4. It is immediate from the definitions that, for any map \(f : X \to Y \), any path \(h \) from \(y_0 \) to \(y_1 \), and any element \(\delta \in \pi_n(Y, y_0) \), we have \(f_* \circ \beta_h(\delta) = \beta_{f \circ h}(f_* \delta) \). Applying this with \(Y = \tilde{X} \), \(f = p \), \(h = \tilde{\beta} \), and \(\delta = \gamma_*(\alpha) \), we find that
\[
p_* \circ \beta_{\gamma} \circ \gamma_*(\alpha) = \beta_{\gamma} \circ p_* \circ \gamma_*(\alpha) = \beta_{\gamma} \circ p_*(\alpha) =: \gamma \cdot p_*(\alpha),
\]
where the second equality follows from the fact that \(\gamma \) acts by deck transformations, so \(p \circ \gamma = p \).

11. By Whitehead’s theorem, it is sufficient to prove that \(X \) is connected and \(\pi_n(X) \) is trivial for all \(n \geq 1 \). Connectedness is easy: if there were two 0-cells in different connected components of \(X \), they would both need to be contained in \(X_k \) for some finite \(k \), and then \(X_k \) would not be contractible in \(X_{k+1} \). For the second statement, it is sufficient to show that every map from \(S^n \) to \(X \) is nullhomotopic. As in the proof of Theorem 4.8, a map from \(S^n \) to \(X \) can only meet finitely many cells, so we may assume that it lands in some \(X_k \). Then our hypothesis tells us that this map can be homotoped to a constant map inside of \(X_{k+1} \).

12. Let \(X \) be an \(n \)-connected CW complex. Applying Corollary 4.16 when \(A \) is a single 0-cell, we see that there exists a CW complex \(Z \) which is homotopy equivalent to \(X \) and has the property that \(Z \) has one 0-cell and no \(k \)-cells for \(1 \leq k \leq n \). Let \(f : X \to Z \) be a homotopy equivalence. By cellular approximation, we may assume that the image of \(f \) lies in the \(n \)-skeleton of \(Z \), which is a single point! Hence \(f \) is a nullhomotopic homotopy equivalence, which implies that \(X \) and \(Z \) are contractible.

14. Let \(f : X \to Y \) and \(g : Y \to X \) be homotopy inverses. By cellular approximation, we may assume that both are cellular maps. We claim that the restrictions \(f_n : X_n \to Y_n \) and \(g_n : Y_n \to X_n \) to the \(n \)-skeleta are homotopy inverses. To see this, consider the homotopy from \(g \circ f \) to \(\text{id}_X \), which is a map \(H : X \times [0, 1] \to X \). Again by cellular approximation, we can assume that \(H \) restricts to a map from \(X_n \times [0, 1] \) to \(X_{n+1} = X_n \), which would be a homotopy from \(g_n \circ f_n \) to \(\text{id}_{X_n} \). The argument for \(f_n \circ g_n \) is identical.