Homework 6

1. SECtion 24

24.9 Consider $f_{n}(x)=n x^{n}(1-x)$ for $x \in[0,1]$.
(a) Find $f(x)=\lim f_{n}(x)$. (b) Does $f_{n} \rightarrow f$ uniformly on [0, 1]? Justify.
24.10 (a) Prove that if $f_{n} \rightarrow f$ uniformly, on a set S, and if $g_{n} \rightarrow g$ uniformly on S, then $f_{n}+g_{n} \rightarrow f+g$ uniformly on S.
(b) Do you believe the analogue of (a) holds for products? If so, see the next exercise.
24.13 Prove that if $\left(f_{n}\right)$ is a sequence of uniformly continuous functions on an interval (a, b), and if $f_{n} \rightarrow f$ uniformly on (a, b), then f is also uniformly continuous on (a, b). Hint: Try an $\varepsilon / 3$ argument as in the proof of Theorem 24.3.
24.14 Let $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$ and $f(x)=0$ for $x \in \mathbb{R}$.
(a) Show $f_{n} \rightarrow f$ pointwise on \mathbb{R}.
(b) Does $f_{n} \rightarrow f$ uniformly on $[0,1]$? Justify.
(c) Does $f_{n} \rightarrow f$ uniformly on $[1, \infty)$? Justify.

2. SECTION 25

25.2 Let $f_{n}(x)=\frac{x^{n}}{n}$. Show $\left(f_{n}\right)$ is uniformly convergent on $[-1,1]$ and specify the limit function.
25.4 Let $\left(f_{n}\right)$ be a sequence of functions on a set $S \subset \mathbb{R}$, and suppose $f_{n} \rightarrow f$ uniformly on S. Prove $\left(f_{n}\right)$ is uniformly Cauchy on S. Hint: Use the proof of Lemma 10.9 on page 63 as a model, but be careful.
25.5 Let $\left(f_{n}\right)$ be a sequence of bounded functions on a set S, and suppose $f_{n} \rightarrow f$ uniformly on S. Prove f is a bounded function on S.
25.6 (a) Show that if $\sum_{n}\left|a_{k}\right|<\infty$, then $\sum a_{k} x^{k}$ converges uniformly on $[-1,1]$ to a continuous function. (b) Does $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$ represent a continuous function on $[-1,1]$?
25.10 (a) Show $\sum \frac{x^{n}}{1+x^{n}}$ converges for $x \in[0,1)$.
(b) Show that the series converges uniformly on $[0, a]$ for each $a, 0<a<1$.
(c) Does the series converge uniformly on $[0,1)$? Explain.

