Required textbook problems (hand these in):

1. §4.1: 1, 2, 5, 6, 7, 8, 12, 25, 26, 27, 28, 29, 30.
2. §4.2: 7, 8, 9, 10, 16, 22, 31.
3. Recall that P_3 is the vector space of polynomials $p(t)$ of degree ≤ 3.
 Consider the map $F: P_3 \to P_3$ defined $F(p(t)) = p'(t) + p''(t)$.
 (a) Compute $F(t^3 + 2t + 3)$.
 (b) Verify that F is a linear transformation.
 (c) Is F one-to-one (injective)? Justify your answer.
 (d) Is F onto (surjective)? Justify your answer.
 (e) Describe the kernel (null space) of F.
 (f) Describe the image (what the book calls the “range”) of F.
 (g) Find one solution $p(t)$ to the equation $F(p(t)) = 2t^2 + 3t + 4$.
 (h) Find all solutions $p(t)$ to the equation $F(p(t)) = 2t^2 + 3t + 4$.
4. Consider the map $G: P_2 \to P_3$ defined $G(p(t)) = \int_0^t p(x)dx$.
 (a) Compute $F(t^2 + t + 5)$.
 (b) Verify that F is a linear transformation.
 (c) Is F one-to-one (injective)? Justify your answer.
 (d) Is F onto (surjective)? Justify your answer.
 (e) Describe the kernel (null space) of F.
 (f) Describe the image (what the book calls the “range”) of F.
 (g) Find one solution $p(t)$ to the equation $F(p(t)) = 2t^2 + 3t$.
 (h) Find all solutions $p(t)$ to the equation $F(p(t)) = 2t^2 + 3t$.
5. Consider the map $H: P_3 \to P_3$ defined by $H(p(t)) = p'(t)p''(t)$.
 • Compute $H(t^3 + 2t + 3)$.
 • Is H a linear transformation? Justify (prove) your answer.
6. Consider the map $K: P_3 \to P_3$ defined by $K(p(t)) = t^3p(0) + 2p'(t)$.
 • Compute $K(t^3 + 2t + 3)$.
 • Verify that K is a linear transformation.
 • Is K one-to-one (injective)? Justify your answer.
 • Is K onto (surjective)? Justify your answer.
 • Compute $(F \circ K)(t^3 + 2t + 3) = F(K(t^3 + 2t + 3))$.
 • Compute $(K \circ F)(t^3 + 2t + 3) = K(F(t^3 + 2t + 3))$.
Suggested practice (don’t hand these in):

- Please read and make sure you can do the practice problems in section 4.1, 4.2.
- Please read and use for review problems 4.1.23, 4.1.24, 4.2.25, 4.2.26.
- Some more nice practice with the definitions: 4.1.19, 4.1.31, 4.1.32, 4.1.33, 4.1.34
- If you had trouble or got help with any of the assigned problems, solve another, similar problem (or two).

Bonus points. As usual, bonus points for learning Sage.

1. Follow the post “Random matrices for practice”. Print out your worksheet and turn it in.

E-mail address: lipshitz@uoregon.edu