Homework 9

1. Section 34

34.2 Calculate
(a) $\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x} e^{t^{2}} d t$
(b) $\lim _{h \rightarrow 0} \frac{1}{h} \int_{3}^{3+h} e^{t^{2}} d t$.
34.3 Let f be defined as follows: $f(t)=0$ for $t<0 ; f(t)=t$ for $0 \leq t \leq 1 ; f(t)=4$ for $t>1$.
(a) Determine the function $F(x)=\int_{0}^{x} f(t) d t$.
(b) Sketch F. Where is F continuous?
(c) Where is F differentiable? Calculate F^{\prime} at the points of differentiability.
34.6 Let f be a continuous function on \mathbb{R} and define

$$
G(x)=\int_{0}^{\sin x} f(t) d t \quad \text { for } \quad x \in \mathbb{R}
$$

Show G is differentiable on \mathbb{R} and compute G^{\prime}.
34.11 Suppose f is a continuous function on $[a, b]$. Show that if $\int_{a}^{b} f(x)^{2} d x=0$, then $f(x)=0$ for all x in $[a, b]$. Hint: See Theorem 33.4.
34.12 Show that if f is a continuous real-valued function on $[a, b]$ satisfying $\int_{a}^{b} f(x) g(x) d x=0$ for every continuous function g on $[a, b]$, then $f(x)=0$ for all x in $[a, b]$.

