Homework 2

1. Section 19

19.1 Which of the following continuous functions are uniformly continuous on the specified set? Justify your answers. Use any theorems you wish.
(c) $f(x)=x^{3}$ on $(0,1)$
(d) $f(x)=x^{3}$ on \mathbb{R}
(e) $f(x)=\frac{1}{x^{3}}$ on $(0,1]$
(f) $f(x)=\sin \frac{1}{x^{2}}$ on $(0,1]$.
19.2 Prove each of the following functions is uniformly continuous on the indicated set by directly verifying the $\varepsilon-\delta$ property in Definition 19.1
(b) $f(x)=x^{2}$ on $[0,3]$,
(c) $f(x)=\frac{1}{x}$ on $\left[\frac{1}{2}, \infty\right)$.
19.4 (a) Prove that if f is uniformly continuous on a bounded set S, then f is a bounded function on S. Hint: Assume not. Use Theorems 11.5 and 19.4.
(b) Use (a) to give yet another proof that $\frac{1}{x^{2}}$ is not uniformly continuous on $(0,1)$.
19.6 (a) Let $f(x)=\sqrt{x}$ for $x \geq 0$. Show f is uniformly continuous on $(0,1]$. (Hint: f is continuous on $[0,1])$
(b) Show f is uniformly continuous on $[1, \infty)$.
19.7 (a) Let f be a continuous function on $[0, \infty)$. Prove that if f is uniformly continuous on $[k, \infty)$ for some k, then f is uniformly continuous on $[0, \infty)$.
(b) Use (a) and Exercise 19.6(b) to prove \sqrt{x} is uniformly continuous on $[0, \infty)$.
19.10 Let $g(x)=x^{2} \sin \left(\frac{1}{x}\right)$ for $x \neq 0$ and $g(0)=0$.
(a) Observe g is continuous on \mathbb{R}; see Exercises $17.3(\mathrm{f})$ and 17.9 (c).
(b) Why is g uniformly continuous on any bounded subset of \mathbb{R} ?

2. SEction 20

20.1/5 Let $f(x)=\frac{x}{|x|}$. Determine, by inspection, the limits $\lim _{x \rightarrow \infty} f(x), \lim _{x \rightarrow 0+} f(x), \lim _{x \rightarrow 0-} f(x)$, $\lim _{x \rightarrow-\infty} f(x)$ and $\lim _{x \rightarrow 0} f(x)$ when they exist. Also indicate when they do not exist. Prove the limit assertions.
20.4/8 Repeat Exercise [20.1] for $f(x)=x \sin \frac{1}{x}$.
20.16 Suppose the limits $L_{1}=\lim _{x \rightarrow a+} f_{1}(x)$ and $L_{2}=\lim _{x \rightarrow a+} f_{2}(x)$ exist.
(a) Show if $f_{1}(x) \leq f_{2}(x)$ for all x in some interval (a, b), then $L_{1} \leq L_{2}$.
(b) Suppose that, in fact, $f_{1}(x)<f_{2}(x)$ for all x in some interval (a, b). Can you conclude $L_{1}<L_{2}$?
20.17 Show that if $\lim _{x \rightarrow a+} f_{1}(x)=\lim _{x \rightarrow a+} f_{3}(x)=L$ and if $f_{1}(x) \leq f_{2}(x) \leq f_{3}(x)$ for all x in some interval (a, b), then $\lim _{x \rightarrow a+} f_{2}(x)=L$. This is called the squeeze lemma. Warning: This is not immediate from Exercise 20.16(a), because we are not assuming $\lim _{x \rightarrow a+} f_{2}(x)$ exists; this must be proved.

