Homework 5

1. Section 23

23.6 (a) Suppose $\sum a_{n} x^{n}$ has finite radius of convergence R and $a_{n} \geq 0$ for all n. Show that if the series converges at R, then it also converges at $-R$.
(b) Give an example of a power series whose interval of convergence is exactly $(-1,1]$.
23.7 For each $n \in \mathbb{N}$, let $f_{n}(x)=(\cos x)^{n}$. Each f_{n} is a continuous function. Nevertheless, show
(a) $\lim f_{n}(x)=0$ unless x is a multiple of π,
(b) $\lim f_{n}(x)=1$ if x is an even multiple of π,
(c) $\lim f_{n}(x)$ does not exist if x is an odd multiple of π.
23.8 For each $n \in \mathbb{N}$, let $f_{n}(x)=\frac{1}{n} \sin (n x)$. Each f_{n} is a differentiable function. Show
(a) $\lim f_{n}(x)=0$ for all $x \in \mathbb{R}$,
(b) But $\lim f_{n}^{\prime}(x)$ need not exist [at $x=\pi$ for instance].
23.9 Let $f_{n}(x)=n x^{n}$ for $x \in[0,1]$ and $n \in \mathbb{N}$. Show
(a) $\lim f_{n}(x)=0$ for $x \in[0,1)$. Hint: Use Exercise 9.12.
(b) However, $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=1$.

2. SECtion 24

24.1 Let $f_{n}(x)=\frac{1+2 \cos ^{2} n x}{\sqrt{n}}$. Prove carefully that $\left(f_{n}\right)$ converges uniformly to 0 on \mathbb{R}.
24.2 For $x \in[0, \infty)$, let $f_{n}(x)=\frac{x}{n}$.
(a) Find $f(x)=\lim f_{n}(x)$.
(b) Determine whether $f_{n} \rightarrow f$ uniformly on $[0,1]$.
(c) Determine whether $f_{n} \rightarrow f$ uniformly on $[0, \infty)$.

24.4 Repeat Exercise 24.2 for $f(x)=\frac{x^{n}}{1+x^{n}}$

24.6 Let $f_{n}(x)=\left(x-\frac{1}{n}\right)^{2}$ for $x \in[0,1]$.
(a) Does the sequence $\left(f_{n}\right)$ converge pointwise on the set $[0,1]$? If so, give the limit function.
(b) Does $\left(f_{n}\right)$ converge uniformly on $[0,1]$? Prove your assertion.

