Homework 8

1. Section 32

- 32.1 Find the upper and lower Darboux integrals for $f(x) = x^3$ on the interval [0, b]. *Hint*: Exercise 1.3 and Example 1 in §1 will be useful.
- 32.2 Let f(x) = x for rational x and f(x) = 0 for irrational x.
 (a) Calculate the upper and lower Darboux integrals for f on the interval [0, b].
 (b) Is f integrable on [0, b]?
- 32.6 Let f be a bounded function on [a, b]. Suppose there exist sequences (U_n) and (L_n) of upper and lower Darboux sums for f such that $\lim(U_n - L_n) = 0$. Show f is integrable and $\int_a^b f = \lim U_n = \lim L_n$.
- 32.7 Let f be integrable on [a, b], and suppose g is a function on [a, b] such that g(x) = f(x) except for finitely many x in [a, b]. Show g is integrable and $\int_a^b f = \int_a^b g$. *Hint:* First reduce to the case where f is the function identically equal to 0.
- 32.8 Show that if f is integrable on [a, b], then f is integrable on every interval $[c, d] \subset [a, b]$.

2. Section 33

- 33.3 A function f on [a, b] is called a step function if there exists a partition $P = \{a = u_0 < u_1 < \cdots < u_m = b\}$ of [a, b] such that f is constant on each interval (u_{j-1}, u_j) , say $f(x) = c_j$ for x in (u_{j-1}, u_j) . (a) Show that a step function f is integrable and evaluate $\int_a^b f$.
 - (b) Evaluate the integral $\int_0^4 P(x) dx$ for the postage-stamp function P in Exercise 17.16.
- 33.4 Give an example of a function f on [0,1] that is *not* integrable for which |f| is integrable. *Hint*: Modify Example 2 in §32.
- 33.7 Let f be a bounded function on [a, b], so that there exists B > 0 such that $|f(x)| \le B$ for all $x \in [a, b]$. (a) Show

 $U(f^{2}, P) - L(f^{2}, P) \le 2B[U(f, P) - L(f, P)]$

for all partitions Pof [a, b]. Hint: $f(x)^2 - f(y)^2 = [f(x) + f(y)] \cdot [f(x) - f(y)]$.

- (b) Show that if f is integrable on [a, b], then f^2 also is integrable on [a, b].
- 33.8 Let f and g be integrable functions on [a, b].
 (a) Show fg is integrable on [a, b]. Hint: Use Exercise 33.7 and 4fg = (f + g)2 (f g)2.
 (b) Show max(f, g) and min(f, g) are integrable on [a, b]. Hint: Exercise 17.8.
- 33.11 Let f(x) = xsgn(sin 1/x) for x ≠ 0 and f(0) = 0.
 (a) Show f is not piecewise continuous on [-1, 1].
 (b) Show f is not piecewise monotonic on [-1, 1].
 (c) Show f is integrable on [-1, 1].