Homework 5

1. Section 23

- 23.6 (a) Suppose $\sum a_n x^n$ has finite radius of convergence R and $a_n \ge 0$ for all n. Show that if the series converges at R, then it also converges at -R.
 - (b) Give an example of a power series whose interval of convergence is exactly (-1, 1].
- 23.7 For each $n \in \mathbb{N}$, let $f_n(x) = (\cos x)^n$. Each f_n is a continuous function. Nevertheless, show (a) $\lim f_n(x) = 0$ unless x is a multiple of π ,
 - (b) $\lim f_n(x) = 1$ if x is an even multiple of π ,
 - (c) $\lim f_n(x)$ does not exist if x is an odd multiple of π .
- 23.8 For each $n \in \mathbb{N}$, let $f_n(x) = \frac{1}{n}\sin(nx)$. Each f_n is a differentiable function. Show (a) $\lim f_n(x) = 0$ for all $x \in \mathbb{R}$, (b) But $\lim f'_n(x)$ need not exist [at $x = \pi$ for instance].
- 23.9 Let $f_n(x) = nx^n$ for $x \in [0, 1]$ and $n \in \mathbb{N}$. Show (a) $\lim f_n(x) = 0$ for $x \in [0, 1)$. *Hint*: Use Exercise 9.12. (b) However, $\lim_{n\to\infty} \int_0^1 f_n(x) dx = 1$.

2. Section 24

- 24.1 Let $f_n(x) = \frac{1+2\cos^2 nx}{\sqrt{n}}$. Prove carefully that (f_n) converges uniformly to 0 on \mathbb{R} .
- 24.2 For $x \in [0, \infty)$, let $f_n(x) = \frac{x}{n}$. (a) Find $f(x) = \lim f_n(x)$. (b) Determine whether $f_n \to f$ uniformly on [0, 1]. (c) Determine whether $f_n \to f$ uniformly on $[0, \infty)$.

24.4 Repeat Exercise 24.2 for $f(x) = \frac{x^n}{1+x^n}$

- 24.6 Let $f_n(x) = (x \frac{1}{n})^2$ for $x \in [0, 1]$.
 - (a) Does the sequence (f_n) converge pointwise on the set [0, 1]? If so, give the limit function. (b) Does (f_n) converge uniformly on [0, 1]? Prove your assertion.