1. Basic TFTs

Definition. An \(n \)-dimensional TQFT is a symmetric monoidal functor
\(Z : \text{Cob}(n) \to \text{Vect} \).

Here \(\text{Cob}(n) \) is the category of cobordisms defined by:
- Objects are closed oriented \((n - 1)\)-manifolds.
- Morphisms are cobordisms \(M \xrightarrow{B} N \).

\(B \) is an oriented \(n \)-manifold together with an identification \(\partial B \to M \sqcup N \). We consider cobordisms up to orientation-preserving diffeomorphisms.

Composition is given by gluing. The monoidal structure is the disjoint union (the empty manifold is the unit).

Therefore, \(Z(\emptyset) = \mathbb{C} \). If \(B^n \) is a closed manifold, then it is a cobordism between empty sets. The functor \(Z \) assigns an element of \(\text{End}(\mathbb{C}) \), i.e. a number.

Example: \(n = 1 \). 0-manifolds are finite collections of oriented points. We have two orientations on the point, so we get two vector spaces \(V \) and \(W \) for each.

The cap and cup diagrams give morphisms
\[
\mathbf{C} \to V \otimes W, \quad V \otimes W \to \mathbf{C}.
\]

Exercises:

1. Check that \(V^* \cong W \) and they are both finite-dimensional.
2. If \(M \) is a closed \((n - 1)\)-manifold, \(Z(\overline{M}) \cong Z(M)^* \) and \(Z(M) \) is finite-dimensional.

Now let’s consider \(n = 2 \). In \(\text{Cob}(2) \) the objects are closed 1-manifolds, i.e. finite disjoint unions of circles.

\[
Z(M) = Z(\sqcup S^1) = \otimes Z(S^1).
\]

So, \(Z(S^1) \) completely determines \(Z(M) \) for any 1-manifold.

Recall that any surface \(\Sigma \) can be obtained by gluing cups, caps and pants.
Z of the pairs of pants gives maps

$$Z(S^1) \otimes Z(S^1) \to Z(S^1), \quad Z(S^1) \xrightarrow{\Delta} Z(S^1) \otimes Z(S^1),$$

which we call multiplication and comultiplication.

The disks give

$$Z(S^1) \to C, \quad C \to Z(S^1),$$

which are the trace and the unit.

So, $Z(S^1)$ has a structure of a commutative Frobenius algebra.

To summarize,

Theorem. There is a 1-1 correspondence between 2d TFTs and commutative Frobenius algebras.

The equivalence is given by assigning the Frobenius algebra to the circle.

2. Extended TFTs

Let’s consider 2-extended TFTs. We want Z to assign something to M^{n-2}.

Let’s introduce $\text{Cob}_2(n)$:

1. Objects are closed $(n-2)$-manifolds
2. Morphisms are cobordisms between $(n-2)$-manifolds, i.e. $(n-1)$-manifolds with boundary
3. 2-morphisms are cobordisms between cobordisms, i.e. n-manifolds with corners.

Roughly a 2-extended TFT is a symmetric monoidal functor $Z : \text{Cob}_2(n) \to \text{some 2-category}$.

Our target 2-category is the 2-category of algebras:

- Objects are C-algebras
- 1-morphisms $\text{Hom}(A,B)$ are (A,B)-bimodules
- 2-morphisms are bimodule maps.

Note, that we can look at $\text{Hom}(\emptyset, \emptyset)$ in $\text{Cob}_2(n)$. This is precisely the category $\text{Cob}(n)$.

Similarly, $\text{Hom}_{\text{Alg}}(C,C) = \text{Vect}$. So, a 2-extended TFT gives an ordinary TFT.

Theorem. 2d extended TFTs are the same as (noncommutative) Frobenius algebras (finite-dimensional and semisimple).

The corresponding Frobenius algebra is $A = Z(\cdot)$.

Proposition. $Z(S^1)$ is the abelianization of A.
Proof. By breaking the circle into two segments, we get

\[Z(S^1) = A \otimes_{A \otimes A^{op}} A. \]

But this is the zeroth Hochschild homology, which is the same as the abelianization. \(\square\)

Corollary. For a Frobenius algebra, the center is the same as the abelianization.

Example: let \(\Gamma\) be a finite group. Define \(Z_{\Gamma}(\cdot) = C[\Gamma]\).
Then \(Z_{\Gamma}(S^1) = C[\Gamma]^\Gamma\), i.e. the space of class functions on \(\Gamma\).
Going up, we get that \(Z_{\Gamma}(\Sigma)\) is the number of points in the space (orbifold) of \(\Gamma\)-bundles on \(\Sigma\), i.e. \(#\{\text{Hom}(\pi_1(\Sigma), \Gamma)/\Gamma\}\).