Homework 2

1. Section 19

- 19.1 Which of the following continuous functions are uniformly continuous on the specified set? Justify your answers. Use any theorems you wish.
 - (c) $f(x) = x^3$ on (0, 1)(d) $f(x) = x^3$ on \mathbb{R} (e) $f(x) = \frac{1}{x^3}$ on (0, 1]
 - (f) $f(x) = \sin \frac{1}{x^2}$ on (0, 1].
- 19.2 Prove each of the following functions is uniformly continuous on the indicated set by directly verifying the $\varepsilon \delta$ property in Definition 19.1 (b) $f(x) = x^2 \cos \left[0, 2\right]$
 - (b) $f(x) = x^2$ on [0,3], (c) $f(x) = \frac{1}{x}$ on $[\frac{1}{2},\infty)$.
- 19.4 (a) Prove that if f is uniformly continuous on a bounded set S, then f is a bounded function on S. *Hint*: Assume not. Use Theorems 11.5 and 19.4.
 - (b) Use (a) to give yet another proof that $\frac{1}{r^2}$ is not uniformly continuous on (0, 1).
- 19.6 (a) Let $f(x) = \sqrt{x}$ for $x \ge 0$. Show f is uniformly continuous on (0, 1]. (*Hint:* f is continuous on [0, 1])
 - (b) Show f is uniformly continuous on $[1, \infty)$.
- 19.7 (a) Let f be a continuous function on [0,∞). Prove that if f is uniformly continuous on [k,∞) for some k, then f is uniformly continuous on [0,∞).
 - (b) Use (a) and Exercise 19.6(b) to prove \sqrt{x} is uniformly continuous on $[0, \infty)$.
- 19.10 Let $g(x) = x^2 \sin(\frac{1}{x})$ for $x \neq 0$ and g(0) = 0.
 - (a) Observe g is continuous on \mathbb{R} ; see Exercises 17.3(f) and 17.9(c).
 - (b) Why is g uniformly continuous on any bounded subset of \mathbb{R} ?

2. Section 20

- 20.1/5 Let $f(x) = \frac{x}{|x|}$. Determine, by inspection, the limits $\lim_{x\to\infty} f(x)$, $\lim_{x\to 0^+} f(x)$, $\lim_{x\to 0^-} f(x)$, $\lim_{x\to -\infty} f(x)$ and $\lim_{x\to 0} f(x)$ when they exist. Also indicate when they do not exist. Prove the limit assertions.
- 20.4/8 Repeat Exercise [20.1] for $f(x) = x \sin \frac{1}{x}$.
- 20.16 Suppose the limits $L_1 = \lim_{x \to a+} f_1(x)$ and $L_2 = \lim_{x \to a+} f_2(x)$ exist. (a) Show if $f_1(x) \le f_2(x)$ for all x in some interval (a, b), then $L_1 \le L_2$. (b) Suppose that, in fact, $f_1(x) < f_2(x)$ for all x in some interval (a, b). Can you conclude $L_1 < L_2$?
- 20.17 Show that if $\lim_{x\to a+} f_1(x) = \lim_{x\to a+} f_3(x) = L$ and if $f_1(x) \leq f_2(x) \leq f_3(x)$ for all x in some interval (a, b), then $\lim_{x\to a+} f_2(x) = L$. This is called the squeeze lemma. Warning: This is not immediate from Exercise 20.16(a), because we are not assuming $\lim_{x\to a+} f_2(x)$ exists; this must be proved.