ for all $x<1$, then $g(1) \geq 0$ as well.
(b) If $g(r)=0$ for all $r \in \mathbb{Q}$, then $g(x)=0$ for all $x \in \mathbb{R}$.
(c) If $g\left(x_{0}\right)>0$ for a single point $x_{0} \in \mathbb{R}$, then $g(x)$ is in fact strictly positive for uncountably many points.

