Homework 4

1. SEction 29

29.5 Let f be defined on \mathbb{R}, and suppose $|f(x)-f(y)| \leq(x-y)^{2}$ for all $x, y \in \mathbb{R}$. Prove f is a constant function.
29.7 (a) Suppose f is twice differentiable on an open interval I and $f^{\prime \prime}(x)=0$ for all $x \in I$. Show f has the form $f(x)=a x+b$ for suitable constants a and b.
(b) Suppose f is three times differentiable on an open interval I and $f^{\prime \prime \prime}(x)=0$ on I. What form does f have? Prove your claim.
29.10 Let $f(x)=x^{2} \sin \left(\frac{1}{x}\right)+\frac{x}{2}$ for $x \neq 0$ and $f(0)=0$.
(a) Show $f^{\prime}(0)>0$; see Exercise 28.4.
(b) Show f is not increasing on any open interval containing 0 .
(c) Compare this example with Corollary 29.7(i).
29.12 (a) Show $x<\tan x$ for all $x \in\left(0, \frac{\pi}{2}\right)$
(b) Show $\frac{x}{\sin x}$ is a strictly increasing function on $\left(0, \frac{\pi}{2}\right)$.
(c) Show $x \leq \frac{\pi}{2} \sin x$ for $x \in\left[0, \frac{\pi}{2}\right]$.
29.14 Suppose f is differentiable on $\mathbb{R}, 1 \leq f^{\prime}(x) \leq 2$ for $x \in \mathbb{R}$, and $f(0)=0$. Prove $x \leq f(x) \leq 2 x$ for all $x \geq 0$.

2. Section 30

30.2 Find the following limits if they exist.
(a) $\lim _{x \rightarrow 0} \frac{x^{3}}{\sin x-x}$
(c) $\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)$
(d) $\lim _{x \rightarrow 0}(\cos x)^{1 / x^{2}}$

3. Section 23

23.1 For each of the following power series, find the radius of convergence and determine the exact interval of convergence.
(a) $\sum n^{2} x^{n}$
(d) $\sum\left(\frac{n^{3}}{3^{n}}\right) x^{n}$
(e) $\sum\left(\frac{2^{n}}{n!}\right) x^{n}$
(h) $\sum\left(\frac{(-1)^{n}}{n^{2} \cdot 4^{n}}\right) x^{n}$
23.4 For $n=0,1,2,3, \ldots$, let $a_{n}=\left[\frac{4+2(-1)^{n}}{5}\right]^{n}$.
(a) Find $\lim \sup \left(a_{n}\right)^{1 / n}, \lim \inf \left(a_{n}\right)^{1 / n}, \limsup \left|\frac{a_{n+1}}{a_{n}}\right|$ and $\lim \inf \left|\frac{a_{n+1}}{a_{n}}\right|$.
(b) Do the series $\sum a_{n}$ and $\sum(-1)^{n} a_{n}$ converge? Explain briefly.
(c) Now consider the power series $\sum a_{n} x^{n}$ with the coefficients a_{n} as above. Find the radius of convergence and determine the exact interval of convergence for the series.

