Homework 4

1. Section 29

- 29.5 Let f be defined on \mathbb{R} , and suppose $|f(x) f(y)| \leq (x y)^2$ for all $x, y \in \mathbb{R}$. Prove f is a constant function.
- 29.7 (a) Suppose f is twice differentiable on an open interval I and f''(x) = 0 for all $x \in I$. Show f has the form f(x) = ax + b for suitable constants a and b.
 - (b) Suppose f is three times differentiable on an open interval I and f'''(x) = 0 on I. What form does f have? Prove your claim.
- 29.10 Let $f(x) = x^2 \sin(\frac{1}{x}) + \frac{x}{2}$ for $x \neq 0$ and f(0) = 0. (a) Show f'(0) > 0; see Exercise 28.4.
 - (b) Show f is not increasing on any open interval containing 0.
 - (c) Compare this example with Corollary 29.7(i).
- 29.12 (a) Show $x < \tan x$ for all $x \in (0, \frac{\pi}{2})$
 - (b) Show $\frac{x}{\sin x}$ is a strictly increasing function on $(0, \frac{\pi}{2})$. (c) Show $x \leq \frac{\pi}{2} \sin x$ for $x \in [0, \frac{\pi}{2}]$.
- 29.14 Suppose f is differentiable on \mathbb{R} , $1 \leq f'(x) \leq 2$ for $x \in \mathbb{R}$, and f(0) = 0. Prove $x \leq f(x) \leq 2x$ for all $x \ge 0.$

2. Section 30

30.2 Find the following limits if they exist.

(a)
$$\lim_{x\to 0} \frac{x^3}{\sin x - x}$$

(c) $\lim_{x\to 0} (\frac{1}{\sin x} - \frac{1}{x})$
(d) $\lim_{x\to 0} (\cos x)^{1/x^2}$

3. Section 23

23.1 For each of the following power series, find the radius of convergence and determine the exact interval of convergence.

(a) $\sum n^2 x^n$ (d) $\sum \left(\frac{n^3}{3^n}\right) x^n$ (e) $\sum \left(\frac{2^n}{n!}\right) x^n$ (h) $\sum \left(\frac{(-1)^n}{n^2 \cdot 4^n}\right) x^n$

23.4 For n = 0, 1, 2, 3, ..., let $a_n = \left[\frac{4+2(-1)^n}{5}\right]^n$. (a) Find $\limsup(a_n)^{1/n}$, $\liminf(a_n)^{1/n}$, $\limsup|\frac{a_{n+1}}{a_n}|$ and $\liminf|\frac{a_{n+1}}{a_n}|$.

(b) Do the series $\sum a_n$ and $\sum (-1)^n a_n$ converge? Explain briefly.

(c) Now consider the power series $\sum a_n x^n$ with the coefficients a_n as above. Find the radius of convergence and determine the exact interval of convergence for the series.