Consider \mathcal{O}_0, the principal block of category \mathcal{O} of \mathfrak{g} (finite-dimensional semisimple Lie algebra).

Here category \mathcal{O} is the category of finitely-generated \mathfrak{g}-modules, which are \mathfrak{h}-semisimple, \mathfrak{b}-locally finite.

\mathcal{O}_0 is the Serre subcategory of \mathcal{O} that contains all simples with the same central character as the trivial representation.

\mathcal{O}_0 is Artinian (i.e. every object has finite length). It has enough projectives/injectives. The simples in \mathcal{O}_0 up to isomorphism are indexed by the Weyl group. For $w \in W$ we denote by L_w the corresponding simple. Δ_w is the Verma module that has L_w as its unique simple quotient. Conventions: $L_w = L(w^{-1}w_0 \cdot 0)$.

Example: $\mathfrak{g} = \mathfrak{sl}_2$:

$$[e, f] = h, \quad [h, e] = 2e, \quad [h, f] = -2f.$$

$W = S_2$ acts by reflections along -1 on the line \mathbb{C}. Let s be 0 and e -2. Then we have Δ_s and $\Delta_e = L_e$ and we have a nontrivial extension

$$0 \to \Delta_e \to \Delta_s \to L_s \to 0.$$

Toy problem: what is $[\Delta_w : L_w]$?

Define the functor

$$\mathcal{O}_0 \to \text{Rep}(\cdot \overset{f}{\underset{e}{\rightleftarrows}} \cdot, ef = 0)$$

by $M \mapsto M_0 \overset{f}{\underset{e}{\rightleftarrows}} M_{-2}$.

Exercise: show that this functor lands in the right place, and is an equivalence. Hint: look at the Casimir.

Symmetries:

1. Evident duality $D : \mathcal{O}_0 \overset{\sim}{\to} \mathcal{O}_0^{op}$, $D^2 = \text{id}$, that fixes simples.
2. \mathcal{O}_0 admits a graded lift $\mathcal{O}_0^Z \to \mathcal{O}_0$, where \mathcal{O}_0^Z is the category of graded representations of the same quiver with $\deg e = \deg f = 1$.

Define \(\pi_{s*} : \mathcal{O}^Z_0 \to \text{Vect}^Z \) given by

\[
(V \supset W) \mapsto W.
\]

Similarly, define \(\pi_s^* : \text{Vect}^Z \to \mathcal{O}^Z_0 \) by

\[
W \mapsto (W(1) \supset W \oplus W(2)).
\]

Observations:

- \(\pi_s^* \) is left adjoint to \(\pi_{s*} \).
- \(\pi^!_s := D\pi_s^*D = \pi^*_s(2) \) is right adjoint to \(\pi_{s*} \).
- \(D\pi_{s*}D = \pi_{s*} \).
- \(C_s = \pi_s^*\pi_{s*} \) acts on \(\mathcal{O}^Z_0 \).
- \(\pi_{s*}\pi^*_s = \text{id} \oplus \text{id}(2) \).
- \(C^2_s = C_s \oplus C_2(2) \).

In general, we have \(\mathcal{O}^Z_0, D \) and an action of \(C_s \) on \(\mathcal{O}^Z_0 \), for every simple \(s \in W \), satisfying the above relations.

Relations between the \(C_s \)'s are controlled by \(G/B \).

2. Geometry

\(\mathfrak{g} \)-mod with trivial central character are mapped under the Beilinson-Bernstein localization to \(D \)-mod(\(G/B \)). It has a subcategory \(\text{Hol}^r_s(G/B) \) which is identified under Riemann-Hilbert with perverse sheaves \(\text{Perv}(G/B) \).

We will denote by \(\Delta_w \) and \(L_w \) the corresponding \(D \)-modules and/or perverse sheaves.

Definition. The **Hecke algebra** is

\[
\mathcal{H} = D^b_m(B\backslash G/B) = D^b_m(G\backslash(G/B \times G/B)).
\]

Here \(D^b_m \) refers to the mixed perverse sheaves.

Warning: \(D^b_m(B\backslash G/B) \) is not the derived category of anything.

Consider a sequence

\[
D^b_m(G\backslash G/B) \xrightarrow{\text{rat}} D^b(B\backslash G/B) \xrightarrow{f_{\alpha}} D^b(G/B).
\]

We can find \(T_w, C_w \in D^b_m(G\backslash G/B) \) that map to \(\Delta_w, L_w \in D^b(G/B) \). The toy problem becomes \([T_w : C_{w'}] =? \)

The algebra structure on \(\mathcal{H} \) is given by convolution. Note, that convolution commutes with \(D \).

\[
G/B = \bigsqcup_{w \in W} BwB/B,
\]

we denote \(j_w : BwB/B \hookrightarrow G/B \).

Let

\[
T_w = j_{w!*}BwB/B, \quad C_w = j_{w!*}BwB/B,
\]
where BwB/B is the constant mixed sheaf on BwB/B. We have a natural map

$$j_!BwB/B \to j_*BwB/B,$$

its image is denoted as $j_*!$.

Easy geometry gives $T_wT_{w'} = T_{ww'}$ if $l(ww') = l(w) + l(w')$ for l the length function.

Moreover, $T_w(DT_{w^{-1}}) = 1 = T_e$; in fact, every object in \mathcal{H} is dualizable.

If $s \in W$ is simple, there is a short exact sequence

$$0 \to 1 \to T_s \to C_s \to 0.$$

Note, that for SL_2 we have $BsB/B \cong \mathbb{P}^1$.

Exercises:

1. Determine the algebra structure on $K_0(\mathcal{H})$. Hint: $\{T_w\}_{w \in W}$ is a basis.

2. Characterize the basis $\{C_w\}_{w \in W}$ in terms of $\{T_w\}_{w \in W}$ and D.

Comments: let X,Y be G-varieties. \mathcal{H} acts on $D^b_m(B \setminus X)$.

Let $f : X \to Y$ be G-equivariant, then f_* is an \mathcal{H}-module. So, we get \mathcal{H}-actions on (suitable) categories of coherent sheaves.