Homework 8

1. Section 32

32.1 Find the upper and lower Darboux integrals for $f(x)=x^{3}$ on the interval $[0, b]$. Hint: Exercise 1.3 and Example 1 in $\S 1$ will be useful.
32.2 Let $f(x)=x$ for rational x and $f(x)=0$ for irrational x.
(a) Calculate the upper and lower Darboux integrals for f on the interval $[0, b]$.
(b) Is f integrable on $[0, b]$?
32.6 Let f be a bounded function on $[a, b]$. Suppose there exist sequences $\left(U_{n}\right)$ and $\left(L_{n}\right)$ of upper and lower Darboux sums for f such that $\lim \left(U_{n}-L_{n}\right)=0$. Show f is integrable and $\int_{a}^{b} f=\lim U_{n}=\lim L_{n}$.
32.7 Let f be integrable on $[a, b]$, and suppose g is a function on $[a, b]$ such that $g(x)=f(x)$ except for finitely many x in $[a, b]$. Show g is integrable and $\int_{a}^{b} f=\int_{a}^{b} g$. Hint: First reduce to the case where f is the function identically equal to 0 .
32.8 Show that if f is integrable on $[a, b]$, then f is integrable on every interval $[c, d] \subset[a, b]$.

2. Section 33

33.3 A function f on $[a, b]$ is called a step function if there exists a partition $P=\left\{a=u_{0}<u_{1}<\cdots<\right.$ $\left.u_{m}=b\right\}$ of $[a, b]$ such that f is constant on each interval $\left(u_{j-1}, u_{j}\right)$, say $f(x)=c_{j}$ for x in $\left(u_{j-1}, u_{j}\right)$.
(a) Show that a step function f is integrable and evaluate $\int_{a}^{b} f$.
(b) Evaluate the integral $\int_{0}^{4} P(x) d x$ for the postage-stamp function P in Exercise 17.16.
33.4 Give an example of a function f on $[0,1]$ that is not integrable for which $|f|$ is integrable. Hint: Modify Example 2 in $\S 32$.
33.7 Let f be a bounded function on $[a, b]$, so that there exists $B>0$ such that $|f(x)| \leq B$ for all $x \in[a, b]$.
(a) Show

$$
U\left(f^{2}, P\right)-L\left(f^{2}, P\right) \leq 2 B[U(f, P)-L(f, P)]
$$

for all partitions P of $[a, b]$. Hint: $f(x)^{2}-f(y)^{2}=[f(x)+f(y)] \cdot[f(x)-f(y)]$.
(b) Show that if f is integrable on $[a, b]$, then f^{2} also is integrable on $[a, b]$.
33.8 Let f and g be integrable functions on $[a, b]$.
(a) Show $f g$ is integrable on $[a, b]$. Hint: Use Exercise 33.7 and $4 f g=(f+g) 2-(f-g) 2$.
(b) Show $\max (f, g)$ and $\min (f, g)$ are integrable on $[a, b]$. Hint: Exercise 17.8.
33.11 Let $f(x)=x \operatorname{sgn}\left(\sin \frac{1}{x}\right)$ for $x \neq 0$ and $f(0)=0$.
(a) Show f is not piecewise continuous on $[-1,1]$.
(b) Show f is not piecewise monotonic on $[-1,1]$.
(c) Show f is integrable on $[-1,1]$.

